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ABSTRACT Unit commitment is an intractable issue aiming to reduce the overall economic cost of
power system operation while maintaining the system constraints. Due to the emerging scenario of global
warming, many countries are vigorously developing renewable energy to replace the traditional fossil power
plant, in order to reduce the environmental and carbon emission. The increasing penetration of renewable
generation significantly challenge the economic and security of power system operation. In this paper,
a low carbon multi-objective objective unit commitment model considering economic cost, environmental
cost and, more importantly, the carbon emission is established, integrating wind and solar power and
therefore generating a multi-objective, high-dimensional, strong non-linear, multi-constraint and mixed
integer optimization problem. The non-dominated sorting genetic algorithm-III is tailored and adopted for
solving the proposed challenging task, where the decision-making scheme is designed according to the
normalization method and weighted sum function. Numerical results show that the proposed complex many-
objective low carbon unit commitment model can be successfully solved by the proposed algorithm and the
carbon emission is effectively reduced by the integration of renewable generations.

INDEX TERMS NSGA-III, multi-objective, unit commitment, wind power, solar power.

I. INTRODUCTION
Electrical power is the fundamental element for the economic
development and normal life. With the rapid development
of the world economy, the demand for electrical energy
is continuously increasing, leading to a large amount of
fossil energy consumption and increasingly prominent global
warming and environmental pollution problems. Wind and
solar power are the most mature and developed energy
resources. They both have the advantages of clean and
pollution-free and abundant reserves, playing significant
roles in reducing environmental pollution and promoting
sustainable development. The large penetration of the both
renewable resources is the ultimated approach in achieving
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the low carbon energy future. However, the strong intermit-
tent renewable generation strongly challenges the current
power system operation.

Unit commitment is the fundamental task of power system
operation, where economic cost is often considered as the key
objective. In solving the UC optimization problem, a number
of algorithms have been proposed and adopted. Featured
conventional approaches involve dynamic programming (DP)
[1], mixed-integer linear programming (MILP) [2] and
Lagrangian relaxation (LR) [3]. Su et al. used fuzzy set nota-
tions in DP making no errors in forecast loads [4]. Long pro-
posed a approximate DP to solve large-scale UC problem [5].
With the problem becomes increasingly complex, DP suffers
the ‘‘dimensionality disaster’’ problem. Moralesespana et al.
proposed a tight and compact MILP and improve the speed
of optimization [6]. Venkatesh et al. analyzed the solution
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of wind power penetrating in power system with MILP [7].
Peterson et al. used LR to solve UC problem considering
the constraints of unit climbing rate [8]. In addition to the
conventional programming based approaches, many scholars
have applied heuristic algorithms to UC problem. Some com-
mon heuristic algorithms such as genetic algorithm (GA) [9],
gravitational search algorithm (GSA) [10], particle swarm
optimization (PSO) [11] and etc. Kazarlis et al. firstly pre-
sented a GA solution to the UC problem [12]. Jo et al.
used an improved GA considering the uncertainty of power
sources [13]. Roy and Kumar proposed GSA to optimize UC
problem [14]. ElAzab et al. used GSA to reduce the incor-
porated cost for UC integrating plug-in electric vehicles [15].
Raglend et al. proposed PSO to solve profit based UC prob-
lem [16].Kamboj et al. proposed a hybrid PSO-GWO (Grey
Wolf Optimizer) approach for UC and obtain better results
than classical PSO [17]. Simopoulos et al. use simulated
annealing in unit commitment considering reliability [18].
Sundaram et al. integrate artificial bee colony algorithm and
tabu search to solve the profit-based unit commitment prob-
lem [19]. Marrouchi et al. apply fuzzy logic approaches in
unit commitment compared with gradient-genetic algorithm
to test their performance [20]. Chen et al. integrate expert sys-
temwith elite particle swarm optimization to form a two-level
hierarchical approach for the unit commitment problem [21].

To integrate renewable energies in UC, researchers have
also paid significant attentions. Ji et al. proposed an improved
GSA for UC integrating wind power [22]. Quan et al.
proposed a comprehensive computational framework and a
new scenario generation method for renewable energy [23].
Lorca and Andy proposed a new multistage adaptive robust
optimization model considering large-scale wind and solar
power [24]. Cordova et al. proposed an efficient forecasting-
optimization scheme considering the challenge large-scale
wind and solar power integrated to power systems [25].
Xu et al. developed a stochastic two-stage day-ahead UC
model and a new economic dispatch model integrating solar
and wind resources [26]. Cui et al. analyzed the relation-
ship between reliability and solar power forecasting improve-
ments [27]. Wu et al. proposed a systematic framework
that quantified the integration costs considering solar pho-
tovoltaic power [28]. Hao et al. made a comparative study
on uncertainties of renewable energy integrated to the power
system [29].

Apart from the economic cost, environmental and car-
bon emission issues are important to the power system.
Many scholars have conducted researches in modeling
multi-objective multi-constrained nonlinear UC problems.
Wu et al. proposed a multi-objective self-adaptive differ-
ential evolution (MOSADE) algorithm to optimize fuel
consumption and emissions [30]. Elsied et al. [31] pro-
posed a real-time energy management system that uses
binary particle swarm optimization (BPSO) to minimize
energy consumption, CO2 emission and other pollutant emis-
sion. Lokeshgupta et al. [32] used multi-objective particle
swarm optimization (MOPSO) to minimize the dynamic

economic and emission dispatch problem of the system.
Chandrasekaran and Simon employed artificial bee colony
algorithm on three conflicting functions, fuel cost, emission
and reliability level [33]. Li et al. combined NSGA-II and
a local search algorithm to minimize the operation cost and
emissions [34]. Furukakoi et al. used the stochastic program-
ming algorithm to minimize the PV output prediction error
and improve voltage stability [35].

In this paper, non-dominated sorting genetic algorithm-III
(NSGA-III) [36], [37] is used for the unit commitment prob-
lem integrating wind and solar power considering economic
cost, CO2 and environmental emission. NSGA-III is one of
the most popular multi-objective genetic algorithms, which
can reduce the complexity of non-dominated sorting genetic
algorithm. It has the advantages of fast running speed, quickly
converging speed, which makes it become the basis of other
multi-objective optimization algorithms. The key contribu-
tions including three aspects are as follows:

(1) A novel low carbon multi-objective unit commit-
ment (LCMOUC) problem is modeled in the paper, com-
prehensively considering economic cost, CO2 emissions and
sulfur pollutant emissions, which can heavily reduce the
carbon emission of the power system.

(2) Wind and solar power generation is integrated into the
LCMOUC problem formulation to verify their low-carbon
impact.

(3) NSGA-III method is adopted and tailored in optimiz-
ing the proposed model compared with other multi-objective
algorithms to demonstrate its optimization superiority.

The remainder of this paper is organized as follows: the
problem formulation of LCMOUC is discussed in Section II,
followed by the proposed NSGA-III based optimization
method for solving LCMOUC is demonstrated in Section III.
Experimental results and case studies LCMOUC problem are
presented in Section IV. Finally, Section V concludes the
paper.

II. PROBLEM FORMULATION
A. OBJECTIVE FUNCTION
In this section, the proposed LCMOUC problem is formu-
lated. The objectives of the problem include economic cost
f 1, CO2 emissions f 2 and sulfur pollutant emissions f 3,
among which the carbon emission is accounted by the CO2
amounts. For all these three objectives, with the economic
cost increasing, the pollutant emissions will decrease at the
same time, which shows the conflict between these objec-
tives.
f 1:The economic cost Fec contains fossil fuel cost and

start-up cost which are showed as follows:

min Fec =
T∑
t=1

n∑
j=1

[F fj,t (Pj,t ) ∗ Ij,t

+ SUCj,t ∗ (1− Ij,t−1) ∗ Ij,t ] (1)

where n is the total number of units, T represents the time
periods, F fj,t is the fuel cost of the j-th unit at time t , Pj,t is
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the power of the j-th unit at time t , Ij,t is the binary symbol
representing the on/off-line status of units, where 1 represents
the on-line status of units and 0 represents the off-line status
of units, SUCj,t is the start-up cost of the j-th unit at time t .
The fuel cost of the j-th unit can be defined as follows:

F fj (Pj,t ) = aj + bj ∗ Pj,t + cj ∗ P2j,t (2)

where aj, bj and cj are the corresponding coefficients of each
unit.

The start-up cost of the j-th unit can be defined as follows:

SUCj,t =

{
SUCH ,j MDj ≤ TOFFj,t ≤ MDj + Tcold,j
SUCC,j TOFFj,t > MDj + Tcold,j

(3)

where SUCH ,j is the hot-start cost and SUCC,j is the cold-start
cost, MDj is the minimum down time, TOFFj,t is the off-line
duration time and Tcold,j represents the cold-start hour.
f 2: CO2 pollutant emissions is denoted as:

CO2e =
T∑
t=1

n∑
j=1

[Fcj,t (Pj,t ) ∗ Ij,t ] (4)

Fcj,t (Pj,t ) = αc,j + βc,j ∗ Pj,t + γc,j ∗ P
2
j,t (5)

where Fcj,t (Pj,t ) represents the emission amount, αc,j, βc,j and
γc,j are CO2 emission coefficients.
f 3:Sulfur pollutant emissions is denoted as:

Se =
T∑
t=1

n∑
j=1

[F sj,t (Pj,t ) ∗ Ij,t ] (6)

Fej,t (Pj,t ) = αs,j + βs,j ∗ Pj,t + γs,j ∗ P
2
j,t (7)

where F sj,t (Pj,t ) represents the emission amount, αs,j, βs,j and
γs,j are sulfur emission coefficients.

B. CONSTRAINTS
The constraints corresponding to the objectives are showed
below:

1) Power balance limit at time t:
In actual power system, the power generation should be

equal to the load demand all the time, which is an arduous
task and can be showed as follows:

n∑
j=1

Pj,t ∗ Ij,t + Pwind,t + Psolar,t = PD,t (8)

Pwind,t and Psolar,t represent the wind and solar power
respectively, and PD,t is the predicted power demand.
2) Power reserve limit at time t:
The spinning reverses should be considered for the unex-

pected extra load demand, which can be formulated as
follows:

n∑
j=1

Pj,max ∗ Ij,t + Pwind,t + Psolar,t ≥ PD,t + SRt

n∑
j=1

Pj,min ∗ Ij,t + Pwind,t + Psolar,t ≤ PD,t + SRt

(9)

where SRt is the reserved power, Pj,min and Pj,max are the
minimum and maximum power of the j-th unit respectively.

3) Minimum on/off-line time limit of the j-th unit:
The status of the units in power system can only be on-line

or off-line, which is related to the minimum up and down time
of the unit.

Ij,t =


1 1 ≤ TONj,t < MUj
0 1 ≤ TOFFj,t < MDj
0or1 otherwise

(10)

where TONj,t is the on-line duration time at time t , MUj is the
minimum up time.

4) Power limit of the j-th unit:
The generation capacity limits the power of the corre-

sponding unit to a certain range, which can be shown as
follows:

Pj,min ∗ Ij,t ≤ Pj,t ≤ Pj,max ∗ Ij,t (11)

III. NON-DOMINATED SORTING GENETIC
ALGORITHM-III
The NSGA-III method is the predecessor of the well known
NSGA-II and has shown advantage in addressing the problem
with many objectives when dominated particles are difficult
to figure out [36], [37]. The main idea of NSGA-III is to
use elite strategies to retain excellent individuals to the next
generation and avoid the loss of excellent individuals. More
importantly, the strategy based on the reference points is used
to select excellent individuals, and the algorithm has a better
global search ability in handling multi-objective optimization
problems. The procedure of NSGA-III is showed at Figure. 1.
The procedure of NSGA-III is similar to NSGA-II, and

the selection mechanism for maintaining diversity of the
population changes from the crowding comparison operator
to an selection mechanism based on reference points. The
individual selection mechanism of NSGA-III is showed as
follows.

A. NON-DOMINATED SORTING
Suppose the individual number of the current iteration Pt is
N . Generate Qt through serious genetic operations, that is
|Qt | = N . The parent and child populations are combined as
Rt = Pt ∪ Qt . Sort non-dominated Rt and divide it into mul-
tiple non-dominated levels (F1,F2, . . .). Individuals in each
non-dominated level are added into St one by one according
to the level number until |St | ≥ N . The last non-dominated
level that joins St is denoted as Fl , and the solution set that
does not contain the Fl layer is denoted as Pt+1 = St/Fl .

B. REFERENCE POINT GENERATION
NSGA-III uses an individual selection mechanism based on
reference points to maintain population diversity. Reference
points can be generated according to existing structured
methods, or can be set according to user preferences. The
commonly used orthogonal boundary crossing algorithm pro-
posed by Das et al [38].
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FIGURE 1. Procedure of NSGA-III.

C. EXTREME POINT SELECTION AND NORMALIZATION
Find the extreme point in the solution space to construct
the limit plane. The distance between intersections and the
ideal point is the intercept of each target axis, in which the
intersections are the common point of the limit plane and
each target axis. Then the target values of all dimensions
with individuals are divided in the population by the intercept
of the corresponding target axis to complete the individual
normalization, the formulation can be denoted as,

gNi (pj) =
g′i(pj)

ai
=
gi(pj)− gi,min

ai
(12)

D. LINK THE INDIVIDUALS TO THE REFERENCE POINTS
Connect the reference points with ideal points which defines
a cluster of reference lines. Calculate the distance from the
normalized individuals to each reference lines, where the
individuals to the reference point which belongs to the ref-
erence line it the closest to the individual.

E. SELECT INDIVIDUALS
As it can be seen from Section III-A, K = N − |Pt+1|
individuals need to be selected from the Fl layer and put
into Pt+1 to obtain a new parent population Pt+1 containing
N individuals. First, the number of individuals associated

with all reference points is calculated, and the number of
individuals associated with the j − th reference point (that
is, the niche of the reference point) is recorded as ρj. The set
Jmin = j : argminjρj is the collection of reference points with
the smallest ρj. When selecting individuals from Fl , if there
aremultiple reference points in Jmin, a jR is randomly selected
to participate in the selection operation.When ρjR = 0, that is,
no individual in Pt+1 is associated with the current reference
point, Fl may have one or more individuals associated with
the reference point, select the closest individual to jR and
put it in Pt+1, the niche of the reference point plus 1. If no
individual in Fl is associated with jR, replace the reference
point and repeat the above steps. When ρjR = 0 ≥ 1, if an
individual in Fl is associated with jR, put it in Pt+1, add 1 to
the niche of the reference point, and repeat the above steps
until |Pt + 1| = N .

IV. NSGA-III FOR LCMOUC PROBLEM
In this section, NSGA-III is tailored for solving the proposed
LCMOUC problem. In addition, the constraints in the pro-
posed LCMOUC problem should be handled. In this section,
the process of constraints handling and the application of
NSGA-III for UC problem are demonstrated.

A. CONSTRAINTS HANDLING PROCESS
After initialization, the population will check the constraints.
For constraint (1), a lambda iteration [39] is used. What is
more, the lambda iteration is also used for constraint (4) as
the upper and lower bound. For handling the reserve limit,
a heuristic-based approach in literature [40] is used. If the
total generation power is larger than the total load, some
units should be turned off, otherwise turned on. In order to
check whether the state of individuals meet constraint (3),
a technique in [41] will work once violation occurs to make
the individual meet the minimum up/down-time limit.

B. APPLIED NSGA-III TO LCMOUC
In addition to the constraints handling, the best individuals
and objectives are to be found by NSGA-III to determine the
state of units. The procedure of NSGA-III can be summarized
as follows:

1) INITIALIZATION
(1) Set the parameters of the system such as the reserve rate,
the total load, the minimum up/down time of each unit, and
the wind/solar power generation etc.;

(2) Initialize the parameters of the algorithm such as muta-
tion rate and maximum iteration time;

2) ALGORITHM PROCESS
(1) The individuals in the population are divided into several
levels according to their dominant relationship. All indi-
viduals in the population are normalized and related to the
reference points.

(2) Generate offspring populations through genetic opera-
tions such as selection, crossover and mutation.
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TABLE 1. Parameters of units.

TABLE 2. Other parameters settings.

(3) Combine the parent and offspring populations, and
perform operations like non-dominated sorting, individual
normalization and association again.

(4) Select the next iteration from the merged population.
Iterate back and forth until reaching the pre-set convergence
condition, and output the Pareto optimal solution set.

V. NUMERICAL RESULTS AND ANALYSIS
In this section, we use the proposed algorithm to optimize the
LCMOUC problem and compare the algorithm performance
with NSGA-II and MOEA/D. The power system parameters
used in this paper are shown in Table. 1 [42]. The emission
coefficients are generated according to [43]. Other relevant
parameters are shown in Table. 2. The data of wind and solar
power are refer from the literature [44].

A. CASE 1: LCMOUC WITHOUT WIND AND SOLAR POWER
The optimization results of LCMOUC problem without
integrating wind and solar power respectively obtained by
NSGA-III, NSGA-II and MOEA/D are shown in Table. 3.

Comparing the data in Table. 3, it can be found that
when the number of units is 10, the range of eco-
nomic cost obtained by the NSGA-III is 568827.88$/day-
578562.55$/day, while the optimal value obtained by the
NSGA-II is 572768.11$/day and the best result of MOEA/D
is 573537.66$/day. The target value obtained by NSGA-III is

FIGURE 2. Three dimensional optimal solutions distribution.

also superior to the other two algorithms.When the number of
units increased to 80 and 100, the experimental data obtained
by these algorithms shares the same trend. However, when
only considering the economic cost or the CO2 emission
objective and the number of units is 80, the value obtained
by the NSGA-II is relatively better. For example, the CO2
emission is 652953.59 lb/day obtained by NSGA-II, the one
obtained by the NSGA-III is 653959.68 lb/day, which is
close to the optimal value of NSGA-II. It also shows that
MOEA/D is poor in solving the CO2 emission objective.
The three dimensional optimization results obtained by

these three algorithms when the unit number is 80 are shown
in Fig. 2 and two featured dimensional results are presented
in Fig. 3.

From the above experimental analysis shown in Fig. 2,
it can be seen that when the unit number is 80, the distribution
of the Pareto front obtained by NSGA-III is smaller than that
of NSGA-II and MOEA/D, and the overall Pareto solutions
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TABLE 3. The results obtained by three algorithms without wind and solar power.

FIGURE 3. Two dimensional optimal solutions distribution.

are relatively downward. Comparedwith the Pareto frontier in
three-dimensional space, it can be seen that the Pareto frontier
of NSGA-III is at the lowest level, followed by NSGA-II,
and MOEA/D is at the top. NSGA-III can get far smaller
value than other algorithms, which fully shows that NSGA-III
performs well in optimizing the LCMOUC problem. From
Fig. 3, it could be easily found that MOEA/D performs the
worst on these two objectives. Although NSGA-III gets some
high value solutions, it can obtain the best solution for both
the two objectives.

Considering that all the objectives have the same evalua-
tion weight for the system, normalization and weighted sum
methods are adopted to make decisions on the Pareto solution
obtained by the NSGA-III. The normalization adopts the

FIGURE 4. The normalization box plot for results of three algorithms.

mapminmax function in Matlab(R)2019b. The normalized
three objective values are weighted and summed up. The
minimum value is selected as the optimal solution. It can be
found that the smallest weighted sum value can meet at least
two or more objectives relatively better in the Pareto frontier.
Moreover, normalization box plot of these results are used to
further compare these algorithms, which is shown in Fig. 4.
It could be found that the normalization values of

NSGA-III are relatively small, and the values of objective f 1
and f 2 are even smaller than 0.1. NSGA-II performs well in
f 3, which outperforms all the other methods, but the results
of f 1 and f 2 are worse than NSGA-III. The results of f 1 and
f 2 obtained by MOEA/D are relatively worse than the other
two algorithms, and its f 3 value is among the middle ranking.
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TABLE 4. Power of 10 units.

After the normalization and sum up, the example obtained
by NSGA-III is selected for analysis when the unit num-
ber is 10. The economic cost value is 568827.88 $/day,
the CO2 emission is 81805.60 lb/day and the sulfur emis-
sion is 167085.41 lb/day. The power of the units are shown
in Table. 4. According to the data in the table, it can be seen
that unit 1 and unit 2 are always on-line, while the power
changes with the system load.

B. CASE 2: LCMOUC WITH WIND AND SOLAR POWER
In addition to the non-renewable case, the optimization
results of LCMOUC problem integrating both wind and
solar power are obtained by NSGA-III. The numerical study
has also compared the results obtained by NSGA-II and
MOEA/D shown in Table. 5.

It can be found that when the number of units is 10,
and the range of economic cost obtained by the NSGA-III
is 549649.33 $/day-557719.37 $/day. The optimal value
obtained by theNSGA-II is 550624.12 $/day, whereas the one
of MOEA/D is 550598.45 $/day. The target value obtained
by NSGA-III is also superior to the other two algorithms
when integrating wind and solar power. When the number
of units increased to 80 and 100, the experimental data
obtained by these algorithms are seen the same ranking.
However, when the number of units is 100, the economic
cost and CO2 emission value obtained by the NSGA-II is
relatively better. For example, the CO2 emission value is
778713.29 lb/day obtained by NSGA-II, the one obtained

by the NSGA-III is 779727.42 lb/day, which is close to the
optimal value of NSGA-II. It is obvious that the majority
of the results obtained by NSGA-III are better than other
counterparts.

Comparing with the data in Table. 3, it can be found
that after integrating wind and solar power to the power
system, whatever the unit number is, the optimization
value of these three objectives are all smaller than that of
the case without integrating wind and solar power, which
means that wind and solar power can decrease the total
economic cost of the power system and are environmen-
tally friendly to release less pollutant emission. For exam-
ple, when the unit number is 100, the economic cost
obtained by NSGA-III is 5703988.95 $/day, the CO2 emis-
sion value is 817832.49 lb/day and the sulfur emission value
is 1647558.11 lb/day when there are no wind and solar
power in the system. When the power system integrates wind
and solar power, the economic cost is 5484988.47 $/day,
the CO2 emission value is 779727.442 lb/day and the sul-
fur emission value is 1597417.77 lb/day. It can clearly see
that all the three objective values are lower than that of
the system with no wind and solar power, which can obvi-
ously show the advantages of wind and solar power in
reducing economic cost and pollutant emission. The three
dimensional optimization results integrating wind and solar
power obtained by these three algorithms of 80 units are
shown in Fig. 5 and two featured dimensional results are
presented in Fig. 6.
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TABLE 5. The results obtained by three algorithms integrating wind and solar power.

TABLE 6. Power of 10 units when integrating wind and solar power.

Comparing Fig. 2 and Fig. 3 with Fig. 5 and Fig. 6,
it can be seen that the distribution results of the three algo-
rithms for UC integrating wind and solar power are sim-
ilar to that of case 1. Whether the LCMOUC integrates
the wind and solar power or not, the Pareto frontier of

NSGA-III is always at the lowest level, which verifies that
NSGA-III is suitable for solving LCMOUC problem again.
In addition, normalization box plot of these results are again
sused to further compare these algorithms, which is shown
in Fig. 7.
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FIGURE 5. Three dimensional optimal solutions distribution.

FIGURE 6. Two dimensional optimal solutions distribution.

[scale

FIGURE 7. The normalization box plot for results of three algorithms.

It could be found that all the results are relatively smaller
than that when the power system does not integrate wind and
solar power, and the value f 1 and f 2 of NSGA-III are lower

than 0.05. NSGA-II performs well again in f 3 while the result
of f 2 is the worst in these three algorithms. The results of f 1
and f 2 for MOEA/D are both better than NSGA-II.

After the normalization and sum up, the best solution
obtained by NSGA-III of 10 unit is selected for analysis. The
economic cost is 551277.94 $/day, while the CO2 emission is
78629.93 lb/day and the sulfur emission is 158042.88 lb/day.
The power of the units are shown in Table. 6. According to
the data in the table, it can be seen that unit 1 and unit 2 are
always on, while the power changes with the system load.
Unit 10 is always off, which means that the system does not
need all the units work to meet the demand when integrating
wind and solar power, thus decreasing the economic cost and
pollutant emission.

VI. CONCLUSION
In this paper, a low carbon multi-objective unit commitment
model is formulated combining CO2 emission and environ-
mental objectives on the basis of original UC problem in
the power system operation. The competitive NSGA-III algo-
rithm is employed for solving the proposed LCMOUC prob-
lem. Two featured cases with and without renewable energy
generations are used to verify the applicability of NSGA-
III, and two other counterparts NSGA-II and MOEA/D are
adopted in the comparison. It can be found that NSGA-III can
obtain the best solution compared to the other two algorithms
whether the power system integrating wind and solar power
or not. The normalization method is used to make a decision
on the Pareto frontier, where NSGA-III can almost achieve
the optimal economic and environmental value for all the
different situations. The carbon emission is also significantly
reduced by utilizing the proposed model framework and
algorithm solutions. In the future, more available low carbon
options including plug-in electric vehicles and energy storage
systems are to be integrated in the unit commitment problem,
further integrating the intermittent renewables and reducing
carbon emissions.
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