IEEE RELIABILITY SOCIETY SECTION

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 3, 2020, accepted September 2, 2020, date of publication September 7, 2020,

date of current version September 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3022016

System Modeling and Fault Tree Analysis

Based on AltaRica

ZHEN LI"'"2, ZHENGQI JIANG "2, DONGSHENG WANG 23, (Member, IEEE),

AND ZHAOBIN WANG 1.2

1School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China
ZReliability and System Engineering Open Group, Jiangsu University of Science and Technology, Zhenjiang 212003, China
3School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Corresponding author: Zhen Li (justlz@just.edu.cn)

This work was supported in part by the project collaborated with China Aero Poly Technology Establishment under Grant 2014DX078F,
in part by the National Natural Science Foundation of China under Grant 61702234 and Grant 51977101, and in part by the Jiangsu
University of Science and Technology, Reliability and System Engineering Open Group (JRSOG) Open Fund under Grant 2019003.

ABSTRACT With the increasing scale and complexity of system, it is very necessary to analyze the safety of
complex system. Fault tree is an effective method to safety analysis. However, traditional fault tree relies on
manual construction and analysis. When fault nodes and systems are complex, the efficiency and correctness
of manual analysis can hardly be guaranteed. To the varied understanding of analysts, it is difficult to ensure
the consistency of failure mode and system architecture due to the different understanding from safety
analysts and system designers. The same node needs fault analysis again in different systems, which has
poor reusability and low efficiency. AltaRica is a fault-oriented Safety Modeling Language. It takes the guard
transformation system(GTS) as its core, describes nodes and faults with a style of reusable object-oriented
language, and describes information of interaction between nodes and systems through interface connections
between nodes and nested systems. Therefore, this paper proposed an automatic system modeling and fault
analysis method and its detailed computer algorithm on single class node, multiple nodes and nodes with
subsystems based on AltaRica. Finally we developed a software prototype and carry out the automatic
modeling and fault analysis in a detailed example. The results showed that the proposed method, algorithm
and software prototype can realize automatic graphical modeling of the system on AltaRica, the automatic
fault analysis is correct and efficient, has reusability of modeling and fault analysis, and greatly improve the
accuracy, objectivity and efficiency of fault modeling and analysis.

INDEX TERMS Safety, reliability engineering, system analysis and design, AltaRica, fault tree analysis.

I. INTRODUCTION

With the rapid development of science and technology,
the integration of system is getting very high, the scale is
getting larger, and the function is getting more complex.
A small fault may cause the whole system failed, leading to
serious safety accidents. Therefore, more and more attentions
have been paid on the system safety.

In safety-critical systems, researchers widely used system
safety modeling and analysis technology [1]. Traditional sys-
tem safety analysis techniques mainly include Markov pro-
cess analysis, FMEA(failure mode effect analysis) [2], and
FTA (fault tree analysis) [3]. These analysis techniques can
provide efficient algorithms and tools. However, the models

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

designed using these forms are far from the specifications of
the system. Therefore, they are difficult, expensive and inef-
ficient to design and maintain throughout the life cycle of the
system. Traditional fault analysis techniques rely too much
on the analysts, and the understanding of system structure by
analysts plays a great role in the construction of fault systems,
which is highly subjective. Nowadays, safety-critical systems
and equipment are more and more complex, so it is difficult to
achieve complete, continuous and error-free analysis process
and results by brains and hands of analysts. Once a change
in the system, it often forces the reconstruction of the fault
model, resulting in a large waste of human and time resource.

At the same time, with the continuous development
of model driven and formal technology, researchers com-
bine safety analysis model with system design model, and
many model-based safety analysis (MBSA) and evaluation

168879

https://orcid.org/0000-0002-6743-4829
https://orcid.org/0000-0002-3531-0127
https://orcid.org/0000-0001-7341-2776
https://orcid.org/0000-0002-3767-8179
https://orcid.org/0000-0002-2673-9909

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

methods emerged with a characters of related modeling lan-
guage and automation [4]. MBSA techniques include Failure
Propagation and Transformation Notation (FPTN) [5], Hier-
archically Performed Hazard Origin and Propagation Studies
(HiPHOPS) [6] and AltaRica language [7].

Jean-Yves Choleya and etc derived from previous MBSE
and MBSA integration studies, performed mainly on M2M
and M2T transformations, and appropriate SysML metamod-
eling, proposed CPS safety analysis methodology with an
aeronautic industrial case study [8].

Model Checking language and tool such as NuSMYV, Spin
and AADL are integrated to MBSA due to their powerful
abilities of searching the model space. Lu Chen, Jian Jiao and
etc put forward a failure analysis method using NuSMV to
manually transform the counterexample into FMEA or FTA
result [9]. There are some limitations of model checking in
MBSA, one as only by dynamic operation, partial informa-
tion of FT or FM can get, because when counterexample
occurs, the operation will stop the analysis which is ongoing.
The other limitation is there still has no mature tool to support
all this process automatically which is mainly divided into
relatively independent parts of system and safety modeling,
translating into model checking language, model checking,
safety analysis and FT generation based on counterexample
manually.

Petri Nets (PNs) are a formal graphical and mathematical
modelling tool which is appropriate for specifying and ana-
lyzing the behavior of complex, distributed and concurrent
systems. Many papers related to PNs and its extensions are
summarized in [10] including Bayesian network and exten-
sions of PNs. PNs originated from a mathematic model and
method to analyze system with characteristics of resource
production and consuming, condition trigger, concurrence
and confliction, and etc. It is not a specific model to deal
with fault and safety, and when be used and developed with
computer science PNs have some extensions as Stochastic
PNs, Time PNs, Colored PNs, Temporal PNs, PNs related
to model checking language, and etc. Now PNs is not an
independent modeling method, it is tightly combined with
computer science and the core is formal automata. So the PNs
is suitable to model system behavior and not specific in safety,
it can be used in safety analysis if the system is safety-critical.

Altarica is a formal language developed by the computer
science laboratory of Bordeaux jointly with industries part-
ners. The purpose of creating AltaRica language is to over-
come the shortcomings of traditional formal methods which
deviate from the research system, such as fault tree, Markov
chain, and Petri net. AltaRica language is a formal, object-
oriented modeling language. It can describe the functional
behavior of the system under normal conditions and the
failure behavior of the system.

Later with the cooperation of academia and industry,
AltaRica’s capability of system safety assessment has been
well strengthened. Using AltaRica model can truly reflect
the structure of the system, the operating mechanism of
the system, and has a good reusability on its style of

168880

object-oriented language. Many companies have used AltaR-
ica for safety assessment analysis in their important projects,
including Alston Railway, Total, Schneider Electric, and
France Telecom and so on. AltaRica has became the standard
of model-based safety assessment in European industry.

The structure of the AltaRica model has a strict grammat-
ical definition, which can describe the system structure and
generates the safety model according to the fault propagation
logic of the system [11]. Based on this, the FTA method can
be combined with AltaRica to implement safety analysis and
generate fault tree.

As the inventors of AltaRica, Batteux M, Prosvirnova T
and Rauzy A illustrated the whys and wherefores of the
fixpoint assertion mechanism introduced in AltaRica 3.0 to
perform changes of states in literature [12]. Based on the key
GTS(Guarded Transition System) of AltaRica, it can increase
expressive power and in particular the ability to handle looped
systems is obtained without any significant overhead for data-
flow models by using the fixpoint mechanism introduced in
AltaRica 3.0.

In system modeling and analysis using AltaRica, there
are some researches on it. Issad M, Kloul L and Rauzy A
proposed a scene-oriented modeling approach which relies
on semi-formal representation to describe the scene and relies
on the formal execution model described in the AltaRica
3.0 modeling language [13]. In literature [14], a method
was described that extends the AltaRica model developed
for safety analysis with time information and provides a
tool to interpret the correctness of time safety conditions.
Michael Lipacewski, Frank Ortmeier, and et al compared
the SAML and AltaRica and pointed out that AltaRica is
more convenient to large system modeling and easier to be
reused due to the object-oriented style [15]. Brunel ez al. [16]
introduced the principles of the AADL and AltaRica
languages and the connections between them, proposed
a conversion procedure from AADL to AltaRica, and
applied its prototype to the simplified flight control sys-
tem of the drone. Literature [17] proposed the use of
AltaRica language to build electrical and electronic sys-
tem models protected by first-order and second-order
safety mechanisms, and clarified that the model is help-
ful to analyze the behavior of the system and determine
the validity areas of simpler models. Duo and Li [18]
proposed a practical safety modeling methodology based on
Altarica, which contains three phases like information collec-
tion, model construction and model V&V, with an example
of a hydraulic system. Long G and Liang A proposed a fault
modeling and analysis method for complex systems. Taking
the heating and cooling backup system and the reconstruction
system as examples, the accuracy of the fault logic conversion
process is verified in [19].

In fault analysis and fault tree generation from AltaR-
ica, there are some researches on it. Humbert S, Seguin C,
Castel C, and et al took a part of the control system of a
helicopter turboshaft engine as the research object, extracted
requirement from the system fault propagation model by

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

using AltaRica for modeling and analysis [20]. Batteux M,
Prosvirnova T and Rauzy A, et al mentioned the trans-
form GTS model into fault tree, which is, to transform
state/transition model into a set of Boolean formulas, and
then verifies the safety of AltaRica system with relevant
safety assessment tools [21]. In literature [22], Prosvirnova
T and Rauzy A briefly introduced fault tree generation from
independent GTS and simply illustrated the process of getting
one single fault tree from connected nodes without mention-
ing the generation from subsystems and nodes. XiaoXun Li,
ShaoJun Li extracted failure logic relations from Altarica
component models and system models to generate fault trees,
and discussed the fault tree generation method from multiple
nodes in AltaRica [23]. They showed this method in exam-
ple of graphical modeling to connect Altarica nodes in fig-
ures drawn in hand without details of computer algorithm to
implement it [24].

OCAS [25] is the MBSA tool that was accepted by regula-
tory agencies as a basis for certification of safety-critical sys-
tems. Bozzano et al. [26] considered the limitations of OCAS
as no ability to perform an exhaustive space examination
and limitations in in presence of industrial-sized systems
hindering the generation of important artifacts such as Fault
Trees.

Simfia is a software package that, based on the knowledge
and functional analysis of an equipment, product or system,
can be used to analyse and simulate its overall behaviour and
automate R.A.M.S. studies [27]. Fukai Zhang used Simfia
to make the AltaRica model of HUDS visually to achieve
assessing formal safety [28]. In [29], Event—B language
is used to model application layer to check the integrity of
operations modes and AltaRica is used to model dySfunction
of system to solve the problem of dynamic failuret The effi-
ciency and practice of the method are illustrated by analyzing
safety of auto pilot system thmugh Rodin t()01 which is used
for analyzing operational modes of application and Simfia
tool which is used for safety analysis.

In those existed literatures, we have found AltaRica has
been successfully used in system and fault modeling and anal-
ysis [13]-[19], and most of those literatures only proposed the
principle and framework to generate fault tree from assertions
in single or multiple class [20]-[24]. So there are relatively
absence in method to automatically generate and program-
ming realize the safety analysis as FT from complex nested
systems including interaction between nodes and subsystems.
Some papers used OCAS [25], [26] and Simfia [28], [29]
to implement MBSA, but there are some limitations and no
details of how the computer algorithms implemented and no
expansions to nodes and subsystems. The details of realiza-
tion of automatic computer algorithm and tool developing are
absent and not open enough.

This paper studied the grammar and semantics of AltaRica
language, proposed NAltaSys(Nested AltaRica System) to
well support complex system modeling, detailed illustrated
the automatic algorithms including analyzing assertion and
link information in AltaRica models and fault tree generation

VOLUME 8, 2020

from single node, multiple nodes and subsystems, combined
visual modeling techniques with fault logic description abil-
ity of AltaRica language to improve the safety description and
analysis ability of the model, and developed an automated
system fault modeling and analysis tool named SSMA based
on AltaRica to system modeling and automatically generate
system fault tree. The fault tree is convenient to modify and
maintain according to the change of class in AltaRica fault
model. This paper realized the synchronous work of fault
modeling, analysis, modification and maintenance based on
AltaRica, and greatly improved the efficiency of fault model-
ing and analysis of safety-critical systems.

The contents of this paper are arranged as following.
Section I is an introduction of system modeling and analysis,
and the AltaRica with researches related to it. Section II
makes a detailed description of AltaRica language includes
all elements and GTS mechanism in it. Section III intro-
duces the NAltaSys(Nested AltaRica System) proposed by
this paper which will support the system modeling, algorithm
design and code programing to visual software development.
Section IV introduces the algorithm of fault tree generation
from single class, multiple nodes and nodes with subsystem,
and then makes examples for each situation. In Section V,
a detailed example is put forward to prove the correctness of
the algorithm proposed and the tool developed in this paper.
Finally, there comes to the conclusion.

Il. AltaRica MODELING LANGUAGE

AltaRica is a high-level modeling language for safety anal-
ysis. It is based on GTS and its mathematical model [12].
The basic component of the AltaRica model is node which
is an instance of Class. The class and its important parts are
described as:

1) Class: In order to use a box with certain given char-
acteristics (encapsulating a GTS), you need to declare a
class, the type of the box. The AltaRica model is a series
of declarations of classes. Classes can be nested into other
instances of other classes to achieve hierarchical description
of the research system.

2) Domain: Domain has domain name and its states which
normally represent the different state of class.

3) Boolean: The logical type that represents the state of
variables in class.

4) Reset: Represents a reset value of variables in class.

5) Variable: Two types of variables called domain variable
and class variable are in the class. Domain variable represents
the external state of class not limited to Boolean value. Class
variable represent the state of internal variable in class.

6) Flow: Flow is like interface variables, are divided into
input and output flow, which are used to describe the state
of interface variables between class nodes or class node with
subsystem.

7) Trans: Trans is a triple < e, G, P >, which is defined as:
where e is the event marking the transition, G is a Boolean
condition about the state and flow variables, called the Guard
of transformation, P is the action performed by the new state

168881

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

‘ state==WORKING ‘

‘ outFlow:=inFlow ‘

failure repair

‘ state=——FAILED ‘

L outFlow:=FALSE J

FIGURE 1. State transition diagram.

domain PumpState { WORKING, FAILED }
class Pump

PumpState state (init = WORKING);

Boolean inFlow, outFlow (reset = false);

event failure, repair;

transition

failure: state==WORKING -> state:= FAILED,
repair: state==false -> state := WORKING;
assertion

outFlow := if state==WORKING then inflow else false;
end

FIGURE 2. AltaRica Pump model.

calculation of the state variables. When the Guard is satisfied,
trans e : G — P will be triggered.

8) Assertion: A set of constraints on outflows values after
transfer functions occurred.

The state transition diagram of a pump is shown in
FIGURE 1, and its AltaRica model is shown in FIGURE 2.

The model first needs to declare the domain (“Pump-
State’’), namely two symbol constants “‘WORKING’ and
‘FAILED’, of course we can define more than two constants
as you need. Then, declare a class (the type of box), in that
case the GTS is called “Pump”’.

The GTS includes:

(1) a state variable “‘state”, which takes its value in the
definition domain “PumpState” and its initial state is
“WORKING”

(2) two Boolean flow variables ““inFlow” and “outFlow”’,
whose default values are false

(3) two events “failure” and “‘repair”’, each event corre-
sponds to a transition and an assertion that constrains
the value of the variable.

(4) When one event occurs, the state will change in transi-
tion and result in the change of outflow through related
assertion

(5) After change of outflow, it will pass out if connects to
other node or subsystem. When it is false, that means
it is a fault will pass out and the reason is the assertion
related to this outflow.

All state variables are initialized once. Their initial values
are given by the attribute “init”. This attribute describes the
characteristics of state variables. After each conversion is
triggered, the flow variables are updated. Its value is deter-

168882

mined by the assertion or by the default value given by the
attribute “reset”. This attribute describes the characteristics
of flow variables. If the box “Pump” is used alone, *“‘inFlow”’
will be reset to the default value after each conversion trigger.
If it is connected to another box through the “inFlow” and
the pump is working properly, the assertion will be used
to pass the value. The transition marked by event ‘““failure”
triggers only when the state variable ““state” takes the value
of “WORKING”. After the conversion triggers, the ‘“‘state”
value is first set to “FAILED”’, and then the value of the flow
variable is updated.

IIl. NESTED AltaRica SYSTEM MODELING

Complex system has many nodes and subsystems, the fault
information will pass into or come from subsystem. In com-
plex nested system, faults reason hides in the single node
or subsystem and it is very hard to uncover the reasons of
top system faults manually that originate from single node
and subsystem passing by interface. So it is significantly
meaningful to propose a nested system model which can be
transacted by computer, and based on that the algorithm of
automated fault analysis of nested system with related tool
can be developed.

This paper put forward a nested system model based on
AltaRica to well support system and fault modeling with
analysis.

This model called NAltaSys(Nested AltaRica System) is
formally described as:

< InNode, Class, Node, SubSys, Connection, OutNode >,

where:
(1) InNode: InNode is a virtual entry of all input, that

means all input passed to nodes through InNode.

(2) Class: The definition of Class is the same as in the
section II. It have domain, variable, flow, trans, assert
and etc.

(3) Node: Node is an instance of Class which inherits all
properties in Class defined in the section II.

(4) SubSys: SubSys has arecursive definition as < InNode,
Class, Node, SubSys, Connection, OutNode >. It is a
part of whole system which has some nodes or even
subsys in it, and connections among nodes with subsys.

(5) Connection: Connection has the interface information
between nodes or node to SubSys. The fault will pass
or backtrack through connections and obey the mecha-
nism defined in flow and assertion in Class.

(6) OutNode: OutNode is a virtual exit of all output,
which means all output from nodes should pass through

OutNode.
The NAltaSys model is described as in Fig3.

This paper models nested system based on AltaRica and
implemented automatic safety analysis (Fault Tree Analysis).
The Fault Tree Analysis can be done in three situations:

(1) Single Class Node
The basic Fault Tree Analysis is implemented in single
class node. This paper used the information of assert in class,

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

NAltaSys

_ (a
SubSys.S1.inflow=1.outflow(_ In .
/”' | (s2)
\\ 1 N

—] 3.inflow=SubSys.52.outflow
(In Out
N 2.inflow=1.outflow

; ‘/'*\ﬂ,_/&outflow
e 3 inflow=2.outflow—>_ > —
\\ 2 _/

FIGURE 3. Nested AltaRica System.

then scan, cut it and calculate the position of FTA node with
algorithm detailed described in Part A of Section IV.

(2) Multiple Class Nodes

This paper firstly gets the nodes link to OutNode, then
gets the connected interface information bind in links to the
OutNode, and trace back from the inflows to outflows with
assertions bind with them, then recursively trace back to
generate the whole fault tree of multiple class nodes.

(3) Nodes with SubSystem

When implement FTA in nodes with subsystem connected,
this paper firstly gets the nodes link between node and subsys-
tem, then analysis connected interface information between
node and subsystem, and trace back the inflow and outflow
to get the fault information based on the algorithm in (1) and
(2) to generate the whole fault tree of nodes with subsystem.

IV. FAULT TREE GENERATION ALGORITHM

We have known the outflow will pass out if connects to
other node or subsystem. The fault reason is in description
of assertion related to outflow.

In a class, one fault tree to one outflow can be got through
the analysis of the related assertion. The assertion will trans-
acted to construct fault tree. The assertion will be scanned
and cut into fault node automatically by algorithm proposed
by this paper. And then this algorithm will also get the level
that is the position of each fault node. By having got fault
tree node and its position, we will get the whole fault tree of
outflow from GTS in AltaRica.

When an outflow connected to other node or subsystem,
it will pass out the related fault. The information in the link of
node to node or node to subsystem is as an interface. Because
we have known the link information of each outflow, so we
can known how the fault pass out by analysis of the interface.
If we can correctly get the path that outflow which bind the
fault, we will get the whole path that the fault pass out in the
whole system.

So the most important work is to design the computer
algorithm and make the computer automatically implement
the system modeling, assertion analysis of single node, anal-
ysis of link information, automated fault tree analysis and
generation between nodes and subsystems.

Using AltaRica to define a class, we can make the instance
of it repeatedly. We can just connect those instances in

VOLUME 8, 2020

class Classl

Boolean A1,B1// variable

Boolean Y1,X1// inflow

Boolean U1,V1;//outflow

event eAl,cA2,eB1,eB2;

transition

eAl: Al==true ->Al :=false;

eA2: Al==false -> Al = true;

eB1: Bl==true ->B1:=false;

eB2: Bl==false -> B1 := true;

assertion

Ul=if ((Al==false)and(B 1==false))or(Y 1==false)
then false else true;

V1 =if (((Al=false) or (X1=false))) then false else true;
end

FIGURE 4. Details of Class1.

anywhere in the system, we will automatically get the analy-
sis result of whole system because we have known the fault
result of assertion in single node and how it connect by system
modeling and the analysis of the link information between
node and subsystem using the algorithm proposed in this
paper. That is we only need to define a class in which the
variable, inflow, outflow and assertion have been described.
After that, we can use those class to define instance repeat-
edly and to construct the whole system. And we need not
do any additional system analysis but can automatically get
the fault tree analysis of whole system, for we may get the
fault tree in each node and the link information of connected
interface by the algorithm proposed in this paper. Comparing
to traditional fault tree analysis, it is no need to implement
fault tree analysis in node, subsystem and whole system. Once
the system is modeled, it will construct the whole system
fault tree automatically without any additional analysis as in
traditional fault tree analysis.

This paper designed the fault tree generation algorithms
from AltaRica system models include single class node, mul-
tiple nodes, and nodes with subsystems.

A. SINGLE CLASS NODE
Here we make Class1 as an example of fault tree generation
from single class node which is described by AltaRica in Fig-
ure 4.

We get the fault information from assertion “Ul:
if ((Al==false) and (B1==false)) or (Y 1==false)

then false else true”” where:

Ul: an output flow

Al, B1: class variable

Y1: inflow

We find that if the expression

“((Al==false) and (B1==false)) or (Y 1==false)”’ is sat-
isfied, the U will come into false that means it causes the
fault. So we can get the reasons of the fault by the expression
of assertion and can also get the position and preposition of
nodes to be drawn in fault tree.

There are two main steps in Assertion Analysis
Algorithm of Single Class Node.

168883

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

/ MakeAssertionToAssertionArray()

int length=m_strAssertion.GetLength();

char *pAssertion=new char{length+1];
strepy(pAssertion,(LPCTSTR)m_strAssertion);
/Iscan the assertion

int level;//record level of embrace

CString strTemp;// record valid Character String
While(i<=length)

if (pAssertion[i]=='(") level++;//embrace level
else if (pAssertion[i]==")") level--;//embrace level
//if valid character, insert it to strTemp
if(isalpha(pAssertion[i])|[isdigit(pAssertion[i])||(pAssertion[i]=—"_"
)|l(pAssertion[i]="=")||(pAssertion[i]==""))
strTemp.Insert(strTemp.GetLength(),pAssertion[i]); }
/Iwhen “C, €)’, ¢ °, \0’, insert as an AssertionNode
else if((pAssertion[i]=")")||(pAssertion[i]=="(")
I(pAssertion[i]=="")||(pAssertion[i]=="0"))
{

if (!strTemp.IsEmpty())

{ //New Node
AssertionNode node;
node.strElement=strTemp;
node.level=level;
node.isCut=FALSE;
//Adjust Embrace Level
if (pAssertion[i]==")")

node.level=level+1;
else if (pAssertion[i]=='(")
node.level=level-1;
AssertionNodeArray.Add(node);//Add Node
}
)

it

FIGURE 5. Assertion Analysis Algorithm-Step 1.

TABLE 1. Result of assertion scanned, cut with levels.

String Cut Level
Al==false 2
and 1
Bl==false 2
or 0
Y 1==false 1

The first step is to record the valid character string and
calculate its level which is scanned and cut from Assertion
which includes:

(1) Scan, cut and record valid character string of assertion
in single class node
(2) Record the embrace level of each character string
(3) Add to AssertionNodeArray realized by function
MakeAssertionToAssertionArray() in class CAltaRica-
Analyser.
The details of the first step in algorithm is shown in Fig5.

Here are the result of assertion scanned, cut with levels of
each valid string in the Table 1.

The second step is to recursively generate the prepositions
of Expression and Logic Operation nodes will be drawn in
Fault Tree which includes:

(1) Scan the AssertionNodeArray, get the position of first
root node and set its preposition to —1

168884

/ MakeAssertionArrayToFaultTree
int level,minLevelPos;
CString strNode; preposition=-1;
//Get the position whose level is minimum
minLevelPos=GetMinLevelPos(NodeArray);
/[cut into left and right part, set preposition, recursively operation
if (minLevelPos>=0)
{/lget and set current node’s preposition, insert to AssertionNodeTreeArray
AssertionNode node=NodeArray[minLevelPos];
node.prePosition=preposition;
AssertionNodeTreeArray.Add(node);
/Nabel the position ready to use recursive algorithm
int posInsert=AssertionNodeTreeArray.GetSize()-1;}
if((minLevelPos==1)&&(!IsLogicalOperation(NodeArray[0].strEle
ment)))
//if only one expression in left part, insert to AssertionNodeTreeArray
{node=NodeArray[0];
node.prePosition=posInsert;
AssertionNodeTreeArray.Add(node);}
else//recursive algorithm in left part
{ Carray<AssertionNode,AssertionNode> AssertionNodeTreeArrayLeft;
AssertionNodeTreeArrayLeft.SetSize(0,-1);
//Generate NodeArray of left part
for (i=0;i<minLevelPos;i++)
AssertionNodeTreeArrayLeft. Add(NodeArrayli]);
/I recursive algorithm run on left part
MakeAssertionArrayToFaultTree(AssertionNodeTreeArrayLeft,posInsert);}
//if only one expression in right part, insert to AssertionNodeTreeArray
if((minLevelPos==(size-
2))&&(!IsLogicalOperation(NodeArray(size-1].strElement)))
{node=NodeArray(size-1];
node.prePosition=posInsert;
AssertionNodeTreeArray.Add(node); }
else{
Carray <AssertionNode,AssertionNode> AssertionNodeTreeArrayRight;
AssertionNodeTreeArrayRight.SetSize(0,-1);
int sizeRight=NodeArray.GetSize();
for (i=(minLevelPos+1);i<sizeRight;i++)
AssertionNodeTreeArrayRight. Add(AssertionNodeArray[i]);
// recursive algorithm run on right part
MakeAssertionArrayToFaultTree(AssertionNodeTreeArrayRig
ht,posInsert);}

FIGURE 6. Assertion Analysis Algorithm-Step 2.

(2) Cut the AssertionNodeArray into left part and right part
with the center position of the first root node

(3) If only one expression or logic operation node in the
left, get the position of this node, and set the position of
the first root node to its preposition, else recursively run this
algorithm on the left part as step (1)

(4) If only one expression node or logic operation node in
the right, get the position of this node, and set the position of
the first root node to its preposition, else recursively run this
algorithm on the right part as step (1)

The details of the second step in algorithm is shown
in Fig 6.

Here are the example results of Assertion U1 scanned, cut
and recursively run in the Table 2.

Then this paper will draw the fault tree by the position and
preposition of each node in AssertionNodeArray as in Fig 7.

Here are Class2 and Class3 that will be related to multiple
nodes and nodes to subsystem.

Class2 as detailed in Fig 8 has an inner variable C2,
an inflow V2, two outflows W2 and X2, and two assertions

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

Basiz Information | State Variable | Flow | Event | Transition | hssertion | AlesRies | Fault Tree

| Aszertion

2 v (Al=falze) or (f1=fslze) false

A «

((hl==false) and (Bl==falsel)or (T1==false)

FaultTree

Al==falze 2
and
El==falze 2

Scan and cut with levels

or 0 -1
and 1 0O
Al==false 2 |1
El==falze 3 |
Tl==false 4 0O

osition and preposition
of each node to be drawn

V/

Automatic Generation
of Fault Tree

N

l==falze Bl==falze

FIGURE 7. Final Result of Automatic Fault Tree Generation and Drawing of Class1.

TABLE 2. Result of position and preposition of assertion node.

String Cut position preposition
or 0 -1
and 1 0
Al==false 2 1
Bl==false 3 1
Y 1==false 4

class Class2

Boolean C2// variable
Boolean V2// inflow
Boolean W2,X2;//outflow

assertion

W2=if ((A2==false)and(B2==false))or(Y2==false)
then false else true;

X2 = if ((C2==false)) then false else true;

end

FIGURE 8. Details of Class2.

of W2 and X2. The final Result of Automatic Fault Tree
Generation and Drawing of assertion related to outflow W2 in
Class2 is shown in Fig 10.

Class3 as detailed in Fig 9 has an inner variable D3, two
inflows U3 and W3, two outflows Y3 and Z3, and two asser-
tions of Y3 and Z3. The final Result of Automatic Fault Tree
Generation and Drawing of assertion related to Z3 in Class3 is
shown in Fig 11.

VOLUME 8, 2020

class Class3

Boolean D3// variable
Boolean U3,W3// inflow
Boolean Y3,Z3;//outflow

assertion

Y3=if (D3==false) then false else true;

Z3= if (U3==false)and (W3==false)) then false else true;
end

FIGURE 9. Details of Class3.

B. MULTIPLE NODES
This paper put forth the fault tree generation algorithm from
multiple nodes connected which include five steps:
(1) Find the ‘Out’ node in current view
(2) Initialize the Analyser which has functions described
in Part A of Section IV
(3) Traverse the LinkInfoArray to get and cut the assertion
bind with the links connected to the ‘Out’ node in
current view
(4) Analyze the link and assertion cut, get the class of
variable in assertion
(5) Recursively trackback and generate the final unfolded
assertion to be analyzed and get the position and prepo-
sition of each valid string or operation node in the final
unfolded assertion
The first three steps in the algorithm are described
in Fig 12.
The fourth and fifth steps are to recursively run an algo-
rithm described in Fig 13 to get the position and preposition
of each node need to be drawn in fault tree.

168885

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

Fasie Information | State Varishle | Flow | Event | Tramsition | Assertion | altaRica | Fault Tree

Aszertion

Assertion List

((AZ==falce) and (B2==fal ze))or (T2==fal=ze]

Assertion to be
analyzed

FaultTree

Scan and cut with levels

Té==false 4 0

Position and preposition
of each node to be drawn

Automatic Generation
of Fault Tree

A

R2==false Bi==false

FIGURE 10. Final Result of Automatic Fault Tree Generation and Drawing of Class2.

Bazic Information | State Variable | Flow | Event | Transitionl Assertion | J\ltaRical Fault Tree

hzzertion

Assertion List

(r3==falze)and (3==false)~—=—

Assertion to be
analyzed

Scan and cut with levels

Position and preposition
of each node to be drawn

FIGURE 11. Final Result of Automatic Fault Tree Generation and Drawing of Class3.

Then, this paper makes three instances comp1, comp2 and
comp3 of Class|1, Class2 and Class3 as in Fig 14, and connect
them to hand over fault by flow bind in the link between the
three nodes.

The process, which is detailed described as following and
in the related information is shown in Fig 15, includes:

(1) Get the linkinfo connects to “Out” node, which is
“comp3.Z3”

168886

(@)
3

“

Automatic Generation
of Fault Tree

Ua==false Ri==false

Find the comp3 is an instance of Class3 and Z3 is an
outflow of Class3 by traversing all outflows in Class3
The fault assertion of Z3 in Class3 is ““(U3==false)
and (W3==false)”, so the linkinfo is expanded to
“(U3==false) and (W3==false)”

Find the U3 is an outflow, and comes from
compl by analysis of the linkinfo “comp3.U3=
compl.Ul”

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

// OnSysFaultTreeGen
int i,j,size; CNode nodeOver;
CString strKeyOver=strViewKey+" Out";// The key of ‘Out’ node
CString strLinkInfo,strAssertion,strClass;
size=ClassNodeToClassNodeLinkInfoArray.GetSize();
ClassNodeToClassNodeLinkInfo linkInfo;
//Initialize the Analyser
Analyserm_strAssertion. Empty();
Analyser.AssertionNodeArray.RemoveAll();
Analyser.AssertionNodeTreeArray.RemoveAll();
/ltraverse the ClassNodeToClassNodeLinkInfoArray
for (i=0;i<size;it++)
{linkInfo= ClassNodeToClassNodeLinkInfoArray[i];
if (linkInfo.strViewKey==strViewKey)// link in current view
{if (linkInfo.strOutKey==strKeyOver)//link connect to ‘Out’ node
{strLinkInfo=linkInfo.strInAssertion;
strLinkInfo. TrimLeft();strLinkInfo. TrimRight();
//get Assertion bind to links connect to ‘Out’ node
strAssertion=GetOverAssertion(strLinkInfo,strViewKey);
//the link is from a node, not from subsystem in current view
if(!strAssertionIlsFromSubSys())
{Analyser.m_strAssertion=strAssertion;
//scan, cut and label the level
Analyser.MakeAssertionToAssertionArray();
for (j=0;j<Analyser.AssertionNodeArray.GetSize();j++)
//set the key same to link’s viewkey
Analyser.AssertionNodeArray[j].strKey=linkInfo.strViewKey;
//generating fault tree information of multiple nodes
GenerateSysFaultTreeInfoArray(strAssertion,linkInfo); }
}
1

FIGURE 12. Multiple Nodes Algorithm-Step 1-3.

(5) Find the compl is an instance of Classl and Ul is an
outflow by traversing all outflows in Class1

(6) The fault assertion of Ul in Classl is “‘((Al==false)
and (Bl==false)) or (Y1==false)”, so the linkinfo
is expanded to “(((Al==false) and (B1==false)) or
(Y 1==false)) and (W3==false)”

(7) Recursive backtracking to analysis the “(W3==false)”
in the linkinfo ““(U3==false) and (W3==false)”

(8) Find the W3 is an outflow by traversing all outflows in
Class3

(9) Find there is no inflow related to W3 from other node,
then skip and return

(10) For there is no more expression to be analyzed, the pro-

cess and recursive algorithm runs over

The result of recursive analysis on the linkinfo by flows and
assertions in nodes are described in Table 3. The operation
result of tool developed by this paper and all explanations are
shown in Fig 16.

C. NODES WITH SUBSYSTEM
This paper put forward the fault tree generation algorithm
among nodes with subsystem which includes steps partly
same as multiple nodes, and the difference is in the analysis
of the link connected to subsystem.

The differences include two situations are subsystem to
node and node to subsystem which will be firstly analyzed of
the information in the links between the node with subsystem.

VOLUME 8, 2020

// GenerateSysFaultTreeInfoArray
int i,j;
CString strLinkInfo;
CString str=Analyser.m_strAssertion;
ClassNodeToClassNodeLinkInfo linkInfoPre;
int size=Analyser.AssertionNodeArray.GetSize();
for (j=0;j<Analyser.AssertionNodeArray.GetSize();j++)
{//Get one node
AssertionNode node=Analyser.AssertionNodeArray[j]
If(!LogicOperation(node))// not logic operation
{//Get and Analysis the interface information in LinkInfo
strLinkInfo=node.strElement;
//Get the flow information in node
CString strOutFlow=GetOutFlowFromLinkInfo(strLinkInfo);
CString strinFlow=GetInFlowFromLinkInfo(strLinkInfo);
CString strNodeKey=linkInfo.strinKey;
CString strViewKeyNow=linkInfo.strViewKey;
//Get the class of node
ClassNodelnfo
infoNode=GetClassNodeInfoByClassNode(strViewKeyNow,strNodeKey);
//Get Begin Part of linked assertion
CString strPartBegin=infoNode.strName+"."+strOutFlow;
//Get End Part of linked assertion
CString strPartEnd=GetLinkInfoPartEnd(strPartBegin,strNodeKey,strViewKeyNow);
//Get the subsystem from Begin Part of linked assertion
CString strSubNodeNameB=GetSubNodeFromPartBegin(strPartBegin);
//Get the subsystem from End Part of linked assertion
CString strSubNodeNameE=GetSubNodeFromPartEnd(strPartEnd);
CString strClassNodeNamePre=GetClassNodeNameFromPartEnd(strPartEnd);
CString strOutFlow=GetFlowNameFromPartEnd(strPartEnd);
CString strinFlow=GetFlowNameFromPartBegin(strPartBegin);
CString strAssertionPre;
Lablel:
//mot from subsystem
if (strSubNodeNameB.IsEmpty()&&(strSubNodeNameE.IsEmpty()))
{strAssertionPre=GetAssertionPre(strFlow,strClassNodeNamePre, strViewKeyNow);
linkInfoPre=GetLinkPre(strPartBegin,strNodeKey,strViewKeyNow);
Lable2:
if (!strAssertionPre IsSEmpty())
{//Scan, cut and get the preposition of node
Analyser.AssertionNodeArray(j].strElement=strAssertionPre;
Analyser.ResetAssertion();
Analyser.MakeAssertionToAssertionArray();
//if has prenode, recursively run GenerateSysFaultTreeInfoArray()
if(!linkInfoPre.strViewKey.IsEmpty())
GenerateSysFaultTreeInfoArray(Analyser.AssertionNodeArray/[j].str
Element,linkInfoPre);

33

FIGURE 13. Multiple Nodes Algorithm-Step 4-5.

class Classl

class Class3

compl:Classl

comp3:Class3
comp3.U3=Comp1.Ul//connection

FIGURE 14. Description of the connection between multiple nodes.

For a simple example: compA.X=subl.compA.Y, which is
an information in the link from subsystem to node. We should
analysis it as following:

(1) Cut the whole strings into two parts at “="
(2) By analysis of the strings in the left of equation, it is

T3]

“compA.X” which only has one “.

168887

IEEEACCGSS Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

Multi pIe Nodes (U3==false)and (W3==false)

(((A1==false)and(B1==false) -
or(Y1==false))and (W3== _| U3->U1->((Al1==false)and(B1==false)) |-

- 0

—

comp3.U3=comp1.U1l comp3.Z3——)‘

*
I
I
I
I
I
I
I
I
I
I
I
J

I U

class Class1

class Class3

Boolean U3,W3// inflow

—T

...... Boolean Y3,Z3;//outflow
assertion | | |7)
Ul=if assertion
((A1==false)and(B1==false))or 7.3= if (U3==false)and |
(Y1==false) — — (W3==false)) then false else — —
...... true
FIGURE 15. Dataflow and assertions run in multiple nodes.
B SSMA:Fornal Modsling and Analysis Tool for Systen Security - [Systen View]
File(]) Eait(E) set(d Heln(d)
DEH ? . .
= 2 A system includes
ST three nodes
compl connects to comp3,
then need backtrack the fault
Systen Fault Tree o

flow by linkinfo and assertion
in nodes
Fault Tree Result

Scan and cut with levels

U3==false 1
and 0

W3==false 1
Al=false 3

and 2
Bl=failed 3

or
Yi=failed 2

o acompt 1
Position and preposition

an
Wi==false 1
o T of each node to be drawn

Modeling elements

Al=false 3 2
B1=failed 4 2
Y1=failed 5 1
W3==false 6 0

Final assertion after
recursive backtracking

i
C
/

Automatic generation
of fault tree from three
connected nodes

({71 =talse] and (B1=failed)) or g, s NS
[¥1=failed)}and[w3==false] v

0K Cancel Display

sraten < Initial and final assertion B
Operation snd Operational Infornation after recursive

(U3==false)and (¥3==false) backtracking
(((41=Falee) and (Bi=failed)) or (Yi=failed))and(W3==false)

FIGURE 16. Result and explanations of running algorithm on multiple nodes.

(3) that means the strings in the left of equation is related (5) By traversing all nodes in the level of current system,
to a node we can get that compA 1is an instance of what class

(4) X is an inflow of node compA, and compA is in the (6) Then if an assertion in this class related to inflow X,
level of current system it will be partly replaced

168888 VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

TABLE 3. Result of rescursive analysis on the multiple nodes.

running

tmes AOf linkinfo original target node assertion linkinfo after running recursive algorithm

recursive node

algorithm

1 comp3.Z3 comp3 Out (U3==false) and (W3==false) (U3==false) and (W3==false)

comp3.U3= ((Al==false) and (B1==false)) (((Al==false) and (B1==false)) or
compl.Ul compl comp3 or (Y1==false) (Y 1==false)) and (W3==false)

Lablel: Lablel:

{

//if subsystem to node, reset current view to the subsystem view
if ((strSubNodeNameB.IsEmpty()&&(!strSubNodeNameE. IsEmpty()))
{linkInfoPre=GetLinkPre(strPartBegin,strNodeKey,strViewKeyNow);

CString strOverKey=linkInfoPre.strlnKey+" Out";

for (i=0;i< ClassNodeToClassNodeLinkInfoArray.GetSize();i++)

ClassNodeToClassNodeLinkInfo linkInfoTemp= ClassNodeToClassNodeLinkInfoArray][i];
//get the link which links to the OutNode in the view of subsystem

}
1}

//get the node connect to OutNode in subsystem

GetClassNodeInfoByClassNode(linkInfoPre.strViewKey,linkInfoPre.strinKey);
//get what class is this node

CString strClassIn=infoNodeln.strClass;
strAssertionPre=GetAssertionPre(strFlow,infoNodeIn.strName, linkInfo
Pre.strViewKey);
Lable2:

if((linkInfoTemp.strViewKey==linkInfoPre.strInKey)
&&(linkInfoTemp.strOutKey==strOverKey))
{strAssertionPre=linkInfoTemp.strInAssertion;

CString strOut=(strClassNodeNamePre+"."+strOutFlow);
if(strAssertionPre==strOut) {

//set the linkInfoPre to this link in subsystem
linkInfoPre=linkInfoTemp;

break;

ClassNodelnfo InfoNodeln=

if (!strSubNodeNameB.IsEmpty()&&(strSubNodeNameE.IsEmpty())
{linkInfoPost=GetLinkPost(strPartEnd,strNodeKey,strViewKeyNow);
CString strinKey=linkInfoPre.strOutKey+" In";
for (i=0;i< ClassNodeToClassNodeLinkInfoArray.GetSize();i++)

{
ClassNodeToClassNodeLinkInfo linkInfoTemp= ClassNodeToClassNodeLinkInfoArray][i];
//get the link which links to the InNode in the view of subsystem

}
1

//get the node connect toInNode in subsystem

GetClassNodelnfoByClassNode(linkInfoPost.strViewKey,linkInfoPre.strInKey);
//get what class is this node

CString strClassOut=infoNodeOut.strClass;
strAssertionPost=GetAssertionPost(strInFlow,infoNodeOut.strName,lin
kInfoPost.strViewKey);
Lable2:

//if to subsystem, reset the current view to the subsystem view

if((linkInfoTemp.strViewKey==linkInfoPost.strOutKey)
&&(linkInfoTemp.strinKey==strInKey))
{strAssertionPost=linkInfoTemp.strOutAssertion;
CString strin=(strClassNodeNamePost+"."+strInFlow);
if(strAssertionPost==strIn){

//set the linkInfoPost to this link in subsystem
linkInfoPost=linkInfoTemp;

break;

ClassNodeInfo InfoNodeOut=

FIGURE 17. Algorithm of the Link from Subsystem to Node.

N
®)
&)

(10)

(11)

Of course,

subl

By analysis of the strings in the right of equation, it is
subl.comp2.W2 which has two “.”

That means the strings in the right of equation is related
to a node from subsystem

By cutting and analysis the strings, we get that the
Y is an outflow from node compA in subsystem
subl

By traversing all nodes in the level of subsystem subl,
we can get that compA is an instance of what class.
(For there may exist many nodes have same name in
different levels of current system or subsystem, so those
nodes may be instances of different class)

Get the assertion in this class related to outflow Y
and partly replace the assertion in that class related to
inflow X.

we may also make a simple example:

.compA.Y = compA.X, which is an information in the

link from node to subsystem. The process of dealing with it
in this situation can be mostly referenced by what we have
mentioned above.

Comparing to the algorithm of multiple nodes, there have
some differences in nodes to subsystem:

VOLUME 8, 2020

FIGURE 18. Algorithm of the Link from Node to Subsystem.

class Classl

class Class2

class Class3

compl:Classl

subl: subsystem

subl.comp2:Class2

comp3:Class3

Out=comp3.Z3
comp3.U3=comp1.Ul//connection
comp3.W3=subl.comp2.W2//connection

FIGURE 19. Description of the nodes and subsystem with connections.

¢!

@
3
“

) By cutting and analysis the information in the link,
we should distinguish the information is related to
nodes with subsystem or between nodes only

We should get the subsystem, the nodes and the inflow
or outflow by analysis of the information

We should traverse all nodes in the subsystem to get
what class is the nodes instance from

We should come into the level of subsystem to get the
related assertion of the inflow or outflow in the class

168889

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

Nodes and Subsystem

U3->Ul-
>((Al==false)and(B1==false))or(Y1==false)

end

class Class2

Boolean C2// variable

Boolean V2// inflow

Boolean W2,X2;//outflow
assertion

W2=if
((A2==false)and(B2==false))o
r(Y2==false)

then false else true;

X2 =if ((C2==false)) then false
else true;

subl
<> -

Q&;mpz.w?
comp2

((A2==false)and(B2==false))
or(Y2==false)

comp3.W3=subl.comp2.W}2

dL

==false)

Cmpl\‘ omp3.U3=comp1.U1l #CmpB <=
U + / comp3.Z3
(((A1==false)and(B1==false)
)or(Y1==false))and

((A2==false)and(B2==false))or(Y2

(U3==false)and (W3==false)

class Classl

assertion
Ul=if
((A1==false)and(B1==false))or L
(Y1==false)

Boolean U3,W3// inflow
Boolean Y3,Z.3;//outflow

assertion

Z2.3= if (U3==false)and
(W3==false)) then false else —
true

|
| |
I |
I |
I |
| |
| class Class3 I
I |
I |
I |
| |
| |
|

FIGURE 20. Dataflow and assertions run in nodes and subsystem.

(5) We should go on traversing if the node in the subsystem
has pre-node

(6) We should back to the system level if all nodes in the
level of subsystem has been transacted

(7) We should set the view point correctly when coming
into or out from the subsystem in developing the tool
SSMA.

The detailed algorithm of dealing with the situations includ-
ing nodes to subsystem and subsystem to node are between
the Lablel and Lable2 as in Fig 17 and Fig 18.

(1) The algorithm of analyzing link from subsystem to
node is described in details as Fig 17.

(2) The algorithm of dealing with the link from node to
subsystem is described in details as Fig 18. The differ-
ence is from Lablel to Lable2.

After the algorithm in Fig 17 and Fig 18, the link will go
into the subsystem and there will recursively run to get the
corrected fault information bind in links and automatically
generate fault tree.

Then, this paper makes two instance compl and comp3 of
Classl and Class3, and comp2 of Class2 in subsystem as
in Fig 19, and connect them to hand over fault by flow bind
in the link among nodes and subsystem.

168890

The process, which is detailed described as following and
the related information is shown in Fig 20, includes:

(1) Get the linkinfo connects to “Out” node, which is
“comp3.Z3”

(2) Find the comp3 is an instance of Class3 and Z3 is
an outflow of Class3 by traversing all outflows
in Class3

(3) The fault assertion of Z3 in Class3 is “(U3==false)
and (W3==false)”’, so the linkinfo is expanded to
“(U3==false) and (W3==false)”

(4) Find the U3 is an outflow, and comes from compl by
analysis of the linkinfo “comp3.U3=compl.U1”

(5) Find the compl is an instance of Classl and Ul is an
outflow by traversing all outflows in Class1

(6) The fault assertion of Ul in Classl is “((Al==false)
and (Bl==false)) or (Y1==false)”, so the linkinfo
is expanded to “(((Al==false) and (B1==false)) or
(Y 1==false)) and (W3==false)”

(7) Recursive backtracking to analysis the “(W3==false)”
in the linkinfo ““(U3==false) and (W3==false)”

(8) Find the W3 is an outflow by traversing all outflows in
Class3, and comes from comp2 in subl, by analysis of
“comp3.W3=subl.comp2.W2”

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

7] SSWA:Fornal Modeling and hnalysiz Tool For Syztem Security — [:1]

Filelp) Edit(E) Fet(s) Help(H)
DSHE %
ysten ks
=-2019081T
compt

Systen Fault Tree

Fault Tree Result A system includes

comp3 connects to comp?2 in subl, then nee
backtrack the fault flow by linkinfo and
assertion in nodes and subsystem

nodes and subsystem,

and 0
A2==talse 3

Modeling
elements

and 2
B2==false 3
or 1 .
Y2==false 2 Scan and cut with levels
-]
A
Position and preposition o
gach node to be drawn
1
()

inal assertion after
recursive backtracking

Y1=failed 5 1
or 6 0
and 7 6
A2==false 8 7
B2==false 9 7
'Y2==false 10 6

(((A1=falseland(B1=failed) or
(Y1 =failed)jand(((A2==falsc}and

(B2==talse)jor{Y2==false]) v

Operation
information

System <

subsvstem

Operation and Opsrationsl Infornstion
(U3==false)and (Wi==false)

(((41=false) and (Bl=failed)) or (Yi=failed))and (¥3==false)

(((a1=false)and(B1=failed)) or (TI=failed)) and (((A2==false) and(B2==False)) or (Y2==false))

Automatic generation of
fault tree from nodes and

comp3.U3=Some

Fault tree node comes
from subsystem

FIGURE 21. Result and all explanations of running algorithm on nodes and subsystem.

TABLE 4. Result of rescursive analysis on the nodes and subsystem.

running
tmes ‘Of linkinfo original target node assertion linkinfo after running recursive algorithm
recursive node
algorithm
1 comp3.Z3 comp3 Out (U3==false) and (W3==false) (U3==false) and (W3==false)
comp3.U3= ((Al==false) and (B1==false)) (((Al==false) and (B1==false)) or
2 compl.Ul compl comp3 or (Y 1==false) (Y 1==false)) and (W3==false)
comp3.W3 _ _ (((Al==false) and (B1==false)) or
3 =subl.com subl.comp2 comp3 (A2 fal(i)zii‘};f:;) false)) or (Y 1==false))) and (((A2==false) and
p2.W2 (B2==false)or (Y2==false))

(9) Find the outflow W2 in comp2 which is an instance of
Class2, which related to the assertion ““((A2==false)
and (B2==false)) or (Y2==false)”, so the linkinfo
is expanded to “(((Al==false) and (B1==false)) or
(Y1==false)) and (W3==false)) and (((A2==false)
and (B2==false) or (Y2==false))”

(10) For there is no more expression to be analyzed, the pro-
cess and recursive algorithm runs over

The result of recursive analysis on the linkinfo by flows and

assertions in nodes and subsystem are described in Table 4.
The operation result of tool developed by this paper and all
explanations are shown in Fig 21.

V. OVERVIEW OF TOOL DEVELOPMENT
This paper here made a brief introduction of the tool named
SSMA (System Safety Modeling and Analysis).

This development of System Safety Modeling and Analy-
sis (SSMA) mainly uses Visual C++ programming to realize
AltaRica’s hierarchical system modeling and fault tree anal-
ysis, which includes:

o Interface Framework

The main interface framework realizes the functions of
project file creation, domain modeling panel, class modeling

VOLUME 8, 2020

panel and system modeling panel creation, graphical mod-
eling view, modeling element list and operation information
window.

o Class Modeling

Class modeling implements the visual modeling functions
of class name, domain state, class state, input flow, output
flow, event, transition, assertion, etc. After the modeling is
completed, the class information is expanded hierarchically
in the left class modeling area.

o System Modeling

System modeling realizes the new construction of subsys-
tems and class nodes. Creating a node should be an instance
from a class in the left list. When having created a subsystem,
it will come into the internal by double click the icon of this
subsystem on the left list.

« Automatic fault tree generation of class node

Automatic fault tree generation of class node include
automatic analysis of assertion in class node, and automatic
generation of fault tree in graphic.

« Automatic fault tree generation of multiple nodes

Automatic fault tree generation of multiple nodes
include interface description between connected nodes, and

168891

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

class Classl

Boolean A1,B1// variable

Boolean Y1,X1// inflow

Boolean U1,V1;//outflow, add V1 as an outflow
event eAl,eA2,eB1,eB2;

transition

eAl: Al==true ->Al:=false;

eA2: Al==false -> Al = true;

eB1: Bl==true ->B1:=false;

eB2: Bl==false -> B1 = true;

assertion

Ul=if ((Al==false)and(B1==false))or(Y 1==false)
then false else true;

V1 =if (((Al=false) or (X1=false))) then false else true;
end

FIGURE 22. Details of Modified Class1.

class Class2

Boolean C2// variable

Boolean V2,U2// inflow, add U2 as a inflow
Boolean W2,X2;//outflow

Assertion

//(U2==false)

W2=if ((A2==false)and(B2==false))or(U2==false)
then false else true;

X2 = if ((C2=false)) then false else true;

end

FIGURE 23. Details of Modified Class2.

class Class4

Boolean C4// variable

Boolean V4,U4//inflow

Boolean W4;//outflow

Assertion

W4=if ((U4==false) and (V4==false)) then false else true;
end

FIGURE 24. Details of Class4.

automatic analysis of interface description, and automatic
generation of fault tree of multiple nodes in graphic.

o Automatic fault tree generation of nested system

Automatic fault tree generation of nested system include
interface description between subsystem and node, automatic
analysis of interface description, and automatic generation of
fault tree in graphic.

SSMA has a friendly interface, good usability and ability
of system modeling to well support AltaRica. We can eas-
ily build system model in graphic and automatically imple-
ment the fault analysis in high efficiency. It is easy to be
transplanted to integration of other tools run in Windows
platform of Micro Software.

VI. DETAILED EXAMPLE

This paper here made a detailed case study of the nested

system modeling and automatic fault tree generation from

single class node to multiple nodes and nodes with subsystem.
In the case study, this paper firstly created three classes

of classl, class2, class3, class4 and class5, and two

subsystem s1 and s2.

168892

class Class5

Boolean A5// variable

Boolean V5,U5// inflow

Boolean W5;//outflow

Assertion

Ws=if ((US==false) and (A5==false)) then false else true;
end

FIGURE 25. Details of Class5.

class Classl
class Class2
class Class3
class Class4
class Class5

compl:Classl
comp2:Class2
comp3:Class3
sl: subsystem
s2: subsystem
sl.comp4:Class4
s2.comp5:classS

Out=comp3.Z3

comp3.U3=s2.comp5.W5
comp3.W3=comp2.W2

comp2.V2=compl.V1
comp2.U2=s1.comp4. W4

compl.X1=comp2.X2
compl.Y1=comp4.Y3

s2.comp5.U5=comp1.Ul

FIGURE 26. Description of the system in case study.

The classl and class2 had been modified to show the
fault propagation between nodes and subsystem which are
introduced in section I'V. And we here made a new description
of Class4, Class5, s1 and s2.

As shown in Fig22, Classl add V1 as an outflow, that
means the assertion bind with it will propagate when V1 as
an inflow to other node or subsystem.

As shown in Fig23, Class2 add U2 as an inflow, that means
the assertion bind with outflow in other node or subsystem
will propagate into Class2 when the outflow connect with U2.
Class2 also modified the assertion bind with W2 changing
(Y2==false) into (U2==false) which will cause a fault prop-
agation if U2 connects to outflows comes from other nodes
or subsystems.

The details of Class4 is descrbed in Fig 24.

The details of Class5 is descrbed in Fig 25.

Then, this paper made compl, comp2 and comp3 of
Class1, Class2 and Class3, comp4 of Class4 in subsystem
s1, comp5 of Class5 in subsystem s2, and connect them to
hand over fault by flows bind in the link among nodes and
subsystems which is described in Fig 26.

The process, which is detailed described as following and
the related information is shown in Fig 27, includes:

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

class Class1

Boolean A1,B1// variable
Boolean Y1,X1// inflow
Boolean U1,V 1;//outflow

class Class3

then false else true;

Boolean D3// variable
Boolean U3,W3// inflow
Boolean Y3,Z3;//outflow

Y3=if (D3==false) then false

assertion assertion

Ul=if

((Al1==false)and(B1==false))or(else true;

Y 1==false) Z3= if (U3==false)and

(W3==false)) then false ¢lse

class Class5

Boolean AS5// variable
Boolean V5,U5// inflow
Boolean W5;//outflow
Assertion

W5=if ((US==false) and
(AS==false)) then false else
true;

V1 =if (((Al=false) or true; end

(X1=false))) then false else true; end

I I
Case Stud y | U5->U1->((Al==false)and(B1 ==false))or(Y1==false) |

I \I\

<n>w

I
I
| —sZ.compS.US:compl.Ul—'I‘
I
I
I

|
|
|Y1->Y3->(D3==false) | I
|

\\\\:E§\ |

compl.Yl=comp3.Y3

e

compl.X1=comp2.X2

comp2.V2=

comp3.W3=comp2.W2

_—

comp2.U2=sl.comp4.W4

\ ((A2==false)and(B2==false))or(U2==false))
sl

<_>/Comp5.W5
comp5

comp3.U3=s2.comp5.W5

T~

| U3->W5->((U5==false)and(A5==false))
comp3.Z3

| (U3==false)and (W3==false)

W3->W2->

<o>

G

Q/Comp4,w4
comp4

I
I
I
I
| U2->W4->(U4==false)and(V4==false) |
I
|
I
|

class Class2

Boolean C2// variable
Boolean V2,U2//inflow
Boolean W2,X2;//outflow

Assertion

//(U2==false)

W2=if
((A2==false)and(B2==false))or
(U2==false)

then false else true;

X2 = if ((C2==false)) then false
else true;

end

FIGURE 27. Dataflow and assertions run in case study.

Get the linkinfo connects to “Out” node, which is
“comp3.Z3”

Find the comp3 is an instance of Class3 and Z3 is
an outflow of Class3 by traversing all outflows in
Class3, then modify the linkinfo into “(U3==false)
and (W3==false)

Find the U3 is an inflow come from comp5 in s2, then
find that the U3 is connected to an outflow W5 in
comp? in s2

Get the assertion of W5 and modify the linkinfo into
((U5==false) and (A5==false)) and (W3==false)
Find the U5 is an inflow that connect to U1 in compl

€]
@

3)

“
&)

VOLUME 8, 2020

(6

N
®

©))

(10)

class Class4

Boolean C4// variable
Boolean V4,U4//inflow
Boolean W4;//outflow
Assertion

‘W4=if ((U4==false) and
(V4==false)) then false else
true;

end

Get the assertion of Ul and modify the linkinfo into
((((Al1==false) and (Bl==false)) or (Y1==false))
and (AS5==false)) and (W3==false)

Find the Y1 is an inflow and comes from Y3 in comp3
Get the assertion of Y3 and modify the linkinfo into
((((Al==false) and (Bl1==false)) or ((D3==false)))
and (A5==false)) and (W3==false)

Find the AS is not an inflow in comp5 which means that
there is no outflow from other node or subsystem, then
back and continue analysis

Find the W3 is an inflow which comes from W2 in
comp?2

168893

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

TABLE 5. Result of rescursive analysis on the case study.

running
times .Of linkinfo original target node assertion linkinfo after running recursive algorithm
recursive node
algorithm
1 comp3.Z3 comp3 Out (U3==false) and (W3==false) (U3==false) and (W3==false)
comp3.U3= — —
2 s2.comp5. s2.comp5 comp3 (U5==false)and(AS5==false) ;%?WSEI:Sfea)fs r:)j(AS false))
W5
s2.comp5.
_ ((Al==false)and(B1==false)) ((((Al==false)and(B 1==false))or(Y 1==fal
3 U3 fj"lmpl' compl s2.comp3 or(Y 1==false) se))and(A5==false))and(W3==falsc)
compl.Yl= __ ((((A1==false)and(B 1==false))or((D3==f
4 comp3.Y3 comp3 compl (D3=false) alse)))and(A5=—false))and(W3==false)
comp3.W3 _ _ ((((Al==false)and(B1==false))or((D3==f
5 =comp2.W comp2 comp3 (a2 fal(s[i)za:rfgi) false))or alse)))and(AS5==false))and(((A2==false)
2 and(B2==false))or(U2==false))
_ ((((Al==false)and(B1==false))or((D3==f
6 Cs0 lmcllszézt sl.comp4 comp?2 (U4==false) and (V4==false) alse)))and(AS5==false))and(((A2=false)a
W 41’ : -comp P nd(B2==false))or((U4==false) and

(V4==false)))

File(F) Edit(El Set(g] Help(H)

== % -
System n
[=- 2019082201

Comp2 Wascompl W1

FIGURE 28. System modeling using SSMA in case study.

(11) Get the assertion of W2 and modify the link-
info into ((((Al==false) and (Bl==false)) or

168894

=2 comprS T5=compd L1

COmpr K1 qoamp2 X2

comp2 U2=sMocompd Vg

compd ¥

WE=comp? W2

=1

SEMA:Formal Modeling and Analysis Too

2

compa Ud=sk comps s

EOmp3.3

((D3==false))) and (A5==false)) and (((A2==false)
and (B2==false)) or (U2==false))

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

File(F) Edit(E) Set(s) Help(H) File(F) EAit(E) Set(5) Help(H
DEE L 3 e ?:
I FE n
E 201%32201 [=- 2013082201
compl compl
comp2 comp2
comp3 comp3
E-sl E-s1
compd compd
B-s2 B 52
compS compS

compd WWd

=) S

FIGURE 29. Details of s1 and s2.

= 2018082201

conpl
conp2
conp3
Elst
conpd
B2

conp5

Scan and cut with level

Fault Tree Result
U3==false 1 N
and 0 / o
‘Wi==false 1

US==false 2

and 1

AB==false 2

and 0

Wi==false 1

Al==false 4

from comps5 in s2

Position and preposition
of each node to be drawn

As==false 7 1
=l /

or

and 9 8 "d
A2==falsc 10 9

B2=falec 11 9 Final aigemon after
Ua==talse 13 12 king

Va==false 14 12

and 3
Bl==false 4

or 2
Yi==false 3

and 1
AB==false 2

Operation Information
srstem <

recursi

[[[[Al =false)and(B1==false]jor
sej))and(A5==false])and
alscJand(B2==falsc))or
[[U4::h|s=] and [V4==falsc]))

Bl==false

€

System Modeling

Fault tree nodes come

Out

compS WS

camp2.ygLcompt 1

Modeling Element

System Fault Tree

Automatic generation of
fault tree from system model

Fault tree nodes come
from comp4 in sl

FIGURE 30. Result and all explanations of running algorithm on case study.

(12) Find A5, A2 and B2 are all not flows, then back and
continue analysis

Find U2 is an inflow and connect with W4 of comp4
in sl

Get the assertion of W4 and modify the linkinfo
into ((((Al==false) and (Bl==false)) or ((D3==
false))) and (AS5==false)) and (((A2==false) and
(B2==false)) or ((U4==false) and (V4==false)))”
Find U4 and V4 are inflows, but no connection to them.
Then back and continue analysis

All expressions have been traversed and analyzed,
so the algorithm comes to the end

(13)

(14)

(15)

(16)

VOLUME 8, 2020

The result of recursive analysis on the linkinfo by flows
and assertions in case study are described in Table 5.

The system modeling using SSMA in the case study are
shown in Fig 28, included comp1, comp2, comp3, s1, s2 and
linkinfo. The details of s1 and s2 are shown in Fig 29.

The operation result of case study and all explanations are
shown in Fig 30. In this figure, we can see the final assertion
after.

We may find the “Final assertion after recursing back-
tracking” on the Figure 30, that is “((((Al==false) and
(Bl==false)) or ((D3==false))) and (AS5==false)) and
(((A2==false) and (B2==false)) or ((U4==false) and

168895

IEEE Access

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

(V4==false)))”’. The final assertion is the same as the line
6 of “linkinfo after running recursive algorithm” in Table 5
which proves the final assertion by using the algorithm pro-
posed in this paper has been correctly transacted by computer.
And more, the nodes and strcuture in the final whole system
fault tree in Figure 30 is also correct in accordance with
the “Final assertion after recursing backtracking” on the
Figure 30.

VII. CONCLUSION

Based on the language specification of AltaRica, this paper
studied the grammar and semantics of AltaRica language,
combined visual modeling with fault logic description ability
of AltaRica language, designed and implemented automatic
fault tree generation algorithm from node to nested system,
improved the ability of safety modeling and analysis, and
realized synchronization of fault modeling and analysis.

This paper studied the structure and semantics of AltaRica,
detailed illustrated the system modeling and automation fault
tree generation including class, node and subsystem not only
in theory but also is open in detailed programing and visual
tool realization comparing to existed papers that some are
absent in details of modeling and automation in visual fault
tree generation and others are only focusing on the method in
application using existed tools.

From the example it is found that’s easy to modify and
maintain the class, system and fault model, and greatly
improves the accuracy and efficiency of fault modeling and
analysis of safety critical system.

The method proposed in this paper and SSMA have been
successfully applied in fault modeling and analysis of marine
generator excitation system which will appear in our future
paper.

Further work will focus on the situations of subsystem to
subsystem, the issues on quantitative algorithm, and improve-
ment on the artistic style of SSMA.

REFERENCES

[11 N. R. Storey, Safety Critical Computer Systems. Reading, MA, USA:
Addison-Wesley, 1996.

[2] M. L. Chiozza and C. Ponzetti, “FMEA: A model for reducing medical
errors,” Clinica Chim. Acta, vol. 404, no. 1, pp. 75-78, Jun. 2009.

[3] L. M. Mcelroy et al., “Fault tree analysis,” Amer. J. Med. Qual., vol. 32,
no. 1, pp. 80-86, 2017.

[4] O.Lisagor, T. Kelly, and R. Niu, “Model-based safety assessment: Review
of the discipline and its challenges,” in Proc. 9th Int. Conf. Rel., Maintain-
ability Saf., Jun. 2011, 625-632.

[5] P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey, ‘“Towards
integrated safety analysis and design,” ACM SIGAPP Appl. Comput. Rev.,
vol. 2, no. 1, pp. 21-32, Mar. 1994.

[6] Y. Papadopoulos and J. A. McDermid, “Hierarchically performed haz-
ard origin and propagation studies,” in Proc. 18th Int. Conf. Comput.
Saf., Rel., Secur. (SAFECOMP). Toulouse, France: Springer-Verlag, 1999,
pp. 139-152.

[71 A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The AltaRica formalism
for describing concurrent systems,” Fundamenta Informaticae, vol. 40,
no. 2,3, pp. 109-124, 1999.

[8] J.-Y. Choley, F. Mhenni, N. Nguyen, and A. Baklouti, ‘““Topology-based
safety analysis for safety critical CPS,” Procedia Comput. Sci., vol. 95,
pp. 32-39, Jan. 2016.

168896

[9] L.Chen,J.Jiao, Q. Wei, and T. Zhao, “An improved formal failure analysis
approach for safety-critical system based on MBSA,” Eng. Failure Anal.,
vol. 82, pp. 713-725, Dec. 2017.

[10] S. Kabir and Y. Papadopoulos, “Applications of Bayesian networks and
Petri nets in safety, reliability, and risk assessments: A review,” Saf. Sci.,
vol. 115, pp. 154-175, Jun. 2019.

[11] G. Point and A. Rauzy, “AltaRica: Constraint automata as a description
language,” Eur. J. Automat., vol. 33, nos. 8-9, pp. 1033-1052, 1999.

[12] M. Batteux, T. Prosvirnova, and A. Rauzy, “AltaRica 3.0 assertions:
The why and wherefores,”” Proc. Inst. Mech. Eng., O, J. Risk Rel., vol. 231,
pp. 691-700, Sep. 2017.

[13] M. Issad, L. Kloul, and A. Rauzy, ““Scenario-oriented reverse engineering
of complex railway system specifications,” Syst. Eng., vol. 21, no. 2,
pp. 91-104, Mar. 2018.

[14] A. Albore, S. D. Zilio, G. Infantes, C. Seguin, and P. Virelizier, ‘A model-
checking approach to analyse temporal failure propagation with AltaRica,”
in Proc. Model-Based Saf. Assessment (IMBSA), Trento, Italy, Sep. 2017,
pp. 147-162.

[15] M. Lipaczewski, F. Ortmeier, T. Prosvirnova, and A. Rauzy, “Comparison
of modeling formalisms for safety analyses: SAML and AltaRica,” Rel.
Eng. Syst. Saf., vol. 140, pp. 191-199, Aug. 2015.

[16] J. Brunel, P. Feiler, J. Hugues, B. Lewis, T. Prosvirnova, C. Seguin, and
L. Wrage, “Performing safety analyses with AADL and AltaRica,”
in Proc. Int. Symp. Model-Based Saf. Assessment. Cham, Switzerland:
Springer, 2017, pp. 67-81.

[17] A. Cherfi, A. Rauzy, and M. Leeman, ‘“AltaRica 3 based models for
ISO 26262 automotive safety mechanisms,” in Model-Based Safety and
Assessment. Cham, Switzerland: Springer, 2014, pp. 123-136.

[18] S.Duo and S. Li, “A practicable safety modeling methodology for aircraft
systems using AltaRica,” Procedia Eng., vol. 80, pp. 127-139, 2014.

[19] G.Longand A. Liang, “Product failure modeling method based on AltaR-
ica language,” in Proc. Prognostics Syst. Health Manage. Conf. (PHM-
Harbin), Jul. 2017, pp. 1-6.

[20] S. Humbert, C. Seguin, C. Castel, and J.-M. Bosc, “Deriving safety soft-
ware requirements from an AltaRica system model,” in Computer Safety,
Reliability, and Security. Berlin, Germany: Springer, 2008, pp. 320-331.

[21] M. Batteux, T. Prosvirnova, A. Rauzy, and L. Kloul, “The AltaRica 3.0
project for model-based safety assessment,” in Proc. 11th IEEE Int. Conf.
Ind. Informat. (INDIN), Jul. 2013, pp. 127-132.

[22] T. Prosvirnova and A. Rauzy, “AltaRica 3.0 project: Compile guarded
transition systems into fault trees,” in Proc. Eur. Saf. Rel. Conf. (ESREL),
Amsterdam, The Netherlands, Sep./Oct. 2013, pp. 1-8.

[23] S.Liand X. Li, “Study on generation of fault trees from AltaRica models,”
Procedia Eng., vol. 80, pp. 140-152, Jan. 2014.

[24] X. Li and S. Li, “Graphical modeling of system failure behavior and its
translating into AltaRica,” Procedia Eng., vol. 80, pp. 581-591, Jan. 2014.

[25] P. Bieber, C. Bougnol, C. Castel, J.-P. Christophe Kehren, S. Metge, and
C. Seguin, “Safety assessment with AltaRica,” in Building the Information
Society, vol. 156. Cham, Switzerland: Springer, 2004, pp. 505-510.

[26] M. Bozzano, A. Cimatti, O. Lisagor, C. Mattarei, S. Mover, M. Roveri, and
S. Tonetta, ““Safety assessment of AltaRica models via symbolic model
checking,” Sci. Comput. Program., vol. 98, pp. 464483, Feb. 2015.

[27] [Online]. Available: https://www.apsys-airbus.com/en/digital-software-
en/#SIMFIA

[28] F. Zhang and H. Dong, “‘Research on formal modeling and safety analysis
method of head-up display system for civil aircraft based on AltaRica,”
in Proc. 3rd Int. Conf. Circuits, Syst. Simulation (ICCSS), Jun. 2019,
pp. 116-120.

[29] G. Qingfan, W. Guoqing, Z. Lihua, and Z. Ming, “Research on model
based safety analysis technoloy for avionics system,” Comput. Sci., vol. 42,
no. 3, pp. 124-143, 2015.

ZHEN LI was born in Xinghua, Taizhou, Jiangsu, China, in 1977. He stud-
ied at Nanjing Normal University, major in management. He received the
bachelor’s degree in computer application from Nanjing University, the M.S.
degree in signal and information processing from the Jiangsu University
of Science and Technology, Zhenjiang, in 2006, and the Ph.D. degree in
aerospace system engineering from Beihang University, Beijing, in 2011.

From 2011 to 2014, he was a Lecturer with the School of Electronics
and Information, Jiangsu University of Science and Technology, where he
has been an Assistant Professor, since 2014. He is the author of more than
15 articles and holds two inventions. His research interests include reliability
and system engineering, safety engineering, swarm intelligence, resilience,
and software testing.

VOLUME 8, 2020

Z. Li et al.: System Modeling and Fault Tree Analysis Based on AltaRica

IEEE Access

ZHENGAQI JIANG was born in Suzhou, Jiangsu, China, in 1995. He received
the bachelor’s degree from the Huaiyin Institute of Technology, in 2018.
He is currently pursuing the master’s degree in electronics and communi-
cation engineering with the Jiangsu University of Science and Technology,
Zhenjiang.

His research interests include system safety and reliability.

DONGSHENG WANG (Member, IEEE) was born in Yancheng, Jiangsu,
China, in 1982. He received the master’s degree in computer science from
the Jiangsu University of Science and Technology, in 2007, and the Ph.D.
degree from the Institute of Computing Technology, Chinese Academy of
Sciences, in 2012. He is currently an Associate Professor. His primary
research interests include software engineering, question answering, and
natural language understanding.

VOLUME 8, 2020

ZHAOBIN WANG was born in Qiqgihaer, Heilongjiang, China, in 1982.
He received the master’s and Ph.D. degrees from the Harbin Institute of Tech-
nology, in 2007 and 2013, respectively. He held a postdoctoral position with
the Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech
University, from 2014 to 2018. He is currently an Associate Professor. His
primary research interests include reliability theory and test in electronics,
storage reliability, reliability, and PHM.

168897

