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ABSTRACT Visual sensor network (VSN) requires a multi-focus image or video frame fusion technique
involving focus measure computation in the DCT-domain to generate an all-in-focus image. Such techniques
are implemented on resource-constrained on-board systems requiring hardware-friendly implementations.
In this article, we first show that components of the Laplacian matrix are related to the discrete cosine
transform (DCT) basis. The relation is that the eigenvalues of the Laplacian with proper boundary condition
form the diagonal elements of the diagonal matrix generated by the DCT operation on the Laplacian.
Exploiting this relation, we propose a focus measure which works on the DCT coefficients reflecting the
spatial-domain Laplacian operation. Certain simplifications allow our focus measure computation through
hardware-friendly integer multiplication and summation, where matrix multiplication involves just N scalar
multiplications for an N × N 2D signal. Finally, we propose an approach which suitably fuses multi-focus
images or video frames in DCT based image or video coding framework through detection of properly
focused area and neighborhood consistency analysis. We show that our proposed approach is hardware-
friendly, computationally simple, and is fast enough for VSN. Through experimental results, we show that our
approach outperforms the relevant state-of-the-art in multi-focus image fusion for VSN both quantitatively
and subjectively. We also show that our approach is effective in comparison to the state-of-the-art and a few
latest generic multi-focus image fusion techniques in terms of quantitative and subjective evaluations.

INDEX TERMS Anti-diagonal matrix, discrete cosine transform, multi-focus image fusion, visual sensor
network.

I. INTRODUCTION
Visual sensor network (VSN) is an intelligent system [1],
[2] which generates huge sensory data from the environ-
ment through geographically distributed camera nodes and
then collaboratively processes [3] to send useful informa-
tion for different applications related to surveillance, mon-
itoring, etc. [4]–[6]. The cameras have limited depth of
field, and hence, they capture reliable (focused) information
of objects only at their focus ranges and blur the rest of
the scene [7]. The on-board system for the required col-
laborative processing to produce all-in-focus images/video
frames, is resource-constrained [8], [9], allowing very simple
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hardware-friendly processing of the huge captured data [10].
Therefore, generating an all-in-focus image/video frame in
real-time, especially in a wireless sensor network [11], [12]
is a challenging task.

To handle and transmit huge visual data, VSN adopts an
image/video compression or video coding technique. Many
use discrete cosine transform (DCT) in view of its effi-
cient energy compaction property [13]–[15]. Thus, a simple
multi-focus image fusion technique that works and gener-
ates an all-in-focus image/frame in DCT domain would be
preferable for VSN, as it can be directly incorporated in the
DCT based compression framework. Many such approaches
have been proposed [10], [16]–[23], which are discussed in
Section III. Among these, a few attempts have been made to
formulate DCT domain equivalent of efficient spatial domain
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focus measures that utilize spatial variance [18] or spatial fre-
quency [19] in a local spatial neighbourhood. Other attempts
have also beenmade inDCT domain that represent operations
in spatial neighborhoods [20]–[23], which are discussed in
Section III as well. For example, Amin-Naji et al. [20] pro-
posed the use of variance and energy of Laplacian response in
DCT domain for multi-focus image fusion in VSN. Though
these approaches produce state-of-the-art results, they are
comparatively expensive as detailed in Section VI-C. But,
such a solution requires floating point squaring and mul-
tiplication operations, which are not hardware-friendly like
addition.

It is straightforward to assume that when an area of an
image is not focused, it is blurred. Such an area contains
substantiallymore low frequency content than high frequency
one. On the other hand, when an area (except smooth areas)
is focused, it is comparatively sharper, contributing to high
frequency content. Therefore, different operators which com-
pute spatial frequencies can provide focusmeasures. Gradient
is one such operator to measure image sharpness indicating
spatial frequency. It’s equivalent in DCT domain has been
used in [19] to get spatial frequency based focus measure.
Laplacian operator is another well known operator [24],
which is good at determining the sharpness in an image.
A plethora of focus measures in spatial domain based on
Laplacian operator have been proposed and are found to
be effective [7], [25]–[28]. Subbarao et al. [26], [27] have
proposed the energy of the Laplacian of an image to measure
the focus for an auto focusing application. Nayar et al. [25]
have proposed the sum of modified Laplacian (SML) of an
image as an efficient focus measure. Malik et al. [7] have
proposed an auto focus algorithm, where SML of an image is
used to determine the focus information.

Inspired by the aforesaid requirement of hardware friend-
liness, in this article, we formulate a computationally sim-
ple hardware-friendly multi-focus image fusion approach for
VSN using a non-trivial equivalent of the spatial domain
Laplacian operator in the DCT domain.

The major contributions of the paper are as follows:
1) It is shown that an N × N Laplacian matrix (formed

using Laplacian operator with proper boundary condi-
tion) is related to the N ×N DCT matrix in such a way
that the eigenvalues of the Laplacian matrix form the
diagonal elements of the diagonal matrix generated by
DCT operation on the Laplacian matrix.

2) The above property of the Laplacian matrix is exploited
to propose a focus measure, which can be directly
computed on the DCT coefficients such that it requires
N fixed point multiplications. In comparison, a generic
matrix multiplication requires N 3 floating point
multiplications.

3) An approach, which fuses the multi-focus images or
video frames in DCT based image or video cod-
ing framework using our Laplacian based focus mea-
sure, is proposed. The proposed approach is not only
computationally less expensive and hardware-friendly,

but also produces state-of-the-art results of multi-focus
image fusion for VSN.

The paper is organized as follows. Section II shows how
the properties of the Laplacian with proper boundary con-
dition can be exploited to provide a computationally sim-
ple solution in the DCT domain, which can be used in
multi-focus fusion for VSN. Section III describes the related
literature onmulti-focus fusion for VSN. Section IV proposes
hardware-friendly computationally simple focus measure for
VSN. Section V describes the step-by-step procedure of
the proposed multi-focus image fusion method. Comparative
results of multi-focus image fusion for VSN using differ-
ent techniques including our proposed one are presented in
Section VI. Finally, Section VII concludes the paper.

II. LAPLACIAN RESPONSE THROUGH EFFICIENT DCT
DOMAIN COMPUTATION
In this section, we first discuss the relation ofN×N Laplacian
operator with DCT. Later, we mathematically show how such
a relation can be useful for developing a hardware-friendly
computationally simple solution in the DCT domain to get
the Laplacian response.

A. LAPLACIAN RESPONSE FOR A BLOCK BASED
OPERATION
Let us first consider a digital double derivative having the
smallest length, [−1 2 −1], which is obtained using the
digital single derivative [−1 1] twice at consecutive locations.
We shall then extend the operator [−1 2 −1] to get a 2D
spatial Laplacian operator for block based operation. The
digital double derivative (1D Laplacian) operation for digital
1D signal F having N samples is as follows

d2fx
dx2
= −fx−1 + 2fx − fx+1 (1)

As the operation at the signal sample x is basically high pass
filtering, its response provides the high frequency content
at that signal sample. If we want to extend the Laplacian
response defined at 1 toN samples at a time, we can represent
it in matrix form as follows

R = PF (2)

where R is an N × 1 column vector, P is an N × N matrix
defined

P =


× × 0 . . .

−1 2 −1 0 . . .

. . .

. . . 0 −1 2 −1
. . . 0 × ×

 (3)

and F is a column vector of size N × 1 given by

F = [ f (0) . . . f (N − 1) ]T (4)

As the 1D Laplacian operator of the smallest length requires
one preceding sample and one succeeding sample for compu-
tation at a signal sample, the values of R at r(0) and r(N − 1)
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cannot be computed. Hence, we use ‘×’ in the P operator
to indicate the same, which essentially means that the values
at ‘×’ location would not be employed. As stated in [29],
the operator P is related to DCT basis function.

If F is a 2D signal of size N × N , for a location (x, y),
we have

∂2fx,y
∂x2

= −fx−1,y + 2fx,y − fx+1,y

∂2fx,y
∂y2

= −fx,y−1 + 2fx,y − fx,y+1 (5)

The combination ∂2

∂x2
+

∂2

∂y2
is known as the Laplacian oper-

ator. For a 2D signal we will get two responses, one for
row-wise operation (Rr) and another for column-wise oper-
ation (Rc) as follows

Rr = PF

Rc = FPT (6)

where F (the signal) is an N × N matrix. As mentioned
already, ‘×’ in P remains unemployed. However, depending
on the underlying purpose, certain values at ‘×’ can be more
suited than others. In our case, we require the following
• The values at ‘×’ must yield high frequency upon oper-
ation on F, as P is meant to provide high frequency
content.

• The values at ‘×’ must allow efficient computation of
Rr and Rc in the DCT domain, that is, on the DCT
coefficients of F (See Subsection II-B).

To meet the said requirements, we propose the following
operator L for anN×N signal block because of its interesting
properties, whichwill be shown in the discussion that follows.

L =


1 −1 0 . . .

−1 2 −1 0 . . .

. . .

. . . 0 −1 2 −1
. . . 0 −1 1

 (7)

It is straightforward that L is obtained by replacing [× ×] of
P in the first row by [1−1] and in the last row by [−1 1], both
being digital derivatives. The operator L, which contains the
digital derivatives and 1D Laplacian, yields high frequency
content of the signal in the relevant direction. We see that,
L = LT andL can be defined by singular value decomposition
as follows

L = U3VT (8)

where both U and V are orthogonal matrices and λi,j =
λi,iδi,j, i, j = 1, 2, . . . ,N , δi,j being the Kronecker delta and
λi,j the singular values ofL. Here,U andV are such that λi,i >
λk,k ,∀i < k, (i, j) = 1, 2, . . . ,N . In our case, U = V so that
UVT = I, VTU = I. Let us represent ui,j as ith row and jth

column element of matrix U. Then, we can represent ith row
vector Ur

i as [ui,1 ui,2 . . . ui,n . . . ui,N ] and i
th column vector

Uc
i as [u1,i u2,i . . . un,i . . . uN ,i]

T . Similarly for N × N DCT

matrix D, we can represent the element at ith row and jth col-
umn as di,j, and ith row vectorDr

i as [di,1 di,2 . . . di,n . . . di,N ]
and ith column vector Dc

i as [d1,i d2,i . . . dn,i . . . dN ,i]
T . The

matrices U and D are related as follows

Dr
iU

c
j =

{
1 or − 1, j = N + 1−i
0, elsewhere

(9)

The 0 value indicates that the corresponding eigenvectors are
orthogonal to DCT basis vectors, which is the case except
at the index (i,N + 1−i). At index (i,N + 1−i), we get a
value 1 when an eigenvector and a DCT basis vector are the
same, and a value−1when they have a 180◦ phase difference.
Due to the above properties, E is an anti-diagonal matrix
where E = DU. This implies ET = UTDT . As, U = V,
we can write ET = VTDT . Therefore, E is an anti-diagonal
matrix which has values 1/−1 at index (i,N+1−i). Transpose
of an anti-diagonal matrix is another anti-diagonal matrix.
So, E and ET are two anti-diagonal matrices. Based on these,
we can show that A = EET is a diagonal matrix whose diag-
onal element ai,i = ei,N+1−i × eTN+1−i,i. The corresponding
proof is provided in Appendix A. Applying (9) and the above
result for ai,i, we can say, EET = I. Now, applying DCT to
both sides of (8), we have

DCT (L) = DU3VTDT (10)

As E = DU and ET = VTDT , we can rewrite the above
expression

DCT (L) = E3ET (11)

In the above expression, 3 is a diagonal matrix. As 3 is
diagonal matrix and ET is an anti-diagonal matrix, we can
show that B = 3ET is an anti-diagonal matrix where the
anti-diagonal element bi,N+1−i = λi,i × eTi,N+1−i. The cor-
responding proof is provided in Appendix B. Now, let us
denote DCT (L) = E3ET as M, where E and ET are two
anti-diagonal matrices and 3 is a diagonal matrix. Then,
applying EET = I, we can say that M is a diagonal matrix
whose diagonal element mi,i is given by

mi,i = λN+1−i,N+1−i (12)

The corresponding proof is provided in Appendix C. Again,
λi,j = λi,iδi,j, i, j = 1, 2, . . . ,N , where λi,i > λk,k ,∀i <
k, (i, j) = 1, 2, . . . ,N . So, we can say that the DCT operation
on L generates a diagonal matrixMwhose diagonal terms are
the eigenvalues of L arranged from minimum to maximum
starting from the first diagonal element.

B. EFFICIENT DCT DOMAIN COMPUTATION OF
LAPLACIAN FOR A BLOCK BASED OPERATION
Any filtering operation on 2D signal (image block), like the
ones used in the computation of our focus measure, requires
row-wise and column-wise operations as shown in expres-
sion (6). In matrix representation, the row-wise operation
can be expressed as C = AB, where any element ci,j is
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computed as
N∑
k=1

aikbkj. We require N multiplications and

N − 1 additions for N 2 such elements. Now, to compute the

additive response
N∑
i=1

N∑
j=1

ci,j (as used later for focus measure

computation in Section IV), we require N 2
−1 additions. So,

the computation of
N∑
i=1

N∑
j=1

N∑
k=1

aikbkj requires N 3 multiplica-

tions andN (N−1)+(N 2
−1) additions. Further, we will have

the same amount of computation for the column-wise opera-
tion and additive response computation. Multiplication oper-
ations, which are not hardware-friendly like additions, are
always preferred to beminimal in number. The focus measure
in [19], computed by the filtering operation on image block,
reduces the computations required by one matrix operation,
thus involving N 3 multiplications instead of 2N 3. Our choice
of operator L which is defined in (7) is such that DCT(L)
is a diagonal matrix as shown in (12). For an image F, let
us denote FD = DCT (F). To compute the additive response
from T1 = DCT (LF) we require N 2 multiplications due to
the operator L. So, there is a reduction in the number of multi-
plications fromN 3 toN 2. As our DCT domain focus measure
is an additive response on matrix multiplication operation,
we can further reduce the required computations. The additive
response

∑
T1 =

∑
DCT (LF)=

∑
DCT (L)DCT (F) which

is again equal to
∑

MFD. As shown in expression (12),M is a
diagonal matrix havingmi,i = λN+1−i,N+1−i. So ith row ofT1

is ith row of FD multiplied with λN+1−i,N+1−i. The additive

response for ith row of T1 is λN+1−i,N+1−i
N∑
j=1

f Di,j . Therefore,

additive response of T1 is as follows

N∑
i=1

N∑
j=1

t1i,j =
N∑
i=1

λN+1−i,N+1−i

N∑
j=1

f Di,j (13)

Similarly, the additive response of T2 = DCT (FL) is com-
puted as follows

N∑
i=1

N∑
j=1

t2i,j =
N∑
i=1

λN+1−i,N+1−i

N∑
j=1

f Dj,i (14)

It is clear that the above solutions reduce the number of multi-
plications from 2N 3 to 2N , making it more hardware-friendly
and less computationally expensive.

III. RELATED WORKS ON MULTI-FOCUS IMAGE FUSION
FOR VSN
Resource-constrained VSN system demands a simple multi-
focus image fusion solution generating an all-in-focus
image/frame from different multi-focus images/frames cap-
tured from geographically distributed camera nodes. As men-
tioned before, a DCT domain hardware-friendly, fast, but
computationally less intensive solution, is preferable which
can be incorporated into image compression or video coding
framework.

Tang [16] has proposed two methods in the DCT domain,
DCT+Average (DCTav) and DCT+Contrast (DCTcm) for
multi-focus image fusion. DCT+Average is the simpler one,
where all the DCT coefficients are averaged to generate the
fused all-in-focus image. This technique does not exploit the
relationship between focused and defocused regions based
on the DCT coefficients. Degree of focus which is not used
in DCTav, is a measure of sharpness that reflects the high
frequency components of an image block in the DCT domain.
Considering the importance of focus, a contrast based on the
mean amplitude over a frequency band in an image block is
proposed. In the fused image, the DC coefficients are aver-
aged, whereas the AC coefficients corresponding to larger
contrast value are chosen. Including the above proposals,
a number of novel approaches have been proposed and listed
in [17], where the author has shown multiple ways to exploit
the DCT coefficients for image fusion. In DCT+AC-Max
(DCTma), the fused image is generated by choosing the AC
coefficients of larger magnitude among the input images.
For the DC coefficient in the fused image, the DC values of
the input images are averaged. In DCT+Contrast-Modified
(DCTch) and DCT+AC-Max-Modified (DCTah), the DC
along with the lowest frequency coefficients are averaged
in the fused image. The rest of the coefficients from input
images are chosen based on high contrast value for DCTch
and based on the magnitude of AC coefficients for DCTah.
In DCT+Energy-Max (DCTe), the author has proposed the
energy of the frequency band of the DCT coefficients as the
measure, and the DCT coefficients corresponding to higher
frequency band energy are selected in the fused image. But
none of the above proposed techniques include spatial infor-
mation of the image.
Haghighat et al. [18], [30] have shown that the vari-

ance in a local spatial neighbourhood is the same as the
variance of normalized DCT coefficients. Such a formu-
lation generates the result as in the spatial domain with-
out doing spatial domain computations. Based on this,
the authors have proposed two technqiues DCT+Variance
(DCTv) and DCT+Variance+CV (DCTvc) [18]. The for-
mer approach fuses images based on the variance of nor-
malized DCT coefficients, whereas the approach DCTvc
includes a consistency verification in DCTv [18] for fusion.
Cao et al. [19] formulated the computation of the spatial
frequency in the DCT domain and used it for multi-focus
image fusion. Based on the spatial frequncy in the DCT
domain, they proposed DCT+SF(DCTs) and DCT+SF+CV
(DCTsc) [19]. The former approach fuses images based on
the spatial frequency in DCT domain, whereas the latter
includes a consistency verification [19] in DCTs for fusion.
Later Vakaimalar et al. [21] suggested Min-Max normal-
ization on the DCT coefficients while performing fusion
based on spatial frequency. Amin-Naji et al. [22] proposed
a multi-focus image fusion technique which fuses the images
based on the geometric mean of the largest five eigenvalues
obtained through the singular value decomposition (SVD)
on the input blocks in DCT domain. In [20], the authors
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proposed four approaches, namely DCT+EOL, DCT+VOL,
DCT+Corr and DCT+Corr_Eng for multi-focus fusion.
In DCT+EOL and DCT+VOL, the authors proposed the use
of the energy of Laplacian and the variance of Laplacian
for focus measure computation. Focus measure based on
the correlation coefficient between image blocks in DCT
domain is shown to perform well in multi-focus image
fusion [23]. The authors in [20] proposed DCT+Corr and
DCT+Corr_Eng, which use the correlation coefficient and
the energy correlation coefficient between source blocks and
artificially blurred blocks as the focus measure. Further, con-
sidering existing consistency verification in the approaches,
the authors showed that their techniques were superior in
performance. Moreover, the authors also suggested repeated
consistency verification for better consistency, and therefore,
better performance.

IV. PROPOSED FOCUS MEASURE
In an all-in-focus system, the crucial part is to fuse the most
informative and relevant information, that is, the focused
areas in multiple images. An appropriate focus measure
determines the focused area based on sharpness quantifica-
tion [25]. As mentioned already, the sum of modified Lapla-
cian (SML) is such an efficient focusmeasure which is known
to perform well.

The application of ∂2

∂x2
+

∂2

∂y2
on a 2D signal F is known as

the Laplacian operation, which involves double derivatives
on F in both the x and y directions. If such an operation gen-
erates responses of opposite polarities in the two directions,
the overall response gets diminished. As the magnitude of the
responses in the two directions quantify the amount of focus,
Nayar et. al. [25] proposed the sum of modified Laplacian
(SML) to measure focus as follows

SML(x, y) =

∣∣∣∣∣∂2fx,y∂x2

∣∣∣∣∣+
∣∣∣∣∣∂2fx,y∂y2

∣∣∣∣∣ (15)

We extend it for use with N × N 2D signal and denote the
measure as SMLL defined using our N × N L operator. Note
that SMLL is the additive response of Rr and Rc, which are
defined in (6), where P is to be replaced by L. In this case
(using L) the responses (R′r and R

′
c) are as follows

R′r = LF

R′c = FLT (16)

where R′r represents
∂2F
∂x2

and R′c represents
∂2F
∂y2

for N × N
block signal F. Now, let us define SML using L operator for
N × N block in DCT domain as SMLDCTL given by

SMLDCTL =

∑
|DCT (R′r)| + |DCT (R

′
c)| (17)

where the summation
∑

(.) is over all the matrix elements
yielding a single value. combining (16), (17), and L = LT,
we have

SMLDCTL =

∑
|DCT (LF)| + |DCT (FL)| (18)

Now DCT (LF) = DCT (L)DCT (F). As DCT (L) is a
diagonal matrix having non-negative diagonal values, we will
have |DCT (R′c)| = |DCT (F)|DCT (L) and |DCT (R

′
r)| =

DCT (L)|DCT (F)|. Therefore, SMLDCTL reduces to

SMLDCTL =

∑
DCT (L)|DCT (F)| + |DCT (F)|DCT (L)

(19)

Now, DCT (LF) is T1 in (13) and DCT (FL) is T2 in (14).
Combining expressions of (13), (14) and (19), we have,

SMLDCTL =

N∑
i=1

λN+1−i,N+1−i

N∑
j=1

|f Di,j |

+

N∑
i=1

λN+1−i,N+1−i

N∑
j=1

|f Dj,i |

=

N∑
i=1

λN+1−i,N+1−i

N∑
j=1

|f Di,j | + |f
D
j,i | (20)

From the above expression, we see that the focus measure
is nothing but a weighted sum of the absolute values of the
DCT block coefficients, where the weights are the eigen-
values of L. From our formulation in (20), we infer that
SML based focus measure computed in the spatial domain
can be directly represented in the DCT domain. Moreover,
as discussed in Section II-B, the formulation of (20) reduces
the hardware-unfriendly multiplication operations from 2N 3

to just N .
Fixed point operations are always hardware-friendly over

floating point operations. To consider fixed point opearation
in the DCT domain, Binary DCT [31], optimized Integer
DCT [32], and efficient Integer DCT [15], [33] are employed
in compression/coding framework. Inspired by this, we pro-
pose to compute the focusmeasure on the integer valued DCT
coefficients. To further improve on hardware-friendliness,
we modify expression (20) and propose the following as our
focus measure (FM)

FM =

N∑
i=1

λoN+1−i,N+1−i

N∑
j=1

|f oi,j| + |f
o
j,i| (21)

where 3o and Fo are the nearest integer values of 3
and FD, respectively. To summarize, our focus measure is
hardware-friendly for the following reasons.

1) For an N × N block, the focus measure computa-
tion requires N integer multiplications compared to
N 3 floating point multiplications required in DCT+SF
[19] and DCT+SF+CV [19].

2) In our formulation of (21), the weights and modified
DCT coefficients are all integer valued.

Equation (21) can be represented as follows

FM =
N∑
i=1

N∑
j=1

(moi,i + moj,j)|f oi,j| =
∑

Mo
|Fo| (22)
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whereMo is the diagonal matrix which is the nearest integer
values of M defined in (12). The diagonal terms of Mo are
moi,i = b(λN+1−i,N+1−i)e, where be indicates rounding to
nearest integer. Wo has the following properties which are
beneficial for focus computation [10]

1) Weight corresponding to the DC element (f o1,1), that is
wo1,1 = λN ,N = 0, as L is a positive semi-definite
matrix.

2) Due to the round off operation to the nearest integer,
weights corresponding to the lower frequency compo-
nents (in Fo) become 0. For example, if we consider
a signal block size 8 × 8 for processing, we have
wo1,2 = bλN−1,N−1e = 0, wo2,1 = bλN−1,N−1e = 0
and wo2,2 = b2× λN−1,N−1e = 0. So, woi,j = 0, for
i ≤ 2 and j ≤ 2, which correspond to lower frequencies
with woi,j for i > 2 and j > 2 corresponding to high
frequencies.

3) All the weights are integer-valued, and weights
either increase or remain the same (monotonically
non-decreasing function) with increasing frequency.

As mentioned already, it is well understood that when an
image area is not focused, it is blurred. Such areas contain
substantiallymore low frequency content than high frequency
ones. On the other hand, when an area (except smooth area)
is focused, it is comparatively sharper, comprising of high
frequency content. Our focus measure exactly takes these
aspects into account. First two properties of Wo basically
suggest that the influence of blurriness is discarded, and the
third property shows that sharpness is included with the high
frequencies getting higher weights.

V. PROPOSED MULTI-FOCUS IMAGE FUSION
As mentioned earlier, VSN adopts image compression or
video coding for huge visual data to be transmitted. Figure 1
shows a schematic diagram of an all-in-focus system for VSN
[16], [18], [19], where the framework considers DCT-based
compression technique on 8 × 8 image/video frame blocks.
Similar to [18], [19], let us consider the JPEG encoder
framework, where the input image is divided into 8 × 8
non-overlapping blocks. Then, for an 8-bit image, levels
in the image are shifted from [0-255] to [-128-127], after
which block DCT transformation is performed. The DCT
coefficients are quantized with a pre-defined quantization
matrix. The quantized DCT coefficients are then scanned in
a zigzag fashion for the application of run-length coding.
Finally, the coded DCT coefficients are sent in the form
of a bitstream to the receiving end. At the receiving end,
the order of the processes is reversed, that is, decoding of
the bitstream, dequantization, inverse DCT operation, and
level shifting operation in that order are carried out. In such
a compression framework for VSN application [18], [19],
a multi-focus image fusion operation on DCT coefficients is
the best suited one.
For simplicity, we will explain the fusion of two images/

video frames, and an extension to multiple images/video

FIGURE 1. A process flow diagram of a general (e.g. JPEG) compression
framework combined with multi-focus image fusion. Part of the
figure enclosed in dashed block is the added module required for
multi-focus image fusion.

frames is straightforward. Our proposed approach consists
of three modules, namely, estimation of a decision map for
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FIGURE 2. Initial and refined decision maps generated in our fusion approach to get the fused output.

fusion through our proposed focus measure, refinement of
the decision map based on a spatial neighborhood relation,
and finally, the fusion based on the refined decision map. The
modules of the proposed approach are elaborated below.

A. COMPUTATION OF FOCUS MEASURE
The received encoded bitstream of the two images are first
decoded and then dequantized. For the input images, say A
and B, let us consider the (x, y)th block as Ax,y and Bx,y,
respectively. Then, our focus measure (FM) is computed
for both the blocks using (21). Let us denote the resulting
FM values as FMA

x,y and FMB
x,y for Ax,y and Bx,y blocks,

respectively. Note that a higher value of FM for a blockmeans
that it is more focused (less out of focus).

B. ESTIMATION OF INITIAL DECISION MAP
In the decision map, for each block, a decision is assigned
in the form of +1/−1, where +1 indicates that at the time
of fusion, the block from Ax,y needs to be selected, whereas
−1 indicates Bx,y needs to be selected. We generate the initial
decision map (DM ) as follows,

dMx,y =

{
+1, FM_Ax,y ≥ FM_Bx,y
−1, FM_Ax,y<FM_Bx,y

(23)

Note that the above decision rule does not allow any provision
of ambiguous case, that is, a case where there may be confu-
sion of belongingness to a particular class. Moreover, the map
DM takes the decision based only on the focus measure. So,
this initial decision map may suffer from spatial inconsis-
tencies. For example, it may happen that a block belongs to
a particular class, whereas most of its surrounding blocks
belong to the other class. Thus, a refinement is required,
considering local spatial consistency.

C. REFINED DECISION MAP
Inconsistencies in the initial decision map may lead to gener-
ation of unwanted artifacts in the output image. The common
consistency verification which is adopted in a few recent
DCT based all-in-focus system is majority filter [10], [18],
[19], [34]. In it, the majority in the neighborhood decides the
class belongingness of the center being operated on. Some-
times [18] such an operation is carried twice sequentially
for better consistency in the decision map, and therefore,
we also do so but in a different manner. However in our
case, we do a moving summation operation on the initial
decision map to generate a modified decision map followed
by another moving summation operation on the sign values
of the modified decision map to generate the final refined
decision map. Therefore, the refined decision map RM is
obtained as follows

rMi,j =
i+m∑

x=i−m

j+n∑
y=j−n

dMx,y (24)

rMi,j =
i+m∑

x=i−m

j+n∑
y=j−n

sign(rMx,y) (25)

where we consider, the neighboring (8-neighbor) blocks
around the current central block of operation to incorpo-
rate the local spatial influence. The above operations in our
refined decision map are computationally simple as elab-
orated in Section VI-C. Figure 2 shows examples of the
decision maps.

D. FUSION
The inconsistencies in the initial decision map have now been
handled by the refinement operation. Then, based on the
refined decision map, we fuse the images choosing a block
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either from A or B. So, the fusion is as follows,

Oi,j =

{
Ai,j, rMi,j > 0

Bi,j, rMi,j < 0
(26)

Finally, the resulting DCT coefficients are quantized and
coded, after which they are sent in form of the bitstream to
receiving end, as mentioned earlier.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
To analyze the effectiveness of our approach, we com-
pare the proposed approach with existing technique appli-
cable for VSN such as DCTav [16], [17], DCTcm [16],
[17], DCTma [17], DCTe [17], DCTah [17], DCTch [17],
DCTv [18], DCTvc [18], DCTs [19] and DCTsc [19],
DCT+SVD [22], DCT+SVD+CV [22], DCT+EOL [20],
DCT+EOL+CV [20],DCT+VOL [20], DCT+VOL+
CV [20], DCT+Corr_Eng [20] and DCT+Corr_Eng+
CV [20]. For our approach, we present results using only
the initial decision map (Proposed) and using the refined
decision map (Proposed+CV). We further compare our
approach with a few latest generic multi-focus image
fusion techniques that represent the state-of-the-art such as
MFCNN [37], MFGFDF [38], MFRW [39], MADCNN [40]
and ECNN [41].

First, we perform quantitative and subjective evaluation
with multi-focus image fusion techniques for VSN. For
quantitative evaluation, we perform no-reference evaluation,
where outputs are evaluated with standard no-reference mea-
sures, as the ground truths are not available. Then, we perform
a computation time evaluation on three image sizes with
recent state-of-the-art techniques. For subjective evaluation,
we present the visual comparison of the output images gen-
erated by the different techniques. We further present the
initial and refined decision maps generated by the recent
state-of-the-art techniques and our approach. Finally, we dis-
cuss the hardware friendliness and computational simplicity
of the proposed approach, which make it suitable for VSN.
In addition, we evaluate our approach quantitatively and
qualitatively comparing it to the state-of-the-art and the latest
generic multi-focus image fusion techniques.

A. QUANTITATIVE EVALUATION
As the ground truths of actual multi-focus images are not
available, most of the techniques rely on evaluating the
algorithm based on standard no-reference measures [28],
[42]–[49]. Therefore, we evaluate the performance of the
approaches on the standard multi-focus image database pro-
vided by the authors in [35] and Lytro [36] based on following
standard no-reference quality measures for image fusion:

• FMI (QFMI ) [43], [44]:
FMI of Haghighat et al. is an improved version of the
widely accepted mutual information based measures for
image fusion given by [50] and [51]. FMI measures the
amount of information transferred from each of the input
images to the fused image.

• Xydeas and Petrovic measure (QAB/F ) [45]:
Xydeas and Petrovic have proposed a no-reference qual-
ity measure, which includes the universal quality index
of Wang and Bovik [52]. The measure computes the
amount of gradient information (edge) transferred from
each of the input images to the fused image. The mea-
sured value ranges from 0 to 1, with 0 indicating the
worst result and 1 the best fused result.

• Pellia and Heijmans measure (QW ) [46]:
Pellia and Heijmans have proposed a no-reference qual-
ity measure, which also includes the universal quality
index of Wang and Bovik [52]. The measure computes
the amount of salient information transferred from each
of the input images to the fused image without intro-
ducing distortion. The measure also includes similarity
index [53] and human visual system sensitive edge infor-
mation. Higher the value of the measure, better is the
fused output.

• Yang et al. (QY ) [47]
Yang et al. have proposed an image fusion quality mea-
sure, where complementary or conflicting regions of
the source images are selected from redundant regions
and structural similarity feature of SSIM is applied sep-
arately. The measure is shown to be consistent with
human visual evaluations. Higher the value of the mea-
sure, better is the fused output.

• Chen and Blum (QCB) [48]
Chen and Blum have proposed an HVS based measure,
which computes the amount of contrast features trans-
ferred from each of the input images to the fused image.
Higher the value of the measure, better is the fused
output.

• Zhao et al. (QP) [49]
Zhao et al. have proposed a phase congruency based
measure, which computes the amount of corner and edge
information transferred from each of the input images to
the fused image. Higher the value of the measure, better
is the fused output.

TABLE 1. Performance comparison of multi-focus image fusion
techniques for VSN based on no-reference quality measures (best result
in bold). Values are the average measures on 18 pairs of multi-focus
images (shown in Figure 3) from the database given by [35].

Table 1 presents the average results obtained for the 18 pairs
of images from the database provided in [35]. One image
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FIGURE 3. Images of database shared by [35] used for evaluation.

FIGURE 4. Images of Lytro [36] database used for evaluation.

TABLE 2. Performance comparison of multi-focus image fusion
techniques for VSN based on no-reference quality measures (best result
in bold). Values are the average measures on 20 pairs of multi-focus
images (Figure 4) from Lytro database [36].

TABLE 3. Performance comparison of multi-focus image fusion
techniques on the image Girl (shown in Figure 9) from [35] based on
no-reference quality measures (best result in bold).

from each pair is shown in Figure 3. We also present the
average results obtained for the 20 pairs of images from the
Lytro database [36]. One image from each pair is shown

TABLE 4. Performance comparison of multi-focus image fusion
techniques on the image Grass (shown in Figure 7) from [35] based on
no-reference quality measures (best result in bold).

TABLE 5. Performance comparison of multi-focus image fusion
techniques on the image Temple (shown in Figure 8) from [35] based on
no-reference quality measures (best result in bold).

in Figure 4. We consider four individual images namely,
Girl, Grass, Temple and Lytro-16 to present their quantitative
performance in Tables 3, 4, 5 and 6. The results show that
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FIGURE 5. Source images: The ‘Newspaper’ pair of images from the database given by [35] and multi-focus image fusion with different techniques.

TABLE 6. Performance comparison of multi-focus image fusion
techniques on the image Lytro-16 from [36] based on no-reference quality
measures (best result in bold).

our ‘Proposed+CV’ outperforms the rest in terms of all the
six measures except in terms of QW and QAB/F in Table 5

TABLE 7. Comparison of CPU processing time (in seconds) of few recent
state-of-the-art multi-focus image fusion techniques (Best in bold and
second best in italic).

and in terms of QW in Table 6 where our ‘Proposed+CV’
performs very close to the best.

The above quantitative evaluation on two databases and
four individual multi-focus image pairs show the superiority
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FIGURE 6. Source images: The ‘Book’ pair of images from database given by [35] and multi-focus image fusion with different techniques.

of our approach. All the techniques are run on Matlab R©

platform in a system with Intel R© Core(TM) i5-4590 CPU@
3.30 GHz having 16 GB RAM. Now, we present the com-
putation time comparison on three image sizes with recent
state-of-the-art techniques in Table 7. The result shows that
our approach with the initial decision map (Proposed) is
faster than the rest of the recent state-of-the-art techniques.
It also shows that Proposed+CV is better than all the other
techniques shown here except for our approachwith the initial
decision map (Proposed). It further shows that the superiority
of our approach is more evident with the increase in image
size.

B. SUBJECTIVE EVALUATION
In Figure 5, 6, 7, 8, 9 and 10, we perform subjec-
tive evaluation of six standard images, namely, Newspaper,
Grass, Temple, Girl, Book, and Pepsi, respectively, from the

standard multi-focus image fusion database [35]. We com-
pare our approach with best performing and recent/state-of-
the-art techniques like DCTv [18], DCTvc [18], DCTs [19]
and DCTsc [19], DCT+SVD [22], DCT+SVD+CV [22],
DCT+EOL [20], DCT+EOL+CV [20], DCT+VOL [20],
DCT+VOL+CV [20], DCT+Corr_Eng [20] and DCT+
Corr_Eng+CV [20]. ‘Newspaper’ is one of the critical image
pair where our ‘Proposed’ performs as good as or better
than other techniques without consistency verification (CV).
Further, the ‘Proposed+CV’ performs as good as or better
than other techniques with or without consistency verifica-
tion (CV). ‘Book’ is another critical image pair, where we can
see that our approach performs the fusion properly. We can
see that our approach with consistency verification (CV) is
better than a few approaches like DCTvc, DCTsc, etc., and
produces less artifacts (See the text ‘terms’ in the image).
A similar performance can be seen from the results of other

165730 VOLUME 8, 2020



S. K. Dhara et al.: Hardware-Friendly Laplacian-Based Multi-Focus Image Fusion in DCT Domain for VSN

FIGURE 7. Source images: The ‘Grass’ pair of images from the database given by [35] and multi-focus image fusion with different techniques.

test image pairs, where our approach performs as good as or
better than the rest of the techniques.

We present comparative subjective results of the initial
and final maps generated by recent/state-of-the-art tech-
niques including ours in Figure 11. Note that the final deci-
sion map of our approach and DCT+SVD+CV are binary,
as both perform fusion selecting a block from either of the
two images, whereas DCT+EOL+CV, DCT+VOL+CV and
DCT+Corr_Eng+CV have gray final maps as the selection
is either a block in one of the images or an average of the
two. The figure shows that our decision maps determine the
focused area with limited noise and initial and final maps are
as good as or better than state-of-the-art techniques.

C. HARDWARE-FRIENDLY SOLUTION
Quantitative and subjective evaluation show that our
approach is as good as or better than the other techniques.
But as discussed in Sections I and II, VSN demands a
computationally simple, hardware-friendly solution, which
is our main motivation.

As shown in Section IV, our focus measure computa-
tion requires N fixed point multiplications over N 3 float-
ing point multiplications as for DCTs, DCTsc on N × N
block. Moreover, our focus measure does not require N 2

floating point squaring operations to calculate FD
2
(See

expression (21) where FD represents the DCT transformed
version of spatial domain signal F) as required in DCTs
or DCTv. On the other hand, techniques like DCT+EOL,
DCT+VOL and DCT+Corr_Eng require six non-diagonal
matrix multiplication operations. Further, DCT+VOL and
DCT+EOL require floating point element wise squar-
ing operations and DCT+Corr_Eng requires floating point
element-wise multiplications, divisions, square root oper-
ations. DCT+SVD requires singular value decomposition
whose computational complexity is in the order of N 2.
Thus, in comparison to the existing state-of-the-art tech-
niques, our approach requires N fixed point multiplica-
tions. Such reduction is a huge benefit in terms of energy
consumption, and therefore, suits resource-constrained
VSN.
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FIGURE 8. Source images: The ‘Temple’ pair of images from the database given by [35] and multi-focus image fusion with different
techniques.

Apart from the focus measure, the state-of-the-art fusion
techniques involve consistency verification through a deci-
sion map. The refinement of the decision map is performed
through a filtering operation, and the final decision map is a
non-binarymap for techniques like DCTsc, DCT+EOL+CV,
DCT+VOL+CV and DCT+Corr_Eng+CV. On the other
hand, our modified decision map (See Section V-B)
computation is filtering operation, which requires integer
multiplication and addition on the initial decision map.

The refined decision map computation requires a sim-
ilar filtering operation on the sign information of the
modified decision map. The last part of the process is
fusion, where techniques like DCTsc, DCT+EOL+CV,
DCT+VOL+CV, and DCT+Corr_Eng+CV either select
a block from two images or average two blocks to
generate the fused image. But, our Proposed+CV (See
Section V-D), only requires to perform move operation based
on the sign bit of the decision map elements. Therefore,

165732 VOLUME 8, 2020



S. K. Dhara et al.: Hardware-Friendly Laplacian-Based Multi-Focus Image Fusion in DCT Domain for VSN

FIGURE 9. Source images: The ‘Girl’ pair of images from the database given by [35] and multi-focus image fusion with different techniques.

each module of our proposed approach is computation-
ally simple and is very much hardware-friendly espe-
cially when compared with techniques like DCTs, DCTsc,
DCTv, DCTvc, DCT+SVD, DCT+SVD+CV, DCT+EOL,
DCT+EOL+CV, DCT+VOL, DCT+VOL+CV, DCT+
Corr_Eng, and DCT+Corr_Eng+CV.

To summarize our observations, quantitative and subjective
evaluations show that our approach is as good as or better than
state-of-the-art techniques. Computation time comparison
shows the superiority of our approach. The hardware-friendly
solution in DCT domain indicates that our proposed tech-
nique is best suited for resource-constrained VSN compared
to other state-of-the-art techniques.

D. COMPARISON WITH GENERIC MULTI-FOCUS
IMAGE FUSION
VSN demands real-time performance with hardware-friendly
implementation in the DCT domain. There is a plethora

of techniques [37]–[40], [54]–[56] proposed for generic
multi-focus image fusion, which are not DCT based.
These techniques are generally computationally intensive
and require considerably more time to process. Few
of the techniques also require graphical processing unit
(GPU). Thus, most of these techniques are not suitable
for VSN.

We perform no-reference based quantitative evaluation
of a few latest generic multi-focus image fusion tech-
niques that represent the the state-of-the-art such as
MFCNN [37], MFGFDF [38], MFRW [39], MADCNN [40]
and ECNN [41], which are presented in Tables 8 and 9,
analogous to that in Tables 1 and 2, respectively. Consider
the evaluations shown in Tables 8 and 9. From the tables
we see that barring one existing technique for each database,
no single technique performs the best with respect to more
than one no-reference quality measure. Our approach gives
the best QAB/F performance for the database provided in
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FIGURE 10. Source images: The ‘Pepsi’ pair of images from the database given by [35] and multi-focus image fusion with different techniques.

[35] and QFMI performance for Lytro database. We also
show quantitative evaluation on an individual image from
Lytro in Table 10. We see similar performance (except MFRF
performs better in two of two measures). Hence, we can
infer that performance of our approach is comparable to the
state-of-the-art in generic multi-focus image fusion, in spite
of being fast, hardware-friendly and computationally simple,

andmost importantly, suitable for VSN.We also perform sub-
jective comparison with the generic techniques and present
the results in Figs. 12, 13 and 14. The results shows that
the all the generic multi-focus image fusion techniques per-
form similar. The results also show that our ‘Proposed+CV’
performs similar to the generic multi-focus image fusion
techniques.
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FIGURE 11. Initial and refined decision maps generated by different approaches.

FIGURE 12. Source images: Lytro-08 and multi-focus image fusion with different techniques.

We compare computation time (in terms of CPU time)
of our approach with that of generic multi-focus image
fusion techniques such as MFCNN [37], MFGFDF [38] and
MFRW [39], which are presented in Table 11. The tech-
niques including ours are run on Matlab R© platform in a

system of Intel R© Core(TM) i5-4590 CPU @ 3.30 GHz
having 16 GB RAM. MADCNN and ECNN are not con-
sidered as their codes are not available for the said plat-
form. The results show that time taken by the generic
techniques is considerably high. It is also evident that
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FIGURE 13. Source images: Lytro-15 and multi-focus image fusion with different techniques.

FIGURE 14. Source images: Lytro-16 and multi-focus image fusion with different techniques.

in the Matlab platform with the said specification our
approach can fuse video frames with 256 × 256, 512 ×
512 and 1024 × 1024 size at 62 fps, 16 fps and 4 fps,
respectively.

It is clear that our approach takes very much less
time with hardware-friendly solution in DCT domain for
VSN and it produces results comparable to the state-of-
the-art multi-focus fusion approaches like MFCNN [37],
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TABLE 8. Performance comparison of multi-focus image fusion
techniques for VSN based on no-reference quality measures (best result
in bold). Values are the average measures on 18 pairs of multi-focus
images (shown in Figure 3) from the database given by [35].

TABLE 9. Performance comparison of multi-focus image fusion
techniques for VSN based on no-reference quality measures (best result
in bold). Values are the average measures on 20 pairs of multi-focus
images (Figure 4) from Lytro database [36].

TABLE 10. Performance comparison of multi-focus image fusion
techniques on the image Lytro-16 based on no-reference quality
measures (best result in bold).

TABLE 11. CPU time (in seconds) comparison with generic multi-focus
image fusion.

MFGFDF [38], MFRW [39], MADCNN [40] and
ECNN [41].

VII. CONCLUSION
The paper has shown that the DCT basis function and the
block Laplacian operator are related in such a way that
DCT operation on block Laplacian operator with proper
boundary condition generates a diagonalmatrix. The property
is exploited to propose a novel focus measure, which can
directly operate on the DCT coefficients to detect the focused
region of an image. Such a solution is well suited for visual
sensor network (VSN). Therefore, we propose an approach
for multi-focus images or video frames in DCT based image
or video coding framework for VSN.

The quantitative and qualitative evaluations show that our
proposed approach outperforms all the techniques designed

for VSN. Moreover, a simple and hardware-friendly fast
approach of our approach is suitable for resource-constrained
VSN. In addition, our approach performs similar to the state-
of-the-art generic techniques for multi-focus image fusion.

APPENDIX A
To Prove: If A = XZ, where X and Z are two anti-diagonal
matrices of size N × N , then A is a diagonal matrix whose
diagonal element ai,i = xi,N+1−i × zN+1−i,i

Proof: For anti-diagonal matrices X and Z, an element
of xi,j or zi,j can be defined as follows

xi,j or zi,j=

{
gi,j, j=N+1−i, ∀gi,j ∈ {R,C}
0, elsewhere

(27)

To avoid confusion, let us assume that gi,j is a nonzero
entry. So, the above matrices have values at the (i,N + 1− i)

index point. Now, forA = XZ, ai,j =
N∑
n=1

xi,n × zn,j.We know

that xi,j = 0 except at the index (i,N + 1− i). Therefore, ai,j
can have a nonzero value xi,N+1−i × zN+1−i,j. But zi,j = 0
except at the index (i,N + 1 − i). This implies that we only
can have nonzero values iff i = j. Therefore, ai,j = 0
except for i = j, which implies A is a diagonal matrix having
ai,i = xi,N+1−i × zN+1−i,i. It is implied that the proof is true
for all values of gi,j.

APPENDIX B
To Prove: If B = YZ, where Y is diagonal matrix and Z is an
anti-diagonal matrix of size N×N , then B is an anti-diagonal
matrix, whose anti-diagonal element bi,N+1−i = yi,i ×
zi,N+1−i.

Proof: To avoid confusion, let us assume that diagonal
term of the diagonalmatrixY is nonzero. Thus, yi,j = 0 except

for i = j. Now, forB = YZ, any element bi,j =
N∑
n=1

yi,n × zn,j.

As yi,j = 0 except i = j, bi,j can have a nonzero value when
i = j. On the other hand, zi,j = 0 except at the index (i,N +
1− i). Therefore, bi,j will have a nonzero value only at index
(i,N+1−i). This impliesB is an anti-diagonal matrix having
bi,N+1−i = yi,i × zi,N+1−i. It is implied that the proof is true
for any values of diagonal terms.

APPENDIX C
To Prove: If C = XYZ, where X and Z are two anti-diagonal
matrices and Y is a diagonal matrix of size N × N , then C
is a diagonal matrix such that the element ci,i = xi,N+1−i ×
yN+1−i,N+1−i × zN+1−i,i

Proof: From the proof in Appendix B, B = YZ is an
anti-diagonal matrix with bi,N+1−i = yi,i × zi,N+1−i. Again,
X is an anti-diagonal matrix and from Appendix A, we can
say that C is a diagonal matrix, where C = XB and ci,i =
xi,N+1−i × bN+1−i,i. Plugging bi,N+1−i = yi,i × zi,N+1−i
in ci,i = xi,N+1−i × bN+1−i,i, we have, ci,i = xi,N+1−i ×
yN+1−i,N+1−i × zN+1−i,i.
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