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ABSTRACT Because of intermittence and fluctuation of photovoltaic (PV) power, it is difficult to enhance
prediction accuracy. To sustain high-efficient operation of power system, this paper proposes a hybrid
method to predict the short-term PV power. It consists of components separation of PV power, parameters
optimization and re-construction of prediction result. Firstly, the methods based on the identifying of feature
frequency and mutual information maximum are proposed to optimize the mode number and penalty factor
of VMD, respectively. The optimized VMD (OVMD) is used to decompose the complicated fluctuation
components of PV power into single component. Then, the improved PSO (IPSO) based on non-linear
inertia weight of anti-sine function is proposed to optimize the number of hidden layer nodes, learning rate
and iteration number of LSTM network. The optimized LSTM is used to predict each single component of
OVMD decomposition. Thirdly, the prediction result of each single component is re-constructed to obtain
the final PV prediction power. The experiment result indicates that the prediction accuracy of the proposed
method (OVMD-IPSO-LSTM) outperformances the other typical methods. By the improvement of the
traditional method (VMD and PSO) and the parameter optimization of LSTM, this hybrid method makes a
contribution to the prediction of short-term PV power.

INDEX TERMS Power system, photovoltaic power prediction, parameter optimization, PSO, LSTM.

I. INTRODUCTION
A. PROBLEM DEFINITION
With the rapid development of science and technology,
the energy demand becomes very important [1], [2]. Com-
parison with the other energy resources, the solar power is
the one of most desired energy due to the advantages of
cleanliness, good potential, extendibility and universality [3].
Many counties have developed the large scale photovoltaic
(PV) plants to reduce the environmental pollution. However,
the PV power system has the drawbacks of intermittence
and fluctuation due to un-governable solar irradiance and
the metrological factors, such as wind speed, temperature,
humidity and dew-retting [4], [5]. However, the accuracy
prediction of PV power can improve the reliability of power
system and decrease the uncertainty of PV power on the
power grid [6]. According to the difference of the predicted
during time, the prediction of PV power can be divided into
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long term prediction (during time >1 month), medium term
prediction (during time 1∼7 days) and short term predic-
tion (during time < 4 hours). Among the prediction mode,
the short term prediction is very important for energy stor-
age and load control. The short term prediction can make
an important contribution for supervision and regulation of
power market.

B. STATE OF THE ART
Several methods have been introduced to predict the PV
power. In early stage, the time series method is widely used in
the domain of prediction of the PV power [7]–[9]. However,
due to instability of meteorological condition, the predic-
tion accuracy is low. Afterwards, with the development of
artificial intelligence (AI), the problem of the low predic-
tion accuracy is improved effectively. The long short term
memory(LSTM) neural network is the one of the outstanding
prediction methods [10]. LSTM is a special case of recurrent
neural network (RNN). LSTM can realize the remembering
and forgetting of long-term historical status by the different
gate structures. Recently, the prediction model of PV power
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based on the LSTM have been developed and represented
some advantages. Wang et al. [11] established the predic-
tion model based on LSTM-RNN to predict a head-day PV
power. Comparison with the SVM and BPNN, the LSTM-
RNN has the more contribution for PV power prediction.
Zhang et al. [12] proposed the CNN-LSTM to predict PV
power. By the evaluation of the prediction performance and
generation ability, the proposed model has some advantages
of PV power prediction. Gao et al. [13] realized the prediction
of the short-term power production in a large-scale photo-
voltaic plant. The result indicates that the LSTM is suitable
to predict the PV power. However, it still exist two problems
in the prediction of the PV power based on LSTM:

(1) The parameters sensitivity of LSTM. LSTM is very
sensitive to hyperparameters. If the hyperparameters are
not determined effectively, the prediction accuracy will be
decreased heavily; (2) The intermittence and fluctuation of
PV power. Because the PV power includes the components
of randomness and volatility, they may disturb the prediction
performance of PV power.

Thus, the parameter optimization and the separation of the
disturbed information are focused on research in this paper.

At present, because the simplification and validity of
PSO, PSO is considered as a promised parameter optimiza-
tion method [14], [15]. However, due to the drawback of
pre-mature convergence and local optimal solution, it lim-
its the application in the prediction of PV power domain.
Some researchers have improved the performance of PSO.
Qin et al. [16] proposed an exponential center symmetric iner-
tia weight to enhance the convergence speed and the optimal
accuracy. Wang et al. [17] proposed a quantum PSO method
with flighting and jumping operation to improve the accuracy
and enhance the search ability. The other methods are also
developed to improve the performance of the PSO [18], [19].
The enhancement of the global (local) search ability and
convergence speed is the key mask in parameter optimization
with PSO.

In addition, the decomposition-reconstruction method is
also developed to separate the different information com-
ponent in the PV power. The most representative method
included the wavelet analysis [20] and the (expended)
empirical mode decomposition (EMD, EEMD and CEEM-
DAN) [21]–[24]. However, the wavelet basis function need
pre-definition and is non-adaptive in nature. EMD is prone to
mode mixing. Although the EEMD can avoid the drawback
of EMD, due to the interaction of added white noise and
the signal, it may introduce the residue noise and spurious
mode in IMFs. The CEEMDAN can solve the drawback of
EEMD. However, the two critical parameters, which include
the amplitude of added white noise and the number of ensem-
ble trials, are difficult to determine [25], [26]. Afterwards,
Dragomiretskiy et al. [27] proposed the variational mode
decomposition (VMD). VMD has a strong theoretical foun-
dation and can overcome the drawback of the EMD and
wavelet. Recently, many scholars have applied the VMD
to predict PV power. Oveis et al. [28] proposed prediction

model based on VMD, information theoretic and multilayer
perceptron neural network. Xie et al. [29] applied the VMD
to decompose the PV power into different fluctuated compo-
nents. And then deep belief network and auto-regressivemov-
ing average were used to predict the fluctuated component.
However, the VMD has a drawback of parameter setting of
the mode number and penalty factor by experience decision.

C. CONTRIBUTIONS
In this paper, a hybrid prediction method of PV power is pro-
posed to enhance the prediction accuracy of the short-termPV
power. Firstly, in the VMD decomposition, the mode number
is optimized by identifying feature frequency of PV power,
and the penalty factor is optimized by mutual information
maximum. The optimized VMD (OVMD) can enhance the
decomposition accuracy and avoid the information loss. Sec-
ondly, a new non-linear inertia weight function based on anti-
sine is introduced to make the inertia weight change with the
iteration number and particle position. The new inertia weight
makes the strengthen of the global and local search ability.
The accuracy and convergence performance is improved. The
improved PSO is named as the IPSO. Thirdly, the OVMD is
applied to decompose the PV power into single fluctuated
component. Each fluctuated component is predicted with
LSTM. The parameters of LSTM including the number of
hidden layer nodes, learning rate and iteration number are
optimized with the IPSO. Finally, the prediction result of each
component is re-constructed to obtain the final prediction of
PV power.

The main contribution of this paper with respect to the
previous research work are as follows:

(1) The parameter optimization method based on feature
frequency and mutual information maximum is proposed
to optimize the mode number and penalty factor of tra-
ditional VMD. The optimized VMD can enhance the
decomposed performance and avoid the information loss.

(2) A new inertia weight function of PSO is proposed to
make the inertia weight change with the iteration number
and particle position. The new inertia weight can make
the strengthen of the global and local search ability.
It enhances the optimized accuracy and convergence per-
formance.

(3) The improved PSO is used to optimize the parameter of
LSTM. The optimal LSTM can avoid the drawback of
parameter setting by the experience and enhance predic-
tion accuracy effectively.

(4) The decomposition-reconstructed method is proposed to
obtain the final prediction of PV power by combination
of each prediction result of each component.

The proposed method is verified on a real case study of PV
power in Changzhou power network in China. The verified
result indicates that the prediction accuracy and time com-
plexity of the proposed model (OVMD-IPSO-LSTM) have
a better performance comparison with the other traditional
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methods. The hybrid method is more suitable for the local
application in the current environment.

D. PAPER ORGANIZATION
The rest of the paper are organized as follows. Section 2
describes the related work; Section 3 presents the proposed
method; Section 4 discusses the prediction result by compar-
ison proposed model with the traditional model; Section 5 is
the conclusion and future research.

II. RELATED WORK
A. VMD PRINCIPLE
In 2014, Dragomiretskiy et al. [27] proposed the VMD
algorithm. Because of the strong theoretical background,
the VMD is widely applied in the many fields such as fault
diagnosis [30], [31], image processing [32] and signal pro-
cessing [33], [34].

In the VMD decomposition, each IMF can be considered
as the AM-FM signal uk (t). The work principle of the VMD
is as follows:
(1) Do hilbert transform for the mode function uk (t), and

then extract the single-side spectrum[
δ (t)+

j
π t

]
· uk (t) (1)

where, δ (t) refers to the impulse function, j refers to the
imaginary part.

(2) Transfer the single-side spectrum into the corresponding
baseband based on estimation of enter frequency of each
mode [(

δ (t)+
j
π t

)
· uk (t)

]
e−jωk t (2)

(3) Estimate the bandwidth of each modal signal (IMF) by
calculating the square of the norm of gradient of the
modal signal

min

{∑
k

∥∥∥∥∂t [(δ (t)+ j
π

)
· uk (t)

]
e−jωk t

∥∥∥∥2
2

}
s.t.

∑
k

uk = f (3)

where, uk refers to the kth IMF, ωk refers to the corre-
sponding center frequency, k refers to the decomposed
mode number.

(4) Introduce the second penalty factor α and Lagrange
multiplication operator θ (t). The expanded Lagrange is
expressed as

L ({uk} , {ωk} , θ)

= α

K∑
k=1

∥∥∥∥∂t [(δ (t)+ j
π

)
· uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−
K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+

〈
θ (t) , f (t)−

K∑
k=1

uk (t)

〉
(4)

Finally, the mode function uk (t) and corresponding center
frequency ωk can be obtained by iteration updating.
The mode number (k) and penalty factor (α) determine if

the decomposed result exists the information loss and over
decomposition [35]. Thus, the two key parameters play an
important role for the separation of complexed components
of PV power.

B. MUTUAL INFORMATION
Mutual information, which is derived from information the-
ory, is a good indicator of the similarity measure. Generally,
the stronger correlation the two time series is, the larger
mutual information value is [36]. Based on this, the mutual
information can be used to optimize the parameter of VMD.
If the decomposed effectiveness of the VMD is higher,
the decomposed IMF and re-constructed will have the
stronger correlation with original signal. The following is the
principle of mutual information:

The joint entropy of random variants X and Y is defined as

H (X ,Y ) = −
∑
i

p (x = ai, y = bi)

· log p (x = ai, y = bi) (5)

For a discrete random variable X with n elements length,
the entropy of the random variant X is expressed as

H (X) = −
∑n

i=0
p (i) log p (i) (6)

where, p (i) is the probability density function of discrete
point i within the variant X. The mutual information is
defined as

I (X ,Y ) = H (X)+ H (Y )− H (X ,Y ) (7)

where, H (Y ) is the entropy of the variant Y.

C. LONG SHORT TERM MEMORY
LSTM can avoid the drawback of gradient disappearance and
realize the long term memory. It consists of the different gate
structure: forget gate, input gate and output gate. These gates
canmemory and forget the relevant information (previous and
current information) status of the time series data. For input
gate, it can determine how much input will be saved into cell
at current moment. For the forget gate, it indicates ‘memory’
level at last moment. Finally, the output gate controls the
number of information outputting. The figure 1 shows the
structure of LSTM.

The following is the work principle of LSTM:

f (t) = σ
(
Wf · [ht−1, xt ]+ bf

)
(8)

i (t) = σ (Wi · [ht−1, xt ]+ bi) (9)

C̃ (t) = tanh (Wc · [ht−1, xt ]+ bc) (10)

C (t) = ft ∗ Ct−1 + it ∗ C̃t (11)

Ot = σ (WO · [ht−1, xt ]+ bO) (12)
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FIGURE 1. Structure of LSTM neural network.

h (t) = Ot ∗ tanh (Ct) (13)

sigmoid (x) =
1

1+ e−x
(14)

tanh (x) =
ex − e−x

ex + e−x
(15)

From the equation (8) to equation (15), the σ refers to the
sigmoid function and controls the information passing state.
When the σ is 0, the nothing can pass; When the σ is 1,
everything can pass. Wf ,Wi,WC and WO refer to the input
weight. The corresponding bf , bi, bC and bO refer to the
biasing. The t and t−1 refer to the current and previous time
status. The x and h refer to the input and output, and C refers
to the cell status.

The LSTM includes some key parameters: the neuron
number, iterations number in the hidden layer and learning
rate [37], [38]. The neuron number is related to the fitting
ability of LSTM, and the iteration number is related to the
training effectiveness, and learning rate is concerned with
convergence performance. However, these parameters are
generally determined by experience setting. It leads that the
prediction result can not be obtained effectively.

D. PARTICLE SWARM OPTIMIZATION
In this paper, the algorithm, which include particle
swarm optimization (PSO) [39], ant colony optimization
(ACO) [40], genetic algorithm (GA) [41] and simulated
annealing (SA) [42], are compared to determine the suitable
optimization algorithm. The PSO is easy and simple to apply
for the prediction of PV power and has the fast convergence
speed. Although the PSO may get local optimum solution,
it can be avoided by tuning parameter as much as possible.
The ACO has the drawback of low convergence speed.
Although theACOhas the strong robustness, the performance
is affected by the initial parameter easily. The convergent
speed of the GA is general and keep stable. However, it has
the drawback of Hamming Cliff. Likely, the SA has also the
drawback of low convergent speed. If the temperature drops
too fast, the global optimal solution may not be determined.
Thus, the PSO is selected to consider as the fundamental
optimized algorithm due to the fast efficiency and simple
implementation. The following is the principle of the PSO.

It is assumed that the number of particle swarm is N .
Each particle has position (vij) and velocity (xij). The particle

swarm updating is expressed as follows:

vij (t + 1) = w · vij (t)+ c1r1j (t)
(
pij (t)− xij (t)

)
+ c2r2j (t)

(
pgj (t)− xij (t)

)
(16)

xij (t + 1) = xij (t)+ vij (t + 1) (17)

where,w refers to inertia weight, t indicates iteration number.
The c1 and c2 refer to the acceleration factor. The r1j (t) and
r2j (t) refer to the random number between [0,1]. The vector
xi = (xi1, xi2, · · · , xiD) is the potential solution. The vector
pi = (pi1, pi2, · · · , piD) and pg =

(
pg1, pg2, · · · , pgD

)
refers

to the optimal local and global position of the i-th particle.
The optimization ability of PSO is related to the inertia

weight. If the inertia weight is too big, the convergence speed
may be low (pre-mature convergence), and if the weight is
too small, the local optimal solution may be happened.

III. PROPOSED WORK
A. OPTIMIZED VMD
In this section, the mode number and penalty factor of VMD
will be optimized by the identifying of feature frequency and
mutual information maximum.

It is assumed that the original signal x (t) can be decom-
posed into a set of IMFs by VMD.

x (t) =
K∑
i=1

Ai (t) cos (8i (t)) =
K∑
i=1

IMFi (t) (18)

where, K refers to the mode number, Ai (t) refers to the
amplitude of each IMF, and8i (t) refers to the corresponding
phase.

1) OPTIMIZATION OF MODE NUMBER
Theoretically, the each IMF contains a specified frequency
component. If the original signal contains the K feature
frequencies, the decomposed number of IMFs should be K .
However, themode number is generally determined in experi-
ence setting. If the mode number is bigger than the theoretical
one, it means that the different mode will contain the same
frequency component, and if the mode number is smaller than
the theoretical mode number, it indicates that there are various
frequency components in the same IMF. They will lead that
the signal will be not decomposed effectively.

To determine the mode number, this paper proposes the
method based on the frequency bandwidth. It means that
the signal is firstly done the Fast Fourier Transform (FFT),
and then extract the feature frequency in overall frequency
spectrum. Finally, the frequency bandwidth of each IMF can
be determined by the feature frequency. The number of seg-
menting zone of the feature frequency is to determine mode
number. This method can guarantee that the IMF only contain
a kind of frequency component.

2) OPTIMIZATION OF PANALTY FACTOR
The penalty factor is needed to determine the other key
parameter. It is related to decomposed performance and re-
constructed performance.
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A. The determination of the optimal decomposed perfor-
mance If the decomposed IMF contains the major infor-
mation of original data, the IMF is more similar with the
original data. The similarity can be reflected by mutual
information. It illustrates that the decomposition per-
formance can be determined by the mutual information
between the IMF and original data. The following is the
determined process.
(1) Set the range of penalty factor α ∈ [αstart , αend ] with

step Kstep
(2) Decompose the original signal into K modes by

VMD;
(3) Obtain the mutual information (MI) between each

IMF and original signal

MIα =
(
MIα1 ,MIα2 , . . . ,MIαK

)
(19)

(4) Look for the local maximum under each penalty
factor

MImax
α =

(
MImax

astart , . . . ,MImax
αend

)
(20)

B. The determination of the optimal re-constructed perfor-
mance

It is found through experiment that the smaller the penalty
factor is, the better the re-constructed effectiveness is.
It means that the IMFs can re-construct the original signal
effectively. It does not happen the loss of original information.

It is assumed that the original signal x (t) is decomposed
into a set of IMFi (i=1,. . . ,K). Here, K denotes the IMF
number. The re-construction of signal can be expressed as:

x ′ (t) = IMF1+, . . . ,+IMFK (21)

The re-constructed performance can be reflected by the
mutual information between the re-constructed signal and
original signal.

β = MI
(
x ′ (t) , x (t)

)
(22)

Under the range of penalty factor, the β can be obtained:

βα =
(
βαstart , . . . , βαend

)
(23)

The bigger the βα is, the better re-constructed effectiveness
is.

Thus, the optimized penalty factor can be reflected by
the combination of the decomposed performance and the
reconstructed performance.

γα =
(
βαstart ·MImax

astart , . . . , βαend ·MImax
aend

)
(24)

where, the γα refers to the comprehensive evaluated factor.
Finally, the optimized penalty factor can be obtained:

αopt = argmax(γα) (25)

where, αopt refers to the optimized penalty factor. The table
1 shows the algorithm of the parameter optimization of VMD.

FIGURE 2. Comparison of inertia weight of traditional method with
proposed method.

B. LSTM OPTIMIZATION WITH IMPROVED PSO
The traditional PSO has the drawback of pre-mature conver-
gence and local optimal solution. The reason is that the linear
inertia weight does not enhance the global search ability
and convergence performance. To overcome the drawback of
linear method, the non-linear weight, which is based on anti-
sine function, is proposed in this paper.

w = wmax − (wmax − wmin) ·

(
arcsin

(
t

tmax

)
·
2
π

)2

(26)

where, wmax refers to the maximum inertia weight, wmin
refers to the minimum inertia weight, tmax refers to the
maximum iteration number. It indicates that a larger weight
is used to enhance global search ability and make the
particle traverse the all space in the early search stage,
and in the late stage, a small inertia weight is applied to
enhance local search performance to increase the speed of
convergence.

The traditional linear inertia weight (as shown the equation
(27)) and non-linear inertia weight based on the first power
of anti-sine (as shown the equation (28)) are compared with
the that of proposed method.

w = wmax − (wmax − wmin) ·
t

tmax
(27)

w = wmax − (wmax − wmin) · arcsin
(

t
tmax

)
·
2
π

(28)

Here, wmax refers to 0.9, wmin refers to 0.2, and tmax refers
to 200. The figure 2 plots the compared result. It is found that
the inertia weight w is closed to the maximum inertia weight
wmax in the early stage. The descent rate of the inertia weight
is slower than the other methods. Thus, the IPSO has the
stronger global search performance.With the increment of the
iteration number, the inertia weight w decreases non-linearly.
The descent rate of inertia weight is faster than the othermeth-
ods. Thus, the IPSO has also the stronger local search ability.
Meanwhile, the particle velocity go down faster. When the
particle is nearby the global optimal solution, it can search for
the optimal solution easily. The acquirement of the optimal
solution can be guaranteed. In the late stage, the inertia weight
w also decreases non-linearly. The decent speed of the inertia
weight is faster than the other methods. The convergent speed
is high. The global search ability become weaken. The parti-
cle can jump out the local minimum value. The local optimal
solution can be avoided. Here, the improved PSO is sign as
IPSO.
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TABLE 1. Algorithm of the optimized parameters.

Thus, the IPSO is used to optimize the two layer LSTM.
The optimized parameter include the first and the second hid-
den layers nodes number, learning rate and iteration number.
The following are the optimal steps:

(1) Divide the original data into training data and testing data
set;

(2) Initialize the parameters: iteration number (n), learning
rate (ε), the first hidden layer node number (h1) and
the second hidden layer node number (h2);

(3) Produce a population particle: Pi,0 (h1, h2, ε, n);
(4) Specify the particle Pi,0 (h1, h2, ε, n) as the parameter

in LSTM, and train the LSTM neural network with the
training sample set (yt );

(5) Obtain the training sample output (ŷjt ), and determine the
fitness function (fiti);

fiti =
I∑
i=1

ŷit − y
i
t

yit
× 100 (29)

(6) Calculate the fitness value of each particle Pi,0
(
h1, h2,

ε, n
)
, and determine the individual and population

extremum according to initialized fitness value, and
record the best position of each particle as the historical
best location;

(7) Apply the equation (16) and (17) to update the speed
and position of each particle itself by the individual and

FIGURE 3. Parameter optimization of LSTM with IPSO.

global extremum, and calculate the fitness value by the
updated extremum;

(8) Obtain the optimized LSTM model with IPSO;
(9) Predict the PV power with optimized LSTM. The pic-

ture 3 is the flowchart of optimized LSTM with IPSO.

C. FINAL FORECASTING MODEL
Assuming that the original PV power can be decomposed into
a set of IMFs (IMF1, . . . , IMFN ) with OVMD. The prediction
model (IPSO-LSTM) is used to predict the individual IMF,
and then the prediction result is re-constructed to obtain the
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FIGURE 4. Flowchart of proposed method for prediction of PV power.

final prediction of PV power.

PVfinal= ILSTM (IMF1) ,+. . . ,+ILSTM (IMFN ) (30)

where, PVfinal refers to the final prediction of PV power,
ILSTM (IMF1) refers to the prediction of IMF1 with
IPSO-LSTM, and ILSTM (IMFN ) refers to the prediction of
final IMF.

D. EVALUATION OF FORECASTING RESULT
The determination coefficient (R2), mean absolute error
(MRE), andmean absolute percentage error (MPAE) are used
to evaluate the prediction accuracy (as shown the expres-
sion (31), (34) and (35)).
(1) Determination coefficient (R2)

R2 = 1−
RSS
TSS

(31)

RSS =
N∑
i=1

(
xi − x̂i

)2 (32)

TSS =
N∑
i=1

(xi − x̄)2 (33)

(2) Mean relative error (MRE)

MRE =
1
N

N∑
i=1

∣∣xi − x̂i∣∣
x̄

(34)

(3) Mean absolute percentage error (MPAE)

MAPE =
1
N

N∑
i=1

∣∣∣∣ x̂i − xixi

∣∣∣∣× 100% (35)

FIGURE 5. Determining of mode number by FFT.

where, xi and x̂i is the tested and predicted value, and N is
the length of tested sample. The R2 is between [0,1]. When
the determination coefficient is 1, the prediction performance
is the best, and vice versa. A smaller MRE and MPAE is,
the better the prediction effectiveness is. The figure 4 shows
the flowchart of proposedmethod for prediction of PV power.

IV. RESULT AND DISCUSSION
This paper uses PV power from Changzhou power network
in China to verify the effectiveness of proposed method. The
time period comes from the 21 May 2018 to 4 July 2018. The
only period between 7a.m. and 5p.m. of every day is selected
to establish the prediction model. That is because that the
PV power is almost not generated except the selected period.
The PV power data from the 21 May 2018 to 2 July 2018 is
considered as the training set, and the rest is used to verify
the prediction performance.

Firstly, the parameter of VMD is optimized with the iden-
tified feature frequency and mutual information (MI) max-
imum in section 3.1. The FFT is done for PV power to
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FIGURE 6. Optimization of penalty factor based on mutual information maximum.

FIGURE 7. Comparison of reconstruction relative error under the different penalty factor.

determine the optimized mode number. Because this paper
focuses on the short-term prediction of PV power (every
1 hour), the sample frequency in FFT is set as 1/3600.
The figure 5 shows the result of FFT. It is found that the
frequency spectrum main contain the four kinds of feature
frequency component. Thus, the overall frequency spectrum
is segmented into four zones (from zone1 to zone4). It means
that the optimized mode number is 4.

Then, the optimal penalty factor (α) is determined. The
search range of penalty factor is form 0.1 to 10 (α ∈ [0.1, 10])
with the step 0.1. The figure 6 shows the optimized result.
It is found that the MI of re-constructed performance is
negatively correlated with penalty factor. For the decomposed
performance, the MI changes obviously within the range of
penalty factor 5, and for the penalty factor between 5 and 10,
the MI fluctuates around 4.16. However, the maximum MI
of comprehensive evaluated factor is concentrated on penalty
factor 0.6. It indicates that the optimized penalty factor is 0.6.

Finally, the optimized mode number and penalty factor
[K , α] is [4, 0.6] for the PV power decomposition in this
paper.

In this section, the penalty factor are set as 5, 10 and
100 to compare with the decomposed effectiveness of

OVMD, respectively. Here, the re-constructed perfor-
mance is quantified by relative error (as shown the
equation (36)).

err =

∣∣x ′ (t)− x (t)∣∣
max (x (t))

(36)

where, x ′ (t) refers to re-constructed PV power, and x (t)
refers to the original PV power. The compared result is
plotted in the figure 7. It is found that the relative error
of proposed method is smallest, and the other one become
larger with the increase of the penalty factor. It means that
the MI become smaller with the increase of penalty fac-
tor. The result agrees with analysis in the figure 6(a). The
re-constructed result is plotted in the figure 8. It is found
that the re-constructed PV power is almost consistent with
original one, and the others one can not re-construct with
original PV power effectively. The figure 9 shows the decom-
posed IMFs under the optimized mode number and penalty
factor.

In addition, the feature frequency of each IMF is also
compared with that in PV power (as shown in the figure 10).
It is found that each IMF only contain a kind of feature
frequency, and the frequency component is all consistent with
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TABLE 2. Parameters setting in LSTM and IPSO.

FIGURE 8. Comparison of reconstructed result under the different penalty.

FIGURE 9. Decomposed IMFs with improved VMD for PV power.

FIGURE 10. Comparison of feature frequency between the original data
and each IMF.

that of original PV power (as shown the red dotted line),
respectively. It indicates that the proposed method is more
suitable to decompose the PV power effectively.

FIGURE 11. Comparison between the predicted result and original PV.

Next, the IMFs in the figure 9, which are considered as
the independent component of PV power, are used to predict
the PV power to establish the prediction model. The input
condition includes the time series in everyday, temperature
and solar radiation.

The IPSO is used to optimal the parameter of LSTM. For
the determination of IPSO parameter, generally, the started
and ended weight are set as the 0.9 and 0.4, respectively [43].
In this paper, the ended weight is extended to 0.2 to
enhance performance of parameter optimization of LSTM.
The acceleration coefficients (C1 and C2) are all consid-
ered as 2, which is an acceptable setting [43]. The random
number belongs to [0,1]. It’s value is set as 0.3 in this
paper.

For the LSTM, at present, there is no specified literature to
illustrate about the determination of parameter. Based on the
consideration of prediction performance for PV power, this
paper sets learning rate, hidden node and iteration number as
[0.001,0.1], [1,200] and [100, 450], respectively.

The table 2 shows themain parameters in LSTM and IPSO.
The figure 11 shows the comparison between the prediction
result and original PV power for the each IMF. Then, the final
prediction PV power is obtained by re-construction prediction
result of IMF component.

The prediction performance of the proposed method
(OVMD-IPSO-LSTM) is also compared with that of
CEEMDAN-IPSO-SVM, CEEMDAN-IPSO-LSTM, IPSO-
LSTM, VMD-IPSO-LSTM, PSO-LSTM, EMD-IPSO-
LSTM, EMD-IPSO-SVM, IPSO-SVM and back propagation

VOLUME 8, 2020 165857



L. Wang et al.: Short-Term PV Power Prediction Based on Optimized VMD and LSTM

TABLE 3. Comparison of the different forecasting method.

neural network (BP). The prediction model are named from
model 1 to model 10 (as shown in the table 3). To real-
ize the comparison fairly, the parameter setting of LSTM,
IPSO, PSO are identical to the table 2. For parameter setting
of CEEMDAN, it involves two important parameters: the
ensemble size (EN) and the amplitude of the added white
noise (AAWN). Because the determination of the two param-
eters are not guided theoretically, Wu et al. [23] suggested
that the EN is set as hundreds of realizations, and the AAWN
is set from 0.2 to 0.5. In this paper, the EN and AAWN are set
as 200 and 0.3. EMD does not resolve the parameter setting.
For the VMD, the mode number is set as optimized number
4, and the penalty factor is set as 100 (as shown the figure 7)
to compare the prediction performance between the OVMD-
IPSO-LSTM and VMD-IPSO-LSTM under univariate vari-
ation. Likely, for the SVM, the penalty parameter C ,epsilon
parameter ε, kernel function parameter γ and cross-validation
are determined by the data characteristic of PV power
and reference suggestion [44], [45]. Finally, the searching
range of the parameters C , ε and γ are [0, 100], [0, 1]
and [0, 100], respectively, and the cross-validation is set
as 5. For the BP algorithm, the training period, the learn-
ing rate and training target are set as the 200, 0.1
and 10−5.
For the model 2, model 3, model 5, model 7 and model 8,

firstly, the PV power is decomposed into a set of IMFs with
the EMD, CEEMDAN andVMD. Each IMF is predicted with
LSTM and SVM. The final predicted result are obtained by
the re-construction of each IMF prediction. For the model 4,
model 6 andmodel 9, the (I)PSO are directly used to optimize
the parameter of LSTM and SVM to obtain the optimized
prediction result. For the model 10, the optimized result can
be obtained by repeated calculation. The compared result is
plotted in the figure 12.

The MRE, MAPE and R2 are used to evaluate the predic-
tion effectiveness of each method (as shown in the table 3),
respectively. The corresponding result is also plotted in the
figure 13. It is found that the MRE and MAPE of proposed
method is the smallest among the all methods, and the cor-
responding R2 is the biggest. It indicates that the prediction

FIGURE 12. Comparison of the different forecasting method.

FIGURE 13. Comparison of the evaluated method for the different
prediction method.

effectiveness of the proposed method outperformances the
other methods.

Furtherly, the absolute percentage error (RAPE, as shown
the equation (37)) is also used to evaluate the prediction
accuracy.

RAPEi =
|modeli −model1|

model1
× 100% (37)

where, model1 refers to the model index of proposed method
including R2, MRE and MAPE, and the modeli means
the ith model in the table 3. The table 4 shows the com-
pared result with RAPE method. The compared result is
plotted in the figure 14. It is found that for the deter-
mination coefficient (R2), the proposed method improves
the prediction accuracy between 2.2343% and 7.037%; for
mean absolute error (MRE), the range of improved accu-
racy is from 26.1905% to 66.6667%, and for mean absolute
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FIGURE 14. Comparison of the improved accuracy.

percentage error (MPAE), the range of improved accuracy is
from 42.1673% to 167.4912%.

It is also found from the table 3 and table 4 that the predic-
tion accuracy is related to the model structure. On the whole,
the more complex the model structure is, the better the pre-
diction accuracy is. The following illustrates the influence of
the model structure on the prediction accuracy.

(1) The proposed method versus the model 2
The CEEMDAN and SVMhave been applied for the time
series prediction successfully [46], [47]. Although the
IPSO can optimize the parameter of SVM, the CEEM-
DAN and SVM is not suitable to predict the PV power
in this paper. The reason is that for the CEEMDAN,
the decomposed IMF maybe contain residue noise and
spurious mode due to the interaction between the sig-
nal and the added white noise [26], [48], it maybe
effect the prediction of PV power. In addition, for
the SVM, the hyperplane is fixed when the training
is over. It leads that the model may not be updated
by the current input and output. It leads that the his-
tory PV information is not retained into the model. It
maybe make the prediction accuracy be low. However,
the LSTM can employ the current information effectively
and optimize the parameters and weight by feedback
regulation continually [49]. Thus, the prediction accuracy
based on LSTM maybe outperformance that based on
SVM.

(2) The proposed method versus the model 3
The difference of algorithm structure concentrates on the
component separation of PV power. Because the decom-
posed IMFsmaybe contain the residue noise and spurious
mode with CEEMDAN, it makes that the decomposed
effectiveness is lower than the OVMD.

(3) The proposed method versus the model 4
There is no the component separation of PV power in
the model 4. The prediction accuracy is low when the
complex component of PV power is considered as the
train data.

(4) The proposed method versus the model 5
The main reason of low prediction accuracy is that the
parameters of the VMD are not optimized. It leads that

FIGURE 15. Convergent speed of the improved PSO-LSTM.

the information component of original PV power is lost
when the IMFs is re-constructed. Finally, the establish of
the model maybe used with the no completed PV power.

(5) The proposed method versus the model 6
The structure of model 6 are consisted of the traditional
PSO and LSTM. Comparison with the proposed method,
the main reason of low prediction accuracy is that the
model 6 is based on the prediction of the PV power and
lacks the component separation of PV power. In addition,
the traditional PSO may fall into local optimal value.
Meanwhile, the convergent speed of the IPSO and PSO
is also compared between the model 4 and model 6 (as
shown the figure 15 and figure 16). It is found that the
model 4 has the faster convergence speed. It needs about
48 iterations to keep the fitness be unchanged. However,
the model 4 needs about the 135 iterations until the
minimum fitness is obtained. It means that the traditional
PSO has low convergent speed.

(6) The proposed method versus the model 7
Because the traditional EMD happens the mode mix-
ing [50], [51], the each IMF contains the different fre-
quency component of the PV power. It leads that the fluc-
tuation component of the PV power may not be separated
effectively. Finally, the prediction accuracy is lower than
that based CEEMDAN and OVMD.

(7) The proposed method versus the model 8
The main reason of low prediction accuracy is that EMD
has the drawback of the mode mixing, and the prediction
model based on SVM is established by the fixed hyper-
plane.

(8) The proposed method versus the model 9
The model 9 lacks the decomposition of PV power effec-
tively, and the SVM does not update the prediction model
by the current input and output when the training is
over. It leads that the prediction accuracy is lower than
the proposed method.

(9) The proposed method versus the model 10
Because the model 10 is consisted of single algorithm.
Comparison with the proposed method, it does not have
the function of the component separation of PV power
and the parameter optimization. Thus, it leads that the
prediction accuracy is the lowest among the prediction
models in this paper.
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TABLE 4. Comparison of improvement accuracy.

TABLE 5. Time complexity and time cost (h).

FIGURE 16. Convergent speed of the traditional PSO-LSTM.

In addition, the time complexity and time cost is also com-
pared with the each prediction model. The evaluated method
is shown in the equation (38).

ti = ti,1 +
N∑
j=1

ti,2,j + ti,3 (i = 1, . . . , 10) (38)

where, the subscript i in t1,i, t2,i,j and t3,i means the model
order, and the subscript 1,2,3 means the configuration of each
model. For example, the model 1 are consisted of three parts:
OVMD (sign as t1,1), IPSO and LSTM (sign as t1,2,j), and

FIGURE 17. Comparison of time cost of the model.

re-construction (sign as t1,3). The j refers to the number of
IMFs. Thus, the time cost are consisted of the time of the
decomposition IMF, parameter optimization and prediction,
and the re-construction prediction result.

The table 5 shows the time complexity of each model
and corresponding time cost. The time cost is plotted in the
figure 17. Here, ‘−’ means that the algorithm is not involved
in the model. It is found that the time cost of the model
10 is the smallest. However, the prediction accuracy is the
lowest. The time cost of the model 3 is the longest. It needs
about 7 hours. The main reason is that the PV power is
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decomposed into nine IMFs. The each IMF is all
re-considered as the original data, and the IPSO is used
to optimize the parameter of LSTM for each IMF under
the maximum iteration. It needs the repetitive operation
of nine times. Thus, the main consuming of time cost is
the part of the repetitive parameter optimization and pre-
diction. However, the proposed method decomposes the
PV power into four IMFs. The time cost is relative low
than that based CEEMDAN and EMD. It needs about the
three hours. And the prediction accuracy is the highest. The
other models such as model 4, model 6 and model 9 do
not involve the decomposition-reconstruction and only use
(I)PSO to optimize the parameter and predict. The time cost
is moderate. In addition, the model establishment of LSTM
employs the current information and optimize the parameter
and weight by feedback regulation continually. The model
establishment of SVM only apply for the fixed hyperplane
and don’t involve the feedback. Thus, on the whole, the time
cost based on LSTM is longer than that based on SVM.
However, the prediction accuracy based on LSTM is higher
than that based on SVM. The reason why the prediction
accuracy of the proposed method is. Firstly, the OVMD
can decompose PV power into the IMFs effectively. The
decomposed IMFs can reflect the fluctuated component,
the information component of PV power is not lost. Secondly,
the improved PSO can enhance convergence speed and does
not fall into local optimal solution. Thirdly, the prediction
performance of optimized LSTM is higher than that based on
SVM. Finally, the prediction accuracy of the hybrid method
outperformances the other methods. Although the time cost
of proposed method is slightly longer due to the repeated
optimization of LSTM parameter, the time cost is not the
longest among the compared methods in this paper. Thus,
comprehensive consideration of prediction accuracy and time
cost, the proposed method is more suitable to predict the PV
power in this paper.

Here, the LSTM in development process of program is
based on Python 3.7.7 and Keras 1.0.8 deep learning tools
package (open resource library). Adam optimizer [52] is used
to make the loss function be minimized. The all programs
are performed by the following computer configuration:Win-
dows 10 64-bit operation system, intel core i7-8500U proces-
sor, 1.99GHz frequency, 8GB memory.

V. CONCLUSION AND FUTURE WORK
In this work, a novel hybrid method based on
OVMD-IPSO-LSTM is proposed to predict the short-term
PV power. Firstly, the methods based on feature frequency
bandwidth and mutual information maximum are introduced
to optimize the mode number and penalty factor of VMD.
When the optimized VMD decompose the PV power, the
fluctuated component can be separated effectively, and the
information component of the PV power is not lost. The opti-
mal VMDdecompose the PV power in Changzhou power net-
works in China into the four different components. Secondly,
the non-linear inertia weight based on anti-sine function is

proposed. The inertia weight not only enhance convergence
speed but also avoid the occurrence of local optimal solution.
The improved PSO (IPSO) can enhance the optimized perfor-
mance of traditional PSO significantly. Thirdly, the IPSO is
used to optimize the hidden nodes, learning rate and iteration
number of LSTM. Fourthly, the each separated component
of PV power is predicted by IPSO-LSTM. Finally, the pre-
diction result for each component is re-constructed to obtain
the prediction output of PV power. The proposed model is
compared with the other nine models, respectively. It is found
from compared result based on actual PV power data that
the OVMD-IPSO-LSTM can enhance prediction accuracy
2.2343 - 7.037% (R2), 26.1905% - 66.6667% (MRE) and
42.1673% - 167.4912% (MAPE). Due to effective decom-
position of PV power, improved performance of PSO and
the effective optimization of LSTM parameter, it makes that
the prediction accuracy of proposed model is higher than the
other models. It indicates that the proposed method can meet
the requirement of high prediction application for PV power.

However, the improvement of the prediction accuracy takes
up a certain time cost. It main reflect on the repeated opti-
mization of LSTM parameter. Thus, the future work will be
developed towards the decrease of time cost under enhance-
ment of prediction accuracy. It main focus on: (1) the other
neural network such as the ring probabilistic logic neural
network (RPLNN) is researched to evaluate prediction accu-
racy and time cost; (2) for the proposed model in this paper,
the parallel program is developed to save the time cost; (3) the
advanced decomposition method is developed to decompose
the PV power into the different fluctuation components more
effectively; (4) the prediction model is designed in embedded
system to meet the practical demand more conveniently.
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