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ABSTRACT With the increasing development of industrial technology, fault detection technology has been
widely applied in many complex systems. Aiming at the problems of multi-operation conditions and the
data length needed for fault detection using Kullback- Leibler Divergence (KLD), a novel fault detection
method for complex systems based on optimized KLD under multi-operation conditions is proposed in this
paper. In the first place, based on the historical data of the system, the complex operation conditions of the
system are divided into several simple mutually exclusive operation conditions, and the division standard is
established. In the next place, the optimal length can be quickly determined by autocorrelation analysis and
applied to various operation conditions. After the next, in the training stage, the KLD values of all training
data are calculated with the benchmark that is the initial optimal data length of each operation condition.
And the maximum value is taken as the threshold for fault detection. Afterward, in the test phase, it starts
by judging the type of operation condition that the data belongs to, then the corresponding KLD value is
calculated, which is compared with the corresponding threshold, so as to determine whether the fault occurs.
Eventually, this method is applied to the suspension system of the maglev train and respectively compared
with the fault detection methods based on Euclidean distance or Mahalanobis distance. The results show that
the proposed method possesses a low false alarm rate and high sensitivity.

INDEX TERMS Multi-operation conditions, autocorrelation analysis, optimized KLLD, complex system,

fault detection.

I. INTRODUCTION
Nowadays, in order to achieve more functions and meet the
needs of life and production, the structure of the system is
becoming more and more complex, the degree of automation
is higher and higher, and the relationship between the various
parts of the system is getting closer. As a result, a chain
reaction is often triggered by a small fault somewhere, leading
to catastrophic damage to the whole system and even the
environment related to the system. It doesn’t only cause
huge economic losses but also endanger personal safety. The
consequences like that are extremely serious. Therefore, it is
of great significance to study fault detection technology for a
complex system.

At present, there are many documents studying on fault
detection, among which Kullback-Leibler Divergence (KLD)
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is a common method on fault detection. Aiming at the prob-
lem of sensor initial fault detection and isolation, Homi
Bhabha National Institute proposed a fault detection index
and fault signature based on extended Kalman filter and
designed fault decision statistics using KLD [1]. To improve
the accuracy of the quantitative evaluation of fault detection,
a method based on KLD to design the permissible area of
measurement errors is proposed [2]. According to the differ-
ence between online estimated and offline reference density
functions, Bounoua et al. proposed a principal component
analysis method based on KLD [3]. A method of extract-
ing Transformed Components (TCs) online by Principal
Component Analysis (PCA) and estimating the time-varying
characteristics of the most sensitive part by Kernel Density
Estimation (KDE) is proposed, which can be easily inte-
grated with the data storage units of Rooftop Mounted Pho-
tovoltaic (RMPV) system [4]. Shiva et al. uses KLD pair
to quantify some characteristics of the current waveform
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into high-impedance fault (HIF) standard, thus proposes a
time-domain high impedance fault detection algorithm based
on monitoring substation current waveform [5]. Chen et al.
proposed a method based on KLLD and independent compo-
nent analysis (ICA) to solve the problem of initial fault in the
electrical traction systems of a high-speed train. The method
is more sensitive to initial fault than ICA only fault detection
method [6]. A method for bearing fault detection based on
Bayesian robust new hidden Markov modeling (BRNHMM)
is proposed by analyzing the acoustic emission signal, which
accesses the divergence of the probability function of the
BRNHMM through KLD [7]. Chen proposed an improved
KLD fault detection method, which is applied to the early
fault detection of electric drive system [8]. Joelle et al. has
developed an optimal threshold method based on improved
KLD and a multi-sensor fusion strategy, which can exclude
the wrong data [9]. A detection algorithm for a sensor pre-
cision degradation fault based on KLD is proposed, which
uses KLD to quantify the dissimilarity between probability
densities of each reference score and the actual one within
the PCA framework [10]. Delpha et al. proposed a method
based on data-driven for fault detection, isolation, and esti-
mation. The PCA is used to extract the features and reduce
the dimension of the data, and then the KLD is used to
detect the fault occurrence [11]. A novel control performance
monitoring method based on KLD is proposed and applied
to a multi-input-multi-output (MIMO) control system [12].
Hamadouche e al. proposed a modified KLD detection algo-
rithm based on non-parametric approximation, which was
applied to the fault detection of large-scale industrial systems
with high coupling in a noisy environment [13]. A method
based on data-driven using the statistical feature is proposed,
which uses KLD as a nonparametric fault indicator, and
evaluates the severity of the fault through the characteris-
tics of small cracks [14]. Harrou proposed a method based
on KLD for detecting initial anomaly in highly correlated
multivariate data [15]. An analysis model based on KLD is
proposed, which can be used to estimate the initial fault scale
in the multi-variable process [16]. Xie proposes a KLD-based
method to detect the initial faults of complex dynamic sys-
tems [17]. Ferracuti et al. presents a method based on the
analysis of motor current characteristics for the fault detection
and diagnosis of induction motor. Where KLD is used to
identify the difference between the two probability distribu-
tions and as an index for automatic defect identification [18].
Aiming at the problem of fault detection and diagnosis of
asynchronous motor, a method based on KDE and KLD is
proposed [19].

These documents have developed new fault detection
methods using KLLD, and have achieved good results in solv-
ing practical problems in their respective fields. However,
there are two problems when using KLD to detect fault in the
above literature: one is that the accuracy of fault detection is
reduced by the complex working conditions of the system;
the other is that the data length required in the calculation of
KLD has a certain impact on the results. Moreover, there is
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no relevant documents to explore the impact of data length on
the detection results. If we ignore that two problems and use
the above method directly, it will probably lead to low fault
detection rate and high false alarm rate.

Aiming at the above two problems, this paper proposes
a fault detection method based on optimized KLD for a
complex system under multiple-operation conditions. On the
basis of prior knowledge and historical data, the complex
working conditions of the system are divided into several
simple working conditions, thereupon then partition rules of
operation conditions are established. Aiming at the problem
of data length, the optimal length is determined by autocor-
relation analysis and applied to various operation conditions.
In the training stage, the initial optimal data length of each
working condition is used as a standard for calculating the
KLD value of the training data, meanwhile, the maximum
value under each operation condition is taken as the fault
threshold. In the test stage, according to partition rules of
operation conditions to judge the working condition of the
current data, the corresponding KLD value is calculated, and
whether the fault occurs is judged on account of the corre-
sponding fault threshold. Eventually, the method is applied
to the suspension system. The experimental results show that
the proposed method has a low false alarm rate and a high
sensitivity to fault detection.

The remainder of this paper is structured as follows:
Section II details he processing method of complex operation
conditions, how to rapidly determine the optimal data length
through autocorrelation analysis, and proposes the steps of
optimizing KL.D algorithm, section III details the results from
the application of the proposed method for the fault detection
in the maglev suspension system and comparison with other
methods, and section I'V details the conclusions.

Il. MATERIALS AND METHODS

A. CLASSIFICATION OF MULTI-OPERATION CONDITIONS
During actual running, due to the interaction of factors
such as internal, environmental, human, and operational
requirements, the operation conditions of the system become
complicated. There are generally two methods to solve the
problem of multi-operation conditions. The first is to estab-
lish a general fault detection model. The second is to sim-
plify multi-operation conditions into several simple mutually
exclusive operation conditions and establish fault detection
models for each simple operation condition. The sticking
point of the first method is to ascertain a general model,
which can tackle the problem of delicate operation conditions
and large data discrepancies caused by diverse operation
conditions. While the crux of the second method is that the
researchers have a certain prior knowledge accumulation of
the system operation data. Due to the sophisticated opera-
tion conditions and the data discrepancies caused by diverse
operation conditions, the first method is difficult, and it could
result in low fault detection rate and high false-positive rate.
Consequently, on the basis of the existing historical data
and the accumulated prior knowledge, the second method is
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adopted to resolve the problem of multi-operation conditions
in this paper.

In addition, considering the demand for real-time detection
in the project, this paper divides the different operation con-
ditions and realizes the real-time switching of the operation
conditions according to the partition rules of the working
conditions.

B. TRADITIONAL KLD ALGORITHM

Complex systems are always designed based on certain task
requirements. Therefore, the healthy operation data of the
system always fluctuates within the scope of task require-
ments and obeys certain distributions, such as Gaussian
distribution, Poisson distribution, and mixed distribution.
However, when the system fault occurs, the operating data are
mutated abnormally, which causes the distribution situation
of the fault data to change. Therefore, there is always a
significant difference between the distribution of fault data
and health data. Based on this, the fault detection problem
can be simplified as an alarm problem that when the proba-
bility attribute of the data distribution changes. In problems
of this kind, as long as the test data is different from the
original data distribution (usually training data), it can be
regarded as fault data. However, in actual detection, due to
the presence of noise and disturbance in the system, fault
detection usually requires a certain degree of robustness.
Therefore, an effective fault detection scheme must be able
to correctly distinguish interference and faults, and achieve
a compromise between detection sensitivity and detection
robustness.

Aiming at the quantitative issue of distribution differences,
an accurate model may not be obtained by fitting with actual
data. Therefore, an effective computational quantity, named
KLD, is proposed to quantify the difference between two
probability distributions on the same parameter space [20],
[21]. The formula for calculating KLD of a discrete random
variable is as follows:

— ot ® o

Dr1(PIIQ) = ), Pi - log 55 = 0 M

where, i is the number of samples, P(¢#) and Q(¢) are the

probability distributions of discrete variables. A lower value

of Dk (P||Q) brings out a higher similarity between P and Q.

The formula of probability distribution P(¢) and Q(¢) is as
follows:

P(t) = —2t

b @
0 = =m—

=19t

where, p; is the t-th sample in the data vector p, g; is the
t-th sample in the data vector g. nopis the selected calculation
length.

The traditional KLD algorithm is not sensitive to parameter
changes and doesn’t need to smooth the probability density,
so the fault detection algorithm based on KLD has been
extensively used.
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C. OPTIMIZED KLD ALGORITHM

1) AUTOCORRELATION ANALYSIS

The selection of data length ng in (2) has a great influence
on the calculation amount and results of the traditional KLD
algorithm. From the perspective of informatics, if the selec-
tion of data length is too small, the information contained in
the data is not comprehensive, leading to the increasing uncer-
tainty of the results. If the selection of data length is too large,
although the information contained in the data is relatively
comprehensive and the uncertainty of the result is reduced,
the amount of calculation is larger, taking resources on the
computer. In addition, most of the previous documents rely
on prior knowledge when choosing the calculation length,
and there are no clear selection criteria, so the selection of
calculation length is arbitrary. Aiming at the selection of cal-
culation length, a method based on autocorrelation analysis
is proposed to determine the calculation length quickly. The
specific steps are as follows:

Step 1: supposing that the complex system has N variables,
according to the prior knowledge and historical data, complex
operation conditions are divided into 7 simple operation
conditions and the switching rules of operation conditions are
established.

Step 2: taking a certain operation condition as an example,
the o section data under the operation condition is extracted,
and then the autocorrelation length of each variable is
calculated by the « section data.

According to (3), vector C;x;) is obtained by calculating
the autocorrelation of the vector X(;;j) corresponding to the
j-th variable in the i-th section data.

Cij = EXixj * X[1) A3)

wherei = 1,...,a,j = 1,2,..., N. % represents convo-
lution calculation. E(-) indicates mathematical expectation;

H : ; o
Xiyjisa transposed matrix of X;y;.

Clixj)is normalized to obtain C’ixj)through (4), then all
values of fall between 0 and 1. )

;o Clxj) — min(ci)

(ixj) —

“

max(c;j) — min(c; ;)
Then find out that the position of 0.5 in the left and right
half of each C(/l.X ;) are Lijs and L, respectively, then the
autocorrelation length of j-th variable in the i-th section data
is:

Lij = Lij,r — Lijs %)

where, L;; is the autocorrelation length of j-th variable in the
i-th section data.

Finally, the autocorrelation length of the j-th variable can
be obtained by the following formula.

L; = min(Ly;) (6)

Step 3: the autocorrelation length of each variable is
obtained through Step 2 for calculating the autocorrelation
length L of the system. The calculation formula is as follows:

1 N
L= ;Lj )
=
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FIGURE 1. The flow chart of scheme design.

According to the above method, the optimal length L of
each operation condition is determined, which is taken as the
calculation length of KLD under each operation condition.

2) OPTIMIZED ALGORITHM

In this paper, an optimized KLD algorithm based on
autocorrelation analysis is adopted for fault detection of com-
plex systems. According to the optimal calculation length L,
the KLD between the training data set and the initial training
data under each working condition is calculated, and then the
fault detection is carried out. The scheme design is shown
in Fig.1.

The specific steps are as follows:

Step 1: on the basis of prior knowledge, the working
conditions of a complex system are divided, and the training
data sections of each working condition are extracted.

Step 2: according to the extracted data sections under
various working conditions, the optimal length L for KLD
calculation under each working condition is determined
through (3)-(7).

Step 3: the KLD of the j-th (j = 1,...,n) variables in
the training set is respectively calculated. The formula is as
follows:

EL o s
FiL) ~

Di(Ejl|F)) =) E/(L)-log

where Ej(L) is the probability distribution of the j-th variable
of the data to be measured, and the calculation formula is as
follows:
€jl
v ©)
=t ¢l

Ei(L) =

wheret =1, 2, ... M (Mis the length of data section €). ¢j; is
the i-th data of the j-th variable. Actually, the essence of Ej )
is to extract L data to be tested through a moving window of
length L and calculate the probability distribution.

F;(L) is the probability distribution of the preceding L
training data in the first section of the training set.

Jik
Zé: 1 fik

where fj;. is the k-th data of the first section of the j-th variable
of the training set.

Fi(L) = (10)
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» Other carriages

FIGURE 2. The connection diagram between MSU and electrical
equipment.

Step 4: determine the fault detection threshold. According
to Dgy (Ej||F;) obtained in step 3, the maximum value of
Dk (E||Fj) is set as the fault detection threshold, as shown
below.

TD; = max(Dky (E;j||Fj)) (1

where TDjis the threshold for fault detection of the j-th
variable. The threshold for fault detection of each variable
under each operation condition is determined through (11).

Step 5: judge the working condition of the test data
and switch to the corresponding working condition model.
According to (7), KLD of the test data and the preceding 1
training data of the first segment of the training set is calcu-
lated under each variable. After comparing with the thresh-
old for fault detection of the corresponding variable under
this operation condition, the running condition is obtained.
As long as the KLD of one variable in the test data exceeds
the threshold for fault detection, the system is considered to
be faulty and an alarm is sent to the system.

Ill. EXPERIMENTAL RESULTS AND ANALYSIS

A. THE SOURCE OF DATA

The data adopted in this paper is the historical operation data
of a maglev train on a maglev line. The suspension system
is one of the most important subsystems of the maglev train.
The main function of the suspension system is to keep the gap
between the train and the track at a fixed value to ensure the
stable suspension of the train. In case the suspension system
fails, the train cann’t be able to levitate normally, which is
prone to accidents. Therefore, considering the significance of
the suspension system to the safe and stable operation of the
maglev train, the method in this paper is applied to the fault
detection of the maglev train suspension system.

Each carriage of the maglev train has five bogies, each
bogie has two suspension modules and each suspension mod-
ule has two suspension units. Therefore, the whole suspen-
sion system is composed of 20 sets of independent control
single point suspension control systems (referred to as sus-
pension points). The suspension point is composed of a sus-
pension control box, suspension sensor, and electromagnet.
Fig.2 is the internal composition diagram of the suspension
system, in which the data of all suspension points in each
carriage are collected by a monitoring suspension unit (MSU)
with a sampling frequency of 0.1Hz and transmitted to

VOLUME 8, 2020



S. Liang et al.: Optimized KLD-Based Fault Detection Method for Complex System Under Multi-Operation Conditions

IEEE Access

60 F

340 T T T T T
©
=320 i
©
£
Voltage:

Time

Value
@
]

0
o

Spe:

; |

1

I

4

4

5 AL

5 6 7 8

Time x10°

Value

FIGURE 3. One day’s historical data of a floating node.

TABLE 1. The criterion of the four operating conditions.

Suspending  Driving Entering and

Type inside the between exiting the Dropping off
station stations garage

Speed

(km/h) 0 0-100 0-20 0

Gap (mm) 6-10 6-14 6-14 16

Acceleration ;5 4050 025 0

(m/s)

the train control and management system (TCMS) through
multifunction vehicle bus (MVB).

Fig.3 shows one day’s historical run data of a node,
including current data, voltage data, speed data, and gap data.
It can be found from the figure that there are multi-operation
conditions of the train and the data difference between each
operation condition is large, so it is difficult to establish
a general fault detection model. Therefore, in this paper,
the operation conditions of the suspension system are divided
into several mutually exclusive operation conditions, and the
specific operation condition information and division criteria
are shown in Table 1.

The suspension controller analyzes the gap value between
the bottom of the train and the track, and controls the cur-
rent in the suspension electromagnet by pulse width modu-
lation (PWM) wave, and then adjusts the gap between the
train and the track to keep the gap at a certain fixed value.
Therefore, clearance data plays an important role in the oper-
ation of the suspension system. It is feasible to detect the
operation condition of the suspension system by analyzing
the clearance value.

The data adopted in this paper is historical gap data of a
suspension point in a maglev train in which there is a section
of overload fault data. Fig.4 shows the distribution histogram
of two sections of health gap data. As can be seen from the
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FIGURE 5. Distribution of fault data.

figure, the health data almost follow a certain distribution,
and there are few differences between them. Fig.5 shows
the distribution histogram of health gap data and fault gap
data. It can be seen from the figure that there are obvious
differences between the distribution of fault data and that of
health data. Therefore, the run condition of the system can be
judged by calculating the KLD between data segments.

In this paper, taking the driving between stations operation
condition of a maglev train as an example, according to the
division criteria of operation condition in Table 1, the gap
data of 56 sections under this condition are extracted from
the historical data. According to the ratio 3: 7, the first
16 segments are selected as the training data, which is mainly
used to determine the optimal length L and threshold TD
for fault detection. Meanwhile, the last 40 segments of data
are selected as the test set. Then the KLD between the last
40 sections of data and the first I training data in the first
segment is calculated by (8). Eventually, the calculated KLD
is compared with the fault detection threshold, so as to judge
the current operation of the system.

B. EFFECT OF DIFFERENT DATA LENGTH
Aiming at the training data of the first 16 segments,
the optimal length L is determined by (3)-(7). Fig.6 shows
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FIGURE 8. The KLD of the training set under optimal computation length.

the autocorrelation length curve of the first segment of data.
It can be seen that the autocorrelation curve is axisymmetric
with respect to x = 5569. As shown in Fig.7, the value of
standardized autocorrelation length is between 0 and 1 by
(4). The optimal length L is determined as 4574 through
(5), which is shorter than the all data length. Moreover, it is
2160 less than the longest data 6743. Therefore, it reduces the
amount of calculation to a certain extent.

Fig. 8 is the KLD curve of the training data when the
calculated length is the optimal one. In order to verify
the effectiveness of the proposed method, 2000, 3000, and
4000 are selected as the calculation length, and the corre-
sponding KLD curves are obtained as shown in Fig.9, 10, and
11 respectively. The volatility of the KLD curves decreases
with the increase of the length. Moreover, the variance is
the index reflecting the volatility. Therefore, In order to
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FIGURE 10. The KLD of training data with calculation length of 3000.
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FIGURE 11. The KLD of training data with calculation length of 4000.

further understand the influence of calculation length on the
calculated value of KLD, values are obtained at intervals
of 100 from 2000 to 4500 and at intervals of 10 from 4510 to
4550 as the data length for calculating the variance of the
KLD curve. It can be seen from Fig.12 that when the calcula-
tion length is between 2500 and 4500, the variance decreases
rapidly. When the calculation length is greater than 4500,
the variance is approximate as a horizontal straight line. That
shows that the variance of KLD decreases with the increase of
calculation length, that is, the larger the calculation length is,
the smaller the fluctuation range of KLD is. When the length
reaches a certain value, the fluctuation range of KLD does
not change much. This is because the smaller the calculation
length is, the less information of the data is, the greater the
uncertainty of the KLD of the calculated training set is, and
the greater the fluctuation of the curve, that is, the greater the
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variance is. At the same time, when the calculation length
reaches a certain value, the information needed to calculate
KLD has met the calculation requirements. If the calculation
length continues to increase, the information contained in
it will not help to reduce the variance but will increase the
amount of calculation. In order to meet the requirements for
the calculation and reduce the additional calculation, the opti-
mal calculation length should be about 4500. In this paper,
L, = 4574 (close to 4500) is determined by autocorrelation
analysis. It not only meets the calculation requirements and
does not need too much extra calculation, but also does not
need to obtain the optimal length by enumeration method,
which greatly reduces the workload.

C. ANALYSIS OF EXPERIMENTAL RESULTS AND
COMPARISON OF METHODS

According to (8)-(10), the KLD between each segment of the
training set and the data whose calculation length is optimal in
the first segment. Fig.13 shows the KL.D curve of the training
set, then the fault detection threshold is 7D = 1.048 x 1073,
According to the optimal calculation length determined in
Section 3.2, the KLD between the last 40 section test set data
and the training data of the first section optimal calculation
length is calculated. The KLD curve of test data is shown
in Fig.14. It can be seen that most of the data are below the
threshold for fault detection, accounting for about 99.69% of
the calculation results of the test set. Only a small part of
the data falls above the fault detection threshold, accounting
for about 0.31%, which shows that KLD can realize fault
detection.

VOLUME 8, 2020

3 X 10-3 T T T T T T T
—KLD
25k — Threshold
2F 4
[a)
<
o151 9
=
- |
1F 4
05 MMWM) i

=

0 0.5 1 1.5 2z 2.3 3 35 4 4.5
The number of the samples x10*

FIGURE 14. The KLD curve of test data.

-3
3 X210 . . . . . :
—KLD
2.5 — Threshold|{
2 - -
2
=L5F J
>

1 5 4
051 \%"‘N\/—\/\/\M—/ 1
0 . . . A . . .

0 200 400 600 800 1000 1200 1400 1600
The calculation point

FIGURE 15. The KLD curve of the 23rd segment data.

The actual fault data is located in section 23, which
accounts for 2.73% of the test set, and the calculation inter-
val is 5643-7217. In the KLD curve, the fault threshold is
exceeded for the first time at the 5643rd calculation point (that
is the calculated occurrence time of fault), which is consistent
with the actual fault location. At the 7203rd calculation point
(that is the calculated end time of fault), the calculated KLLD
exceeds the fault threshold once again, which is 14 calcula-
tion points ahead of the actual fault end time. This shows that
the proposed method can realize fault detection quickly.

Fig.15 shows the KLD of the 23rd segment data. It can
be seen that when the fault occurs, KLD quickly exceeds the
threshold for fault detection. During the fault period, the value
of KLD is lower than the threshold for fault detection, and the
KLD value decreases rapidly at first and then tends to be sta-
ble gradually. This is because there is a large fluctuation in the
first 2000 sampling points of the gap when the system fails,
as shown in Fig.16, but the gap tends to a new steady value
from the 2000th sampling point to the 5000th sampling point.
Fig.17 shows the distribution histogram of the 2000-5000th
fault data and the distribution histogram of the training data
whose calculation length is optimal in the first segment.
It can be seen that although the distribution difference of the
two-segment data is large, the morphological difference of
distribution is small. Therefore, the KLD of this part fault
data is small, even lower than the threshold. At this time,
the system mistakenly identifies the data as health status. It is
also the reason for the low fault detection rate of the proposed
method. After the 5000 sampling points, the gap data changes
greatly, and the KLD value increases continuously, especially
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TABLE 2. Statistical table for fault detection results of three different
methods.

False Whether
Method Health Fault alarm detecting
rate rate
rate a fault
KLD 99.69% 0.31% 0.035% Yes
Euclidean distance 100% 0.00% 6-14 No
Mahalanobis distance  99.26%  0.74% 0.45% Yes

after 6000 sampling points, the KLLD value increases greatly,
exceeding the fault detection threshold. It is because after the
fault is repaired and the train restart, the gap returns to the
normal value. Meanwhile, the probability attribute changes,
leading to the KLD value exceeding the threshold for the
second time.

To sum up, although the fault detection rate of the proposed
method is low, once the system fails, the method proposed
in this paper can detect the occurrence and end of the fault
quickly because KLD directly reflects the change law of the
probability attribute of the data. In addition, the false alarm
rate is low.

In order to verify the effectiveness of the proposed fault
detection algorithm, the proposed method is respectively
compared with the fault detection method based on Euclidean
distance or Mahalanobis distance.

Table 2 shows the statistical results of the fault detection
method based on Euclidean distance, the fault method based
on Mahalanobis distance and the method proposed in this
paper [22]. It can be found from the table that the health
samples obtained by the method based on Euclidean distance
account for 100% of the total samples, and there are no
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fault samples, which is inconsistent with the actual sample
distribution. This shows that the method based on Euclidean
distance can’t realize fault detection. While the method for
fault detection based on Mahalanobis distance can achieve
fault detection, and the fault proportion is 0.74%, which is
0.43% higher than that of the KLD method. This is because
the method based on Mahalanobis distance has high false
alarm rate of 0.45%, and some health samples are detected as
faults. Compared with the other two methods, the proposed
method achieves better results in terms of sensitivity of fault
detection and false alarm rate.

IV. CONCLUSION

In order to solve the problem of multi-operating conditions
in complex systems and the determination of calculation
length in the method for fault detection based on KLD,
a method for complex systems based on a multi-operating
conditions model and optimized KLD is proposed in this
paper. Firstly, based on prior knowledge and the historical
data of the complex system, the operation conditions of the
system are divided into several simple mutually exclusive
operation conditions. According to the established partition
rules, the run data under an operation condition is extracted.
In the next place, based on autocorrelation analysis, a method
to quickly determine the optimal length is proposed, and the
optimal length of each operation condition is determined.
What’s more, in the training stage, the KLLD of the training
data is calculated based on the training data of the first
section of each operation condition, and the maximum value
is selected as the threshold for fault detection. In the test
stage, after the operation condition of the test data is judged,
the corresponding KLD value is calculated, then combing
with the corresponding threshold to determining whether
the fault occurs. At last, this method is applied to the fault
detection for the suspension system and compared with the
other two fault detection methods. The result shows that the
proposed fault detection method possesses low false alarm
rate and high sensitivity. In addition, the effectiveness of the
proposed method is verified by analyzing the KLD under
different calculation lengths.
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