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ABSTRACT Ultrasound imaging technology plays an important role to assist doctors in diagnosing thyroid
nodules. The tissue structure around the thyroid is very complex, which makes it difficult to segment and
extract the ultrasound image of thyroid nodules accurately. For address this problem, this paper proposes
a model algorithm for thyroid nodule ultrasound image segmentation using ASPP fusion features. First,
spatial pyramid pooling and depthwise separable convolution are combined in order to solve the problem
that the size of the mapping feature will change in the process of better capturing the context information.
Besides, Atrous Spatial Pyramid Pooling (ASPP) is proposed to achieve the purpose of processing input
image channel and spatial information separately. In order to appropriately reduce the dimension and size
of feature images, a 1 × 1 convolution operation is performed before each convolution calculation, and
the model size is optimized. In the decoding stage, decoder module appropriately adjusts the feature map
with a relatively low resolution previously from decoder module, and sets the output channel number of
two convolutions to the same value. All features have the same dimension by adjustment, and features can
be fused by element-wise summation. Finally, Dice Similarity Coefficient (DSC), Prevent Match (PM) and
Correspondence Patio (CR) are used as evaluation criteria to compare with other model algorithms. The
experimental results show that the proposed model can significantly improve the segmentation effect of
ultrasound images for thyroid nodules compared with traditional models.

INDEX TERMS Thyroid nodule, medical image segmentation, atrous spatial pyramid pooling, dilated
convolution, ultrasound image.

I. INTRODUCTION
In recent years, artificial intelligence technology and medical
imaging have become more and more closely integrated
[1]–[3]. The use of artificial intelligence to process med-
ical images has increasingly become the main research
focus. Ultrasound image segmentation is one of the research
hotspots [4].

One of the most common diseases of endocrine system
is thyroid nodules. Relevant studies have shown that 2%
to 6% of adults in areas where iodine is not deficient have
thyroid nodules [5], [6]. The incidence of ultrasound images
is 19-35% [7], [8]. When segmenting ultrasound images
of thyroid nodules, the methods generally used include
the following: contour and shape-based segmentation
methods, region-based segmentation methods, super-
vised and unsupervised segmentation methods, hybrid
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technology-based segmentation methods, threshold-based
segmentation methods, segmentation methods based on
Markov random field and segmentation methods based on
deep learning [9].

Contour and shape-based segmentation methods can be
divided into edge-based segmentation methods, probabilistic
filtering-based segmentationmethods and deformablemodel-
based segmentation methods. In the process of image pro-
cessing, various gradient filters are usually used to extract
image edges. But the extraction process is often affected by
noise, and the gradient filter often gets wrong edge results
during the detection process. Therefore, it is particularly
important to design a suitable algorithm and detect the edge
by a large number of calculations [10]–[12]. In the traditional
edge detection process, the contrast of ultrasound images
is relatively low due to the presence of spots and noise,
which causes the edge of shadow areas to be inaccurately
obtained [13], [14]. In order to solve the above problems,
Kwoh et al. used Fourier transform to Fourier decomposition
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of images, and reduced false edges by obtained high-order
harmonics [15]. In order to reduce the number of spots in
original images, Aaraink et al. used local standard deviation
as the basis to identify homogeneous and non-homogeneous
regions in images under a multi-resolution framework. The
result can provide a more reliable detection method for
remote detection of thyroid images [16]. Yu et al. proposed a
method to determine the initial contour of an image based on
radial base embossing method, and based on this, proposed
an algorithm that can remove false edges of images [17].
The algorithm is based on the deformation propagation of
two-dimensional slices and can change the contour of each
image slice. Gomez et al. achieved the enhancement of image
contrast through a histogram equalization method with lim-
ited contrast. On this basis, the edge of the image is enhanced
by an anisotropic diffusion filter. Finally, a watershed-based
image segmentation method was proposed, and the boundary
extraction of breast ultrasound images was realized [18].
Based on the U-net model, Pan Peike et al. realized the
segmentation of MRI images of nasopharyngeal tumors. The
principle was to obtain surrounding information by the con-
tracted path, and on this basis, achieved precise positioning
by expanding the path [19]. Most of the existing researches
reduce the size of original images in the image segmen-
tation process, and cannot obtain a full-resolution image.
In addition, the shallower network during image segmenta-
tion will greatly reduce the accuracy of segmentation results.
In order to solve the above problems, Chen et al. proposed an
algorithm to increase the receptive field by expanding con-
volution. This algorithm inserted an appropriate number of
zero into convolution kernel, which expands the convolution
kernel. The expanded convolution kernel can obtain a larger
receptive field and maintain the number of kernel parameters.
And different expansion rates can extract the characteristics
of different sizes of receptive fields. But when the expansion
rate increases to a certain extent, this algorithm will fail [20].
Yang M et al. spliced the result obtained by expansion
convolution algorithm in the previous layer with the result
obtained by traditional convolution. Then the spliced image
was transferred to the next layer of dilated convolutional
layer, and a DenseASPP model was proposed. This model
make up for the defect that ordinary dilated convolution will
fail when the expansion rate increases to a certain extent, and
can gradually increase the receptive field of each layer of
dilated convolution. However, this model had certain defects
in the application of ultrasound image segmentation, such as
the unsmooth edges of segmentation [21]. Kumar et al. were
based on Convolutional Neural Networks (CNN). In the pro-
cess of nuclear segmentation in digital microstructure images,
the segmentation result of entire images was obtained by
predicting the category of each pixel in the form of a sliding
window [22]. Lu Qiuju et al. proposed a global segmentation
method for multi-threshold color image with adaptive step
size for the segmentation of multi-threshold color image.
This method improved the efficiency of segmentation by
reducing the total number of image colors and does not

reduce the quality of images. By listing the objective function
and solving objective function based on swarm optimization
algorithm, the optimal solution for color image threshold
segmentation is obtained [23]. Anas et al. proposed a real-
time prostate segmentation technique based on deep neural
network during biopsy. It laid the foundation for the dynamic
registration of mp-MRI and ultrasound data. In addition to
extracting spatial features by convolutional networks, this
technology also used recursive networks to collect and utilize
time information between a series of ultrasound images. This
system used residual convolution in the recurrent network to
improve optimization, and finally proved the usability of fully
convolutional neural network on ultrasound images [24].

Most of the methods mentioned in the above references
have problems such as low contrast, blurred boundaries and
speckle echo. Therefore, it is difficult to achieve ideal results
when applied to ultrasound image segmentation of thyroid
nodules. The main contribution of this paper is:

1) Based on the DenseNet-121 network structure model
and combined with the Atrous Spatial Pyramid Pooling
(ASPP), and proposes a new segmentation model for ultra-
sound images of thyroid nodules. Using spatial pyramid
pooling for splicing to form the mapping feature solves the
problem of changes in the size of mapping features.

2) In the encoding process, hierarchical feature fusion is
proposed to generate semantic feature structure. The exper-
imental results show that the segmentation model method
proposed in this paper greatly improves the segmentation
effect of ultrasound images of thyroid nodules. Besides, its
performance is better than other comparison methods.

II. BASIC NETWORK STRUCTURE
The encoder-decoding structure is required to gradually
reduce the spatial dimension of input data. Secondly,
the structure can gradually restore the details of target and the
spatial dimension of target based on the network layer such
as deconvolution layer.

Atrous convolution can increase receptive field and main-
tain the number of kernel parameters at the same time, so as
to achieve the purpose of effectively maintaining image res-
olution.

In the basic network structure of this paper, the
encoder-decoding structure and atrous convolution are prop-
erly combined. In the encoding process, Fusion Atrous Spa-
tial Pyramid Pooling (FASPP) is proposed, and Hierarchical
Feature Fusion (HFF) is proposed in the decoding process
to generate semantic feature structure (GSM). Based on the
inherent characteristics of thyroid nodules ultrasound images,
a targeted network structure Pronet is proposed. The final
network structure is shown in Fig. 1.

III. ALGORITHM IMPLEMENTATION
A. ENCODER
1) DENSENET-121 NETWORK STRUCTURE MODEL
Huang Gao et al. proposed Dense Net for the first time
in 2017 [25]. The structure principle diagram of Dense Block
is shown in Fig. 2.
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FIGURE 1. The basic structure of the proposed network.

FIGURE 2. Schematic diagram of Dense Block structure.

Dense Net uses a similar idea to Res Net when dealing
with problems such as network degradation and gradient
disappearance, and uses short connections to deal with such
problems. The difference between them when dealing with
problems is that the core design of Dense Net uses Dense

Block structure. The source of the name Dense Net is because
this structure resembles a dense network. Its characteristic is
that it can connect any two convolutional layers.

The Dense Block structure diagram in Fig. 2 contains
5 layers of structure, which form a densely connected block as
a whole. It can be seen from Fig. 2 that any two convolutional
layers are interconnected and connected. And the feature
layer of the upper layer is the input value of lower layer.
The structure diagram of densely connected blocks given
in Fig. 2 can reduce the number of parameters of entire net-
work to a certain extent. Thismakes the network narrower and
can achieve the purpose of making full use of the characteris-
tics of each layer. The connection between adjacent layers of
Dense Block is to merge channels by Concatenation instead
of simply adding them. This is quite different from Res Net
network, which is also the essential difference between the
two.

The basic settings in any Dense Block structure include
growth rate parameters. The growth rate in a certain Dense
Block structure represents the number of feature layers out-
put by each layer in Dense Block. At the connection point
between layers in Dense Block structure, a layer of bottleneck
layer can be added to reduce the number of parameters in
network and reduce its feature dimension. The new structure
Dense Net formed after adding Bottleneck and Translation
layer to Dense Block structure is named Dense Net-BC.
The most common structure in Dense Net network is Dense
Net-121 structure. The parameters and composition of the
network structure are shown in Tab. 1.

2) ATROUS SPATIAL PYRAMID POOLING
In order to better obtain the contextual multi-scale informa-
tion of input feature map, multiple convolutions with dif-
ferent expansion coefficients can be used in this process to
achieve the purpose of obtaining multi-scale feature maps.
But this will also bring some negative effects, such as chang-
ing the size of mapping features. In order to solve the above-
mentioned problem that the size of mapping features changes,
the mapping features can be formed by splicing by using
Spatial Pyramid Pooling (SPP). In addition, depthwise sep-
arable convolution is generally used when processing the
channels of input images. In summary, a new ASPP can be
formed by combining spatial pyramid pooling and depthwise
separable convolution to separate input images channel from
the spatial information. In this paper, the operation used in the
last layer of U-Net network coding in traditional computing is
replaced with ASPP. The network structure of ASPP is shown
as in Fig. 3.

In the calculation process, ASPP is used to perform convo-
lution operation on the feature map of upper layer, which is
mainly divided into the following five convolution processes:

(a) The first convolution uses 256 ordinary 1 × 1 con-
volution kernels to perform convolution calculation on the
feature map, and add batch normalization layer operation
after convolution.
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TABLE 1. The parameters and composition of Dense Net-121 network
structure.

FIGURE 3. The basic network structure of ASPP.

(b) Use depthwise separable convolution calculations
during the second to fourth convolution calculations. The
depthwise separable convolution network structure in each
convolution process can be expressed by the following
formula:

Depthconv(3× 3)+BN+Pointconv(1× 1)+BN+ReLU

(1)

DepthConv —-3 × 3 dilated convolution with expansion
coefficients of 6, 12, and 18.

PointConv —- Ordinary 1× 1 convolution.

In the second to fourth convolution operations, using the
network structure of depthwise separable convolution of

equation (1) can greatly reduce the number of parameters
in the model, thereby speeding up the convergence speed of
model calculation.

(c) In the fifth convolution process, the size of original
image needs to be reduced to 1/output step size of previous
size (the output step size in this paper is 16). Then the feature
map is sent to 1 × 1 convolution kernel with 256 output
channels by performing the global mean pooling operation,
then proceed to batch normalization layer operation. Finally,
the bilinear interpolation method is used to restore the image
size. Although ASPP with different sampling rates can cap-
ture multi-scale information well, but as the sampling rate
gradually increases, the weight of filter will also decrease.
When its weight is reduced to a certain extent, 3×3 convolu-
tion kernel can no longer fully capture the context information
of images. The 3× 3 convolution kernel will also degenerate
into a simple 1 × 1 convolution kernel. According to the
above-mentioned method, the fifth convolution can solve this
problem to the greatest extent.

It should be noted that after five convolution operations are
completed, the five multi-scale feature maps extracted need
to be spliced. Its purpose is to be able to get the correlation
between different feature maps. After the feature map is
spliced, it is sent to 1× 1 convolution kernel with 512 chan-
nels, then performs batch normalization layer operation to
send the final feature map to decoding module for decoding.

3) MODEL SIZE OPTIMIZATION
The size of convolutional layer after fusion may be too
wide. In order to prevent this, the size of model needs to be
optimally controlled. In this paper, in order to appropriately
reduce the dimension and size of feature images, a 1 × 1
convolution operation is performed before each convolution
calculation. In this way, the dimensionality of feature maps
can be reduced to half of original so as to achieve the purpose
of reducing output size.

Assume that each convolutional layer initially has a0 input
features, and each convolutional layer outputs m feature
maps. Then the number of input feature maps ak of 1 × 1
convolution of k atrous convolution layer is:

ak = a0 + m× (k − 1) (2)

Before each convolution calculation, a 1×1 convolution oper-
ation is performed, which reduces the number of channels
to a0

/
2. Set the output number of feature images of each

convolutional layer to m = a0
/
8. Assuming that there are

Sum parameters in the network, then:

Sum =
C∑
k

[
mk × 1× 1×

a0
2
× m× J2

]
=

C∑
k

[a0
2
·

(
a0 + (k − 1)×

a0
8

)
+
a0
2
× J2 ×

a0
8

]
=

a0C
32

(
15+ C + 2J2

)
(3)
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C—-The number of layers of dilated convolution.
J —-The size of convolution kernel.

Each convolutional layer in ASPP outputs 64 feature maps
(m = 64). If 1 × 1 convolution operation is not performed
before the convolution calculation, the number of channels
is 256. The calculation shows that the number of parameters
at this time is about 107. Performing a 1 × 1 convolution
operation before the convolution calculation can reduce the
number of channels to 128. The number of final parameters
calculated is about 1.556 × 106. Without loss of accuracy,
the size of the model can be optimally controlled by reducing
the amount of parameters, and the size of the model can be
appropriately reduced while reducing the time required for
network convergence.

B. DECODER
1) HIERARCHICAL FEATURE FUSION
The output step size of the output feature of thyroid nodule
ultrasound image after passing by the decoder is 16. In the
Deeplab v3 structure, bilinear interpolation is performed on
the obtained feature images. The coefficient of bilinear inter-
polation is the same as the output step length of output
features, which is 16. This structure is equivalent to a sim-
ple decoding module, and its feature is that the resolution
of images can be restored to the same as original images.
However, it has certain defects, such as losing part of the
characteristic information, which will cause the ultrasound
image of thyroid nodules to be unable to be completely
segmented.

As can be seen from the basic structure of network in Fig. 1,
the coding stage in the basic network structure of this paper
is applied to ResNet-101 structure. It mainly includes four
modules, block1, block2, block3 and block4. The encoder
can continuously extract the characteristic information of
each layer from block1 to block4. In the decoding stage of
basic network structure, this paper proposes a Hierarchical
Feature Fusion (HFF) structure. The decoder also includes
four modules: dblock4, dblock3, dblock2 and dblock1. The
decoder can provide feature imageswithmultiple hierarchical
levels from dblock1 to dblock4.

Each of the four modules in the decoder can be divided
into the following two stages: encoder adaptation stage and
image feature generation stage. Among the four modules,
dblock1, dblock2 and dblock3 are integrated with each other,
and merge the output of previous decoder with the output of
encoder. The Dblock4 module is different from the previous
three modules in that it only has inputs and does not perform
fusion operations. In the process of fusion between dblock1,
dblock2 and dblock3 modules, the output feature information
of previous decoder needs to be fused with the matching fea-
ture obtained by the encoder. In the decoding stage, this paper
uses feature maps obtained in the encoder stage as the basis
in the decoder module to appropriately adjust feature maps
with a relatively low resolution from the decoder module. The
purpose of adjustment is to make the fusion features obtained

by different convolutional layers have the same dimensions.
That is, the spatial resolution and the number of channels of
fused features obtained by different convolutional layers are
the same.

The final operation of the encoder and previous decoder
should be 3×3 convolution, which is done to ensure the same
number of channels. Set the number of output channels that
will be two convolutions. Their values are the same and they
are both set to the minimum of the number of input channels
of convolution. In addition, bilinear interpolation is used to
sample low-resolution feature images and the maximum spa-
tial resolution of features to be fused. After the adjustment,
the dimensions of each feature information are the same,
and the number of output channels of these two convolutions
can be set to the same value, that is, the minimum value
of the number of input channels of convolution, by fusing
the features by element-wise summation. Then, in order to
ensure that the features have the same spatial resolution,
the bilinear interpolation method is used to up-sample low-
resolution feature map and the maximum spatial resolution
of features to be fused. Through adjustment, all features have
the same dimension, and features can be fused by element-
wise summation. The process is shown in Fig. 4.

FIGURE 4. Hierarchical feature fusion.

2) GENERATE SEMANTIC FEATURES
Semantic features are generated based on contextual infor-
mation, and the last part of each module in the decoder
is responsible for capturing contextual information. In the
process of capturing contextual information, four convolution
pooling operations with 3× 3 convolution are applied. Then
there are the maximum pooling operation of 5×5 convolution
and 3 × 3 convolution operation. Different fusion modules
obtain the context information of image areas from different
spatial positions of feature maps when capturing the context
information, and merge the input at this stage with all the
outputs of the set operation by connecting mapping features.

In order to appropriately reduce the dimension of fea-
ture maps from the fusion layer and the feature dimen-
sion of cascade structure, a 3 × 3 convolution operation is
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applied. The structure of semantic feature structure is shown
in Fig. 5.

FIGURE 5. Generate semantic feature structure.

The four modules are stacked, and the final predicted
segmentation result is implemented in dblock1module. In the
process of generating semantic features, firstly it reduces
fitting by dropout operation. Then the number of output
channels of feature maps is adjusted to be consistent with
the number of output pixel classes through a 3 × 3 convolu-
tion operation. Then, based on softmax function, a semantic
segmentation map of the thyroid is generated on all pix-
els. Finally, the low-resolution feature map is appropriately
adjusted based on bilinear interpolation, and adjusted to the
size of original images.

C. LOSS FUNCTION
The thyroid ultrasound image segmentation model proposed
in this paper is based on the thyroid segmentation network
of encoding and decoding. In the segmentation process,
the model needs to be continuously trained to predict whether
each pixel is a background. This problem is a pixel-level two
classification problem.

The loss function is the cost function. It is usually used to
measure the difference between the predicted results of model
and true results. Its function is to judge the pros and cons
of model. The smaller the value of loss function, the better
the fitting ability of model, the richer the features learned
by model, and the better the overall performance of model.
The loss function usually involved in classification problems
is Binary Cross Entropy (BCE) loss function, which can be
expressed by the following formula:

BCE= −
N∑
j=1

apre log atru+
(
1− apre

)
log

(
1− apre

)
(4)

apre —- The prediction value, its value is 0 or 1.
atru —- The true value, its value is 0 or 1.

When the predicted value is equal to the true value, loss
value loss is 0. When the predicted value is not equal to the
true value, loss is greater than 0. The more the probability is
different, the greater the loss value.

In actual operation, the loss function is generally not used
directly. In this paper, BCE loss function is replaced by Tver-
sky Loss (TL) loss function [26] in the calculation. The TL
loss function allows the flexibility to balance false negatives

TABLE 2. Platform parameters of the segmentation test.

and false positives, and it can be expressed as follows:

TL=

N∑
j=1

apre · atru

N∑
j−1

(
apre · atru

)
+γ1

N∑
j−1

(
a′pre · atru

)
+γ2

N∑
j−1

(
apre · a′tru

)
(5)

apre —- The predicted value of probability that
pixel j belongs to the disease class.

a′pre —-The predicted value of probability that
pixel j belongs to the non-pathological class.

atru —-The true value of probability that pixel j
belongs to the disease class.

a′tru —-The true value of probability that pixel j
belongs to the non-pathological class.

γ1 —- Parameter, used to control the proportion
of false negatives.

γ2 —- Parameter, used to control the proportion
of false positives.

Adjusting γ1 and γ2 can redistribute weights, which can
improve sample imbalance and improve recall.

IV. SIMULATION EXPERIMENT
A. EXPERIMENTAL SCHEME SETTINGS
The parameters of experimental platform used in the simula-
tion experiment are shown in Tab. 2.

Ultrasound images of thyroid nodules were taken from
30 patients in the hospital. Each patient can provide
20-40 usable ultrasound images as samples, and the final
sample is 1,000. The size of ultrasound images for thyroid
nodules is 548 × 456, and the pixel size is 0.35 mm. Due
to the small number of effective samples in thyroid nodules
dataset, the network training is over-fitting or the network
generalization ability is poor. Therefore, it is necessary to
optimize and select the original data first. Then we perform
an augmentation operation on the filtered data to increase
the number of samples to 4000, thereby improving training
accuracy and overall network performance.

First, label the serial number of 1000 ultrasound image
samples of thyroid nodules, then select 900 images for train-
ing, and the remaining 100 images for algorithm evalua-
tion test. From 4000 ultrasound images of enhanced thyroid
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nodules, 3,600 images were taken for training, and the
remaining 400 images were used for algorithm evaluation
tests. Finally, taking the result of doctor’s manual segmenta-
tion of images as the standard, the reliability of our algorithm
is judged by comparing the image segmentation results of
different algorithms.

The ultrasound images of thyroid nodules were trained on
the basis of original dataset and enhanced dataset. The loss
value and accuracy rate obtained by the network model are
shown in Fig. 6.

FIGURE 6. Comparison of results between data augmentation training
and original data.

It can be seen from Fig. 6(a) that the loss value comparison
curves obtained on the basis of original dataset and enhanced
dataset are very close in the initial training stage. However,
as the number of iterations continues to increase, the loss
value obtained based on enhanced dataset is much smaller
than the loss value obtained based on original dataset.

It can be seen from Fig. 6(b) that as the number of iter-
ations continues to increase, the accuracy obtained on the
verification set based on enhanced dataset is much greater
than the accuracy obtained on the verification set based on
original dataset. Thus, the dataset after data enhancement can

greatly improve the accuracy of the networkmodel in training
process and greatly reduce the loss value.

B. EVALUATION INDICATORS AND EXPERIMENTAL
RESULTS
When testing the performance of the model, in order to
quantitatively measure the performance of proposed model,
this paper will use the following three standard indicators to
evaluate the model performance: Dice Similarity Coefficient
(DSC), PreventMatch (PM) and Correspondence Ratio (CR).

DSC is generally used to consider the similarity between
labels and the predicted value, and its value range is
(0, 1). The larger DSC value, the more similar labels and the
predicted value. PM is generally used to consider the situa-
tion that ultrasound images are missed during segmentation,
and its value range is (0, 1). The larger the value of PM,
the less the ultrasound image is missed during segmentation.
CR is generally used to consider the situation that ultrasound
images are incorrectly segmented during segmentation, and
its value range is (0, 1). The larger the value of CR is,
the less the ultrasound image is mistakenly segmented during
segmentation.

DCS can be expressed by the following formula (6):

DCS = 2×

∣∣∣Z ∩ Ẑ ∣∣∣
|Z | +

∣∣∣Ẑ ∣∣∣ (6)

PM can be expressed by the following formula (7):

PM =
Ztru
Z
× 100% (7)

CR can be expressed by the following formula (8):

CR =
Ztru − 1

2Zfau
Z

× 100% (8)

Z —- The measured area manually divided by doc-
tors.

Ẑ —- The measured area segmented by the model
proposed in this paper.

Ztru —- The area that is segmented correctly.
Zfau —- The area that is segmented wrongly.

In this paper, original dataset and enhanced dataset are used
as the basis for training to obtain the corresponding model,
and then the corresponding test set is processed with the
obtained model. The segmentation results obtained on the
test set were evaluated with DSC, PM and CR as the stan-
dards. The evaluation results based on the contour distance
and evaluation results based on the contour area are shown
in Tab. 3 and Tab. 4 respectively.

It can be seen from Tab. 3 and Tab. 4 that DSC based on
original dataset in the evaluation results based on contour
distance is 0.9551, PM is 0.9261, and CR is 0.9271. Based
on the enhanced dataset, DSC obtained is 0.9724, PM is
0.9787, and CR is 0.9621. In the evaluation result based on
contour area, DSC based on original dataset is 0.9481, PM
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TABLE 3. Evaluation results based on contour distance.

TABLE 4. Evaluation results based on contour area.

is 0.9621, and SN is 0.9281. Based on the enhanced dataset,
DSC obtained is 0.9612, PM is 0.9879, and SN is 0.9558.

It can be seen from the data in the table that whether
it is in evaluation results based on contour distance or the
evaluation results based on contour area, the model trained on
the basis of enhanced dataset is better than the training based
on original dataset on the whole resulting model. Therefore,
it can be verified that data growth can effectively improve the
generalization ability of the network model and the accuracy
of tests.

The figure shows the ultrasound images of thyroid nod-
ules of different nature (malignant or benign) in 4 different
patients in samples.

FIGURE 7. Ultrasound images of thyroid nodules in different patients.

According to the selected samples, the ultrasonic image
segmentation experiment of thyroid nodules is carried out.
Fig. 8 shows the segmentation results of different thyroid
ultrasound image samples.

The first row of images in Fig. 8 are different thyroid
ultrasound image samples, and the second row corresponds
to the image drawn manually by doctors. The third row is
the segmentation result of the network model proposed in
this paper, and the fourth row is the difference graph of
division probability. It can be seen from Fig. 7 that the nodule
segmentationmodel of thyroid ultrasound images proposed in
this paper can segment images relatively accurately.

FIGURE 8. Schematic diagram of the segmentation effect of thyroid
nodules.

C. OPTIMIZER SELECTION EXPERIMENT
In the process of optimization selection, SGD optimizer,
RMSprop optimizer and Adam optimizer are used to test the
segmentation data of the ultrasound image of thyroid nodules
after coarse positioning. We select the appropriate optimizer
by comparing and analyzing different test results.

The variation of the intersection ratio of test sets under
different optimizers with the number of iterations is shown
in Fig. 9.

FIGURE 9. The curve of the intersection ratio of test sets under different
optimizers with the number of iterations.

It can be seen from Fig. 9 that in the curve of test set
intersection ratio with the number of iterations corresponding
to SGD optimizer, as the number of iterations continues to
increase, the test set intersection ratio first decreases and then
rises. But it did not converge after 125 iterations. In the curve
of test set intersection ratio with the number of iterations cor-
responding to RMSprop optimizer, as the number of iterations
increases, the test set intersection ratio rises rapidly and tends
to converge stably when the number of iterations is about 20.
Its value is about 86.6%. In the curve of the intersection ratio
of test set corresponding to Adam optimizer with the number
of iterations, the intersection ratio of test set rises rapidly
and tends to converge stably when the number of iterations
is about 10. Its value is about 87.1%.

The cross entropy loss function curves under different
optimizers are shown in Fig. 9.
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FIGURE 10. Cross entropy loss function curve under different optimizers.

It can be seen from Fig. 10 that in the cross entropy loss
function curve corresponding to SGD optimizer, the loss
function drops rapidly in the first iteration. As the number
of iterations increases, the loss function shows a steady and
slow downward trend. In the cross entropy loss function
curve corresponding to RMSprop optimizer, the loss function
also drops rapidly in the first iteration. But as the number
of iterations increases, the loss function tends to converge
smoothly at the seventh iteration. The cross entropy loss
function curve corresponding to Adam optimizer is similar
to RMSprop optimizer. However, as the number of iterations
increases, the loss function has begun to converge smoothly
by the second iteration.

In summary, the overall performance of Adam optimizer
is the best. Therefore, Adam optimizer should be selected for
optimization in the ultrasound image segmentation model of
thyroid nodules.

D. INFLUENCE OF DIFFERENT LOSS ON
EXPERIMENTAL RESULTS
Due to the large differences between individuals in the ultra-
sound image samples of thyroid nodules selected during
experiment, there are more slices containing small targets
when making slices. Eventually, it may destroy the data
balance of positive and negative samples, making it difficult
to continue training. This paper proves that using Tversky
loss as a loss function can greatly improve the performance
of segmentation by comparing the segmentation results of
Tversky loss and BCE loss function in the network structure.
The calculation results of different loss functions are shown
in Tab. 5.

TABLE 5. Comparison of segmentation results of different loss functions.

It can be seen from Tab. 2 that the evaluation index of
segmentation results using Tversky loss as loss function is
higher than the segmentation results of BCE loss function.
Thus, using Tversky loss as a loss function can effectively
improve the performance of segmentation.

E. COMPARISON OF SEGMENTATION RESULTS OF
DIFFERENT MODELS AND ALGORITHMS
Reference [27] proposed an active contour model, which can
efficiently segment images. In addition, reference [28], refer-
ence [29], reference [30] and reference [31] also proposed
image segmentation models with different performance.
In this paper, evaluation calculations are made for the above-
mentioned different segmentation models and algorithms,
the calculation results are shown in Tab. 6.

TABLE 6. Platform parameters of the segmentation test.

It can be seen from the above results that DSC, PM and
CR calculated by the model algorithm proposed in this paper
are 0.9961, 0.9931 and 0.9874 respectively. And the three
standards are better than the results of other algorithms.
Therefore, it can be known that the segmentation model
algorithm proposed in this paper has better segmentation per-
formance and strong generalization ability, and has a certain
improvement in the segmentation effect of ultrasound images
for thyroid nodules.

V. CONCLUSION
The tissue structure around the thyroid is complex, the
resolution of thyroid ultrasound images is low, and image
segmentation is difficult due to external interference. Thus,
it is difficult to segment and extract the ultrasound images
of thyroid nodules accurately. Aiming at these problems,
this paper proposes an ultrasound image segmentation model
algorithm for thyroid nodules based on ASPP fusion fea-
tures. Fusion atrous convolution pyramid structure is pro-
posed in the encoding process by properly combining the
encoder-decoding structure and atrous convolution. Further-
more, the possibility of fused convolutional layer size being
too wide is eliminated by optimizing the control of model
size. In the decoding process, hierarchical feature fusion
is proposed and semantic features are generated. The fea-
ture images with low resolution and the maximum spatial
resolution of features to be fused are sampled by bilin-
ear interpolation, and the fused features are calculated by
element-wise summation. According to the basic structure of
proposed network, DSC, PM and CR are used as evaluation
criteria to compare and analyze with other methods.

The experimental results show that the ultrasound image
segmentation effect of thyroid nodules is greatly improved
compared with traditional segmentation method, and the
effectiveness of the model algorithm proposed in this paper
is verified. We will further improve the model based on this
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work in the future. The ultrasound image segmentation effect
is further improved, and the detection of corresponding thy-
roid nodules on this basis is carry out considering increasing
the depth of convolutional layer.
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