
Received August 22, 2020, accepted August 31, 2020, date of publication September 7, 2020, date of current version September 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3022038

Adaptive Service Function Chain Scheduling in
Mobile Edge Computing via Deep
Reinforcement Learning
TIANFENG WANG , JIACHEN ZU , GUYU HU, AND DONGYANG PENG
Institute of Command and Control Engineering, Army Engineering University, Nanjing 210007, China

Corresponding author: Guyu Hu (huguyu@189.cn)

ABSTRACT MEC (Mobile Edge Computing) provides both IT service environment and cloud computation
on the edge of the network. This technology not only minimizes the end-to-end latency but also increases
the efficiency of computing. Some latency-sensitive applications, such as cloud video, online game, and
augmented reality, take advantage of the MEC system to provide fast and stable services. Several new
network techniques, including the implementation of NFV (Network Function Virtualization), the placement
of VNF (Virtual Network Function) and the scheduling of SFC (Service Function Chain), should be
considered to be applied in the MEC system. In this paper, we focus on the research about the scheduling
of SFC in the NFV enabled MEC system and propose a solution accordingly. First, we make reasonable
assumptions on the settings of MEC systems and model the SFC scheduling problem into a flexible job-shop
scheduling problem. Since minimizing the latency can significantly improve the quality of service (QoS) and
increase the revenue of Internet Service Providers, our optimization goal is tominimize the overall scheduling
latency. To solve this optimization problem, a deep reinforcement learning based algorithmDQS is proposed.
DQS can detect the variation of the MEC system’s environment and perform adaptive scheduling for SFC
requests. As the results of the simulation indicate, DQS works better than the other off-the-shelf algorithms
in two key indexes: overall scheduling latency and average resource usage. Moreover, DQS can shorten the
decision time and schedule SFCs stably with high performance. It is suitable to be extended to an online
scheduling algorithm.

INDEX TERMS Service function chain, mobile edge computing, scheduling optimization, deep reinforce-
ment learning.

I. INTRODUCTION
Nowadays, 5G is integrated with different prevalent
technologies including cloud computing and big data.
It promises to connect people and everything and becomes
a key infrastructure for the digital transformation of various
industries. MEC [1] (Mobile Edge Computing) is an essential
technology in 5G architecture, which not only provides a
closer cloud service environment on the mobile network
edge but also lightens the load of the backbone transmission
network. More importantly, MEC reduces the end-to-end
latency and improves QoS of users. The core devices of the
MEC system are the MEC servers built on the standard IT
hardware platform. These servers are generally integrated

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis .

within MDCs [2] (Micro-Data Center), which can be placed
close to the base stations and provide network services for
mobile devices.

Network Function Virtualization (NFV) [3] and Software
Defined Network (SDN) [4] are two fundamental technolo-
gies in the MEC system. NFV virtualizes network functions
by uncoupling hardware and software, making it possible to
operate the network service in a standard virtualized platform.
By separating network controlling and forwarding, SDN
enables the flexible management of network transmission
and computing resources. The integration of NFV and SDN
promises to enable cooperative control and scheduling of
network function instances in MDCs.

In this paper, we take the following assumptions. Firstly,
all the service requests arrive in the form of Service Function
Chain (SFC) from mobile devices, i.e., network flows need

164922 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3456-4317
https://orcid.org/0000-0003-1798-7051
https://orcid.org/0000-0002-5562-2072
https://orcid.org/0000-0002-5059-3145

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

to traverse through a series of network function instances to
accomplish specific tasks. Secondly, we assume that all ser-
vice functions are deployed on the Virtual Machines (VMs)
of MEC servers, which are named as Virtual Network Func-
tion (VNF) instances. As shown in Fig. 1, the MEC system
can provide localized public cloud services through MEC
servers deployed within an MDC and it can also provide
hybrid cloud services by connecting to other MDCs.

FIGURE 1. Network structure of MEC system.

The network performance of the NFV enabled MEC sys-
tem is mainly related to NFV implementation, VNF place-
ment and SFC scheduling. For NFV implementation and
VNF placement, there exist off-the-shelf solutions. Firstly,
for NFV implementation, OpenBox [5] and SNF [6] synthe-
size multiple VNFs into one equivalent VNF to improve the
performance. By contrast, ResQ [7] optimizes the implemen-
tation by restricting VNFs on independent physical equip-
ment and balancing cache. Secondly, for VNF placement,
Sang et al. [8] focus on using the minimum number of VNF
instances to serve all flows and Hawilo et al. [9] leverage
betweenness centrality to embed VNFs into the data center
(DC). However, there are few studies on SFC scheduling of
the MEC system compared with NFV implementation and
VNF placement.

The optimization of SFC scheduling problem aims to
minimize the total scheduling latency of service under the
network resource constraints, which contributes to improve
the throughput of the MEC network and provide high-quality
service to users. We show an SFC scheduling example in
Fig. 2, where two SFCs need to be scheduled in a MEC
system. There are two MDCs in the scenario and three VMs
are deployed within each MDC. In SFC1, the processing
order is VNF1→ VNF2→ VNF3→ VNF4→ VNF5; in
SFC2, the processing order is VNF6 → VNF5 → VNF3
→ VNF4 → VNF1. In this example, the computational
resources and bandwidth resources are pre-allocated before
scheduling. Then, we mainly focus on scheduling the SFCs
by matching VNFs and VMs.

FIGURE 2. SFC scheduling example in MEC.

The horizontal axis represents the scheduling latency of
SFCs. The overall scheduling latency includes processing
delay, transmission delay, propagation delay, queuing delay
of processing and queuing delay of transmission. In Fig. 2, the
total scheduling latency of SFC1 is 38 and the total scheduling
latency of SFC2 is 45.

The processing delay of a VNF instance depends on its
type and the performance of master VM, which is different
from each other. In this example, we make a reasonable
assumption about the processing delay of various VNFs over
VMs. For example, the processing delay of VNF6 is different
fromVNF1. In the transmission progress betweenMDCs, the
propagation delay cannot be ignored due to the geographical
distance, e.g., the transmission between VNF5 and VNF3
in SFC2. Due to the limitation of CPU resources, VNF
requests of different SFCs are supposed to be processed by
VMs in serial mode. On VM3, the processing of VNF3 in
SFC2 needs to wait until the processing of VNF3 in SFC1 is
completed, which results in the queueing delay of processing.
In this example, we assume that there is only one virtual
link between MDC1 and MDC2. The transmission of VNF4
in SFC1 results in the queuing delay of transmission, since
SFC2 needs to wait until the link between MDC1 and MDC2
is idle after the completion of the transmission of VNF4 in
SFC1.

Once the VNF instances are deployed on VMs, the VM
selection and the VNF scheduling order for SFC requests
will surely affect the total latency. Existing works formulate
the scheduling problem as a flexible job-shop problem [10],
[35], [36], which has been proven with no polynomial-time
solution. Traditional linear or nonlinear programming meth-
ods are ineffective in solving this problem. To address the
above challenges, we design a novel deep Q-learning [11]
based approach named DQS to schedule SFCs efficiently.
Our proposed approach has the following advantages. Firstly,
DQS can automatically adapt to the changes in the MEC
system without manual intervention. Secondly, DQS is stable
in performance for different sizes of scheduling tasks. Fur-
thermore, DQS can be easily extended as an effective online
scheduling method. The main contributions of this paper are
as follows:

VOLUME 8, 2020 164923

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

(1) Considering the MEC system’s characteristics, we for-
malize the SFC scheduling problem into a flexible job-shop
scheduling problem aiming at minimizing the total latency.

(2) Comprehensively considering the factors affecting the
scheduling latency, we propose DQS, an adaptive approach
based on DQN. Also, the intelligent agent and training pro-
cedure are carefully designed to schedule SFCs in the MEC
system automatically.

(3) The performance evaluation shows that DQS achieves
better performance in total latency and resource utiliza-
tion compared to the state-of-the-art solutions. Meanwhile,
we analyze the reasons for high efficiency of DQS and put
forward some ideas for further improvement.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III describes the system
model in detail. Section IV formulates the SFC scheduling
problem in MEC system and defines the optimization
goal. Section V proposes DQS with a detailed descrip-
tion. Section VI presents the evaluations compared to other
existing scheduling algorithms. At last, Section VII is the
conclusion.

II. RELATED WORK
Driven by the visions of IoT and 5G communications, MEC
has become an essential paradigm of mobile computing [12].
There are researches about the MEC system from a variety of
perspectives.

Research [13] introduces a taxonomy for MEC applica-
tions and analyzes chances and limitations from a technical
point of view. To bridge the gap between the industry and the
academia, different MEC deployment, discovery, and com-
munication options are discussed [14].MEC is designed as an
infrastructure to support various IoT applications [15], [16].
Meanwhile, some challenges of the MEC system are sum-
marized in [17], [18]. To facilitate the transformation of
MEC from theory to practice [19], [20], some issues, such
as service migration [21], resource orchestration [22] [23]
and service scheduling, need to be taken more seriously.
In paper [21], two novel conceptions, live migration for data
centers and handover in cellular networks, are proposed to
implement service migration. Some underlying design prin-
ciples of resource orchestration are explored in [24]. Beyond
that, MEC orchestration considering both application devel-
opers and content providers is discussed [25], [26].

The resource optimization of MEC is an important subject
that has been fully discussed in previous work. A flexible
framework is proposed which can be used to optimize the
service selection process, according to various metrics [27].
Multiple criteria decision analysis [28] is used to complete
the dynamic autonomous resource management in computing
clouds. To deal with the SLA (Service Level Agreements)
based resource allocation problem, an upper bound on the
total profit is provided and an algorithm based on force-
directed search is proposed [29]. Considering cloud users
always assign their VMswith specific PM (physical machine)
requirements [30], an efficient solution for VM placement

is proposed. Under the cloud deployment cost limitation,
an enhanced BnB (branch-and-bound) heuristic approach for
virtual function placement is proposed [31]. In [32], the VM
placement is defined as a multi-objective optimization prob-
lem and a multi-objective memetic algorithm is proposed to
solve it. In multi-cloud environment, clouds can be selected
to optimize the cost and the speed of service deployment
can be increased with appropriate scheme. To achieve these
objectives, a P-ART (Predictive-Adaptive Real Time) [33]
framework is proposed, which was examined in CloudLab.
In addition, performance evaluation of multi-cloud manage-
ment in software level is discussed. The authors in [34] point
out that functions like host creation and polling have signifi-
cant impact on the performance of the platform software.

Scheduling optimization in DC has been fully discussed
in existing works. However, there is little related references
on scheduling in the MEC environment. In [35], the first
formalization model for the VNF complex scheduling prob-
lem is proposed. The scheduling problem is ascribed to a
flexible job-shop scheduling problem (FJSP) [10], which is
a classic NP-hard problem. Although the above papers have
well formalized the SFC scheduling problem, they don’t
provide specific solutions. Assuming that the VM can process
multiple VNFs in order, three greedy algorithms and a tabu
search-based method are used for online placement and SFC
scheduling [36]. Moreover, the simulations show that the tabu
search-based method works only slightly better than the best
greedy algorithm. Reducing the scheduling latency enables
cloud operators to serve more customers and cater to services
with stringent delay requirement, SFC scheduling and traffic
steering are jointly formulated as a Mixed Integer Linear
Program (MILP) [37].Meanwhile, a Genetic Algorithm (GA)
based method is proposed in [37] to reduce the complexity of
SFC scheduling, which guarantees the scheduling efficiency
in the small-scale scenario. Authors in [38] further refine
theMILPmodel by comprehensively considering the interac-
tions amongNFsmapping ontoVNFs, service scheduling and
traffic routing. Given the complexity of the SFC scheduling
problem, they present a primal-dual decomposition using
column generation that solve a relaxed version of the prob-
lem. In order to solve the scheduling problem in the online
scenario, a matching-based algorithm is proposed, which can
guarantee a stable scheduling [39]. For the scheduling opti-
mization in MEC scenario, an affinity-based fair weighted
scheduling heuristic [14] is proposed which works better than
standard greedy scheduling algorithms.

In the MEC system, the physical servers are typically
installed in distributed MDCs to reduce the complexity of
centralized orchestration. Multiple VMs are set up in each
MDC to implement various VNFs. Compared to the single
data center scenario, more factors affecting scheduling need
to be taken into account in theMEC scenario, e.g., selection of
access point for each SFC and transmission between MDCs.
Thus, we formalize the scheduling problem in the MEC
system, which can serve as a benchmark for new research and
propose an efficient approach, DQS, to solve the problem.

164924 VOLUME 8, 2020

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

III. SYSTEM MODEL
A. SUBSTRATE NETWORK
The distributed cloud network is generally modeled as an
undirected graph G = (V, E). It typically consists of multiple
MDCs. V is the set of MDCs and E is the set of virtual links.
Here, we use E = E in ∪ Eout to distinguish links within
MDCs from links between MDCs. For each link e ∈ E , its
bandwidth capacity isBe. Since theMDCs are geographically
far away from each other in the MEC system, we use De
to represent the physical distance of link e ∈ Eout and
ignore the propagation delay within one MDC. There are
multiple VNF instances deployed on each MDC. Each VNF
instance is running on one VM in MDC. For each MDC
υ ∈ V , we use Mv to represent its supported VNF instance
number.

B. SERVICE FUNCTION CHAIN REQUESTS
In the distributed network, each flow entering the network
is in the form of SFC. A three-tuple is used to symbolize
each SFC request Si = {oi, ϕi, sizei}. For each SFC Si ∈ S,
oi ∈ V indicates the ingress node of Si and sizei indicates the
stream size of this flow. Furthermore, each Si is composed
of a series of VNFs in a specific order which is defined as
ϕi = {ϕi1, ϕi2, . . . , ϕil}. ϕij represents the jth VNF request of
Si and l = |ϕi| represents the VNF length of Si. Given a set of
SFC commodities S, we use |S| to represent the total number
of the existed commodities in the network.

IV. PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
Reducing service scheduling latency contributes to increase
network throughput and improve the QoS to users. To achieve
this goal, the network operators need to joint and optimize
SFC placement and SFC scheduling order. Given the net-
work topology, we assume several VNF instances have been
deployed inMDCs. Due to the insufficient resources in single
MDC, intercommunication between MDCs is an effective
solution which means SFC commodities can traverse through
different MDCs to complete network services. In this paper,
we aim at optimizing the overall scheduling latency of a set of
SFC requests, which can be formulated as a flexible job-shop
problem.

B. DETAILED FORMULATION
In this section, we formulate the SFC scheduling prob-
lem with strict definitions. The main notations are listed in
TABLE 1.

Here, xSie (t) indicates whether the SFC Si is transmitting
in link e and acSie represents the transmission rate of Si in
link e. Firstly, any SFC Si cannot be shunted as shown in
Eq. (1). Secondly, we assume that the transmission on each
link is a separate dynamic queue model [40]. For each link
e, the total transmission rate of SFCs transmitting on e is
limited byBe as shown in Eq. (2). The length of queue waiting
for transmission on link e changes dynamically as shown

TABLE 1. Symbols and variables.

in Eq. (3).

|ε|∑
j=1

xSiεj (t) ≤ 1∀i ∈ [1, |S|] (1)

|S|∑
i=1

xSie (t) .µ
Si
e (t) ≤ Be∀e ∈ ε (2)

WQe (t)

= max(WQe (t − 1)−
|S|∑
i=1

xSie (t − 1) .µSie (t − 1), 0)

+

|S|∑
i=1

wSie .sizei (3)

We assume that the VNF requests of different SFCs are
processed sequentially on VMs according to FIFO (first in
first out) principle. We use y

ϕij
v,m to indicate whether VNF

request ϕij is processing on the mth VM of MDC υ ∈ V .
|S|∑
i=1

|ϕi|∑
j=1

y
ϕij
v,m (t) ≤ 1 ∀m ∈ Mv ∀v ∈ V (4)

VOLUME 8, 2020 164925

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

For each VM in MDCs, only one type of VNF f ∈ F is
allowed to be deployed as shown in Eq. (5). Meanwhile, the
VNF types of VMs on the same MDC are supposed to be
different from each other as shown in Eq. (6). We use zfv,m to
indicate whether the f type VNF instance is deployed on the
mth VM of MDC υ ∈ V .∑

f ∈F

zfv,m = 1 ∀m ∈ Mv∀v ∈ V (5)

∑
f ∈F

zfv,m.z
f
v,m′ = 0 ∀m 6= m′ ∀v ∈ V (6)

C. DEFINITION OF THE SCHEDULING LATENCY
For each SFC Si, the total scheduling latency consists of
transmission delay, propagation delay, processing delay and
queueing delay of processing. The notations are listed in
TABLE 2.

TABLE 2. Symbols and variables.

We use d transi to represent the total transmission delay of Si,
which is related to the bandwidth allocation policy in queue
model and the stream size of Si. Here, d transi includes the extra
delay caused by link queueing.

Since the VMs in the sameMDCs are geographically close,
we only consider the propagation delay betweenMDCs. dpropsi
is defined to represent the total propagation delay of Si.

dpropsi =

∑
e∈Wsi∩ε

out

De
c

(7)

The processing delay of the VNF instance is determined by
the computing capacity of VM and the type of VNF. Thus, the
processing delay may vary from VM to VM. dprocsi is defined
to represent the total processing delay.

dprocsi =

∑
(v,m)∈Vsi

pv,m (8)

Each VM has a cache set to store incoming SFC. The
queueing delay of processing is proportional to the cache size
of the VM. We use dqdpsi to represent the total queueing delay
of processing.

Now, we define Tsi as the overall scheduling latency of
SFC Si.

Tsi = d transi + d
prop
si + dprocsi + d

qdp
si (9)

In an offline scheduling task, given a set of SFC commodities,
we aim at minimize the global scheduling latency for all

incoming SFC requests. The objective function is defined as:

min max
i
Tsi1 ≤ i ≤ |S|

Subject to Eq. (1)− Eq.(9) (10)

V. PROPOSED ALGORITHM
We propose a deep Q-learning based scheduling approach
named DQS to solve the problem, which allows us to learn
the optimal scheduling policy without any information of
dynamic network statistics. In DQS, the agent gets the state
information from the MEC environment and automatically
performs actions. After that, the MEC environment transfers
the reward to the agent and related strategies are updated
according to the reward. In this procedure, scheduling process
and agent training are synchronized. We can get the optimal
scheduling policy after sufficient iterations of reinforcement
training.

In this section, we introduce the proposedDQS approach in
detail from three aspects: agent design, adaptive scheduling
process, agent training procedure.

A. AGENT DESIGN
Before we introduce the proposed approach, we need to
further discuss the details in the model and make some rea-
sonable simplifications. Firstly, to reduce the complexity of
the problem, we assume that there is only one physical link
between any pair of MDCs. Within each MDC, any pair of
VMs are connected by a single virtual link that is independent
of each other. We simplify the bandwidth allocation strategy
in the dynamic queuing model. In DQS, once the SFC starts
transmitting, it takes up all the bandwidth resources until the
transmission ends. Secondly, we ignore the delay generated
from the links between VM and the access node in the same
MDC, i.e., the transmission of VMs between MDCs is only
related to the transmission on links between MDCs. Thirdly,
we assume that VM handles requests in a FIFO principle,
which means the priority of request processing is dependent
on the order of the arrival time. Finally, forwarding is not
considered in the scheduling process.

Here, we introduce the representations of state, action and
reward in details. All the defined symbols and notions are
listed in TABLE 3.

1) STATE
In our model, the components of state S include VM state Sv
and link state Se. We number all the VMs in the distributed
network and use Sv =

{
Sv1,S

v
2, . . . ,S

v
g

}
to represent the total

VMs state. c
ϕij
n is symbolized to indicate whether the VNF

request ϕij is cached on the nth VM and rptϕij is defined to
represent the residual processing time of VNF request ϕij.

Svn =
|S|∑
i=1

|ϕj|∑
j=1

(
c
ϕij
n .pn + y

ϕij
n .rptϕij

)
(11)

We number all the links and use Se =
{
Se1,S

e
2, . . . ,S

e
k

}
to

represent the total link state. We define rttSi that equals the

164926 VOLUME 8, 2020

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

TABLE 3. Symbols and variables.

residual transmission time of Si if Si is being transmitted on
the link and 0 otherwise.

Sen =
|S|∑
i=1

xS
i

n .rtt
Si (12)

2) ACTION
The design of action needs to achieve two goals: one is
that the agent can completely control the scheduling process
through actions without human intervention; another is that
the actions should be efficient and without ambiguity so
that the agent can update the action strategy to reduce the
scheduling latency. Here, we begin to describe the actions of
the agent. Once the previous VNF ϕij−1 has been processed,
the SFC Si needs to be sent to the next VM to process
ϕij. There are two issues to consider: timing selection and
destination VM selection. At each timeslot, we stipulate the
agent to send the waiting SFCs as soon as possible, which
is proved to be an effective heuristic strategy. The timing
strategy will be further discussed in section VI. Based on the
above strategy, only the choice of destination VM needs to
be considered at each step. Therefore, we define the selection
of the destination VM as an action, which can be intuitively
represented as a tuple (VM s,VMd). However, taking the VM
pairs as actions may result in a huge action space, which
will make it difficult to learn the ideal action strategy for
agents. Therefore, according to Eq. (5)-(6), we replace tuple
(VM s,VMd) with tuple (MDCs,MDCd) to reduce the action
space without ambiguity. Moreover, we number the action
tuples and define A = (a1, a2, . . . , al) as the action set.
It should be mentioned that F = Q(S,A) is symbolized as
the probability distribution to take actions, which represents
the priority of each action.

3) REWARD
The reward is generated until the end of the transmission
action. Reward R is defined as a weighted sum of three
factors:

(1)Whether the VNF ϕij is processed timely. For eachVNF
ϕij, the processing delay on the VM is a fixed value. The
transmission delay, propagation delay and queueing delay of
VNF ϕij are determined by action selection. Tϕi,j is defined
to represent scheduling latency of VNF ϕi,j. We use ξ.dproϕij
as the base scheduling latency for VNF ϕi,j and calculate R1,
where ξ is an empirical value obtained in experiments.

Tϕi,j = d tranϕij
+ dpropϕij

+ dprocϕij
+ dqdpϕij

(13)

R1 = ξ.dprocϕij
− Tϕi,j (14)

(2)Whether the destination VM is a scheduling bottleneck.
We observe the state migration in a VM granularity. At the
end of each action, we consider whether the destination VM
becomes a scheduling bottleneck. R2 is obtained by compar-
ing the state of destination VM named Svd with the states
of other VMs. If the destination VM is not a scheduling
bottleneck, the agent will get a positive reward.

R2 = max
n

Svn − Svd , n ∈ [1, |V|] ∩ n 6= d (15)

(3) Load balancing between MDCs in the system. Load
imbalance of MDCs will cause transmission congestion,
which affects the total scheduling time. We define LDn =
j∑

µ=i
Svµ to symbolize the load state of the nth MDC, where

(Svi , . . . ,S
v
j) represent the states of VMs within nth MDC.

R3 is equal to the standard deviation of the load state set of
MDCs.

R3 =

√√√√ 1
N − 1

N∑
n=1

(
LDn − L̄D

)2 (16)

B. ADAPTIVE SCHEDULING PROCESS
The pseudocode of the adaptive scheduling process is
described in Algorithm 1. Firstly, we initialize the MEC
environment and group the SFCs according to their distance
from theMDC. Each group of SFCs selects the corresponding
MDC as the access point. We assume that the first VNF of
each SFC can be processed in the access MDC. Secondly,
we prioritize SFCs according to the number of requests which
means the SFC with more VNFs has a higher priority. Next,
we steer SFCs to the VMs deployed the corresponding VNFs
according to the priority. After that, the scheduling order of
SFCs is completely determined by the agent.

State-action function Q is the brain of the agent. The tran-
sition process from S to F is divided into two steps. Firstly,
we input the VM state Sv into dense layers and the link state
Sk into convolutional layers. Secondly, we concatenate the
extracted features and feed them into dense layers to calculate
F = Q(S,A).
For each timeslot, the agent selects a random strategy F̂ =

F̃ with probability ε or selects strategy F̂ = Q(S,A) with

VOLUME 8, 2020 164927

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

FIGURE 3. Action matching in adaptive scheduling process.

Algorithm 1 Adaptive Scheduling Process
1: Initiate MEC system state and steer SFCs in access

VMs
2: for t=1,T do
3: r= Rand()
4: if r < ε then
5: Select random strategy F̂ = F̃
6: else
7: Select strategy F̂ = Q(S,A)
8: end if
9: A′ = F̂(A)
10: Collect waiting SFCs in MEC, named as SW
11: SortSW
12: for Si in SW do
13: for aj in A′ do
14: if Match

(
Si, aj

)
== True then

15: Perform transmission action according
to
(
Si, aj

)
16: Store (S, aj) in pre-memory
17: break
18: end if
19: end for
20: end for
21: for (S−, a−) in pre-memorydo
22: if a− is done then
23: Delete (S−, a−) in pre-memory
24: Calculate R = w1R1 + w2R2 + w3R3

for a−

25: Store (S−, a−,S,R) inM
26: end if
27: end for
28: end for

probability (1 − ε) corresponding to line 3∼8. In line 9,
we prioritize the actions in A according to F̂ and figure out
A′. From line 10 to line 11, we collect the SFCs waiting

to be sent in the network, named as SW , and sort them in
descending order according to the number of unprocessed
VNFs. Next, the agent takes actions by matching ({SW },A′)
and store two-tuples (S, a) in pre-memory corresponding to
line 12∼20, which will be described by a concrete example.
Finally, for each tuple (S−, a−) which the corresponding
action a− is done, we expand it into four-tuple (S−, a−,S,R)
and store the new tuple inM.

To illustrate the process of action matching more clearly,
we display an example in Fig. 3. In Fig. 3, we use circles
to represent SFCs and use different colors to represent the
state of SFC. Red represents the blocked state, green repre-
sents the processing state and yellow represents the waiting
state. At the current timeslot, S1 and S2 are waiting to be
sent. We take S1 as an example to illustrate the process of
action matching. There are three necessary conditions for a
successful action matching between a waiting SFC and an
action. Amatching is effective if the first element of the action
tuple corresponds to the MDC where the SFC is located, and
the second element of the tuple corresponds to the MDC
where deployed the required VNF. Moreover, the required
transmission link is not occupied. The agent calculates the
action strategy F according to Q(S,A). For S1, both a1 and
a4 meet the first and the second conditions. Finally, the agent
executes a1 to send S1 because a1 has a higher priority than
a4 according to F .

C. AGENT TRAINING PROCEDURE
The pseudocode of agent training procedure is described in
Algorithm 2.

From line 1 to line 3, we initialize neural networkQ, replay
memoryM, and target neural network Q̃. Model training and
adaptive scheduling are carried out simultaneously, which is
illustrated in Fig. 4.

An episode in the training model is a complete scheduling
process for all the SFC requests. In each episode, we firstly
initiate the MEC system and SFCs placement. From line 7 to

164928 VOLUME 8, 2020

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

FIGURE 4. Agent training procedure.

Algorithm 2 Agent Training Procedure
1: Initialize neural network Q with random weights θ
2: Initialize replay memoryM
3: Initialize target neural network Q̃ with

weights θ̃ = θ
4: for episode =1, P do
5: Initiate MEC system state and steer SFCs in

access VMs
6: for t=1, T do
7: Calculate F̂ ,A′, SW
8: Take actions by matching (SW ,A′)
9: Store tuples (S−, a−,S,R) inM
10: Sample a random mini-batch M̃ ⊆M
11: for (Sτ−1, aτ−1,Sτ ,Rτ) in M̃ do
12: θ = θ + α(R+ γ maxaτ Q̃

(
Sτ , aτ ; θ̃

)
−Q(Sτ−1, aτ−1; θ))∇Q(Sτ−1, aτ−1; θ)

13: end for
14: if t%η == 0 then
15: Update Q̃ by θ̃ = θ
16: end if
17: end for
18: end for

line 9, the agent takes actions based on observation of the
environment and store the tuples (state, action, reward) into
the memory M, which is described in detail in Algorithm 1.
According to the experience replay technique, the agent ran-
domly samples amini-batch M̃ ⊆M to trainQ corresponding
to line 10∼13. After every η timeslots, we update Q̃.

VI. PERFORMANCE EVALUATION
In this section, we demonstrate the performance of DQS.
Firstly, the simulation configuration is illustrated. Next,
we compare the performance of DQS with four existing
algorithms and analyze the factors affecting the scheduling
latency. Finally, we discuss the influence of delayed action
strategy on DQS, which has been mentioned in section V.

A. SIMULATION CONFIGURATION
In our model, we use a fully connected network topology
containing five MDCs to simulate a town-scale MEC system.
The detailed parameter settings are shown as follow:

TABLE 4. MEC parameter settings.

Number of VMs in each MDC: The technical report about
the 5G radio access network [41] and MEC shows that the
number of physical devices would not be very large. In the
simulation, we set the number of VMs to 5 and 10 respec-
tively, which means MDCs have different sizes of computing
resources.

Bandwidth allocation: Bandwidth allocation scheme is one
of the factors affecting total scheduling latency. In this paper,
both bandwidth withinMDCs and bandwidth betweenMDCs
are set in the range of 100 M to 200 M.

Propagation speed betweenMDCs: The propagation speed
of links between MDCs is set to 5 us/km.

Geographical distance between MDCs: The geographical
distance between is set in the range of 5 km to 10 km, which
is in line with town size.

VNF processing time: This parameter is determined by the
computing capacity of VM. Here, we set VNF processing
time in the range of 4 ms to 7 ms.

SFC length: The SFC length is chosen uniformly at random
in the range of 4 to 7, which is the expected length of SFC in
real deployments.

Size of SFC: The size of SFC is set in the range of 1 Mb
to 2 Mb, which is the size of a common network stream.

Number of SFCs: For the scenario that each MDC is
deployed with 5 VMs, we set the number of SFCs in the range
of 10 to 50; for another scenario that each MDC is deployed
with 10 VMs, we set the number of SFCs in the range of 20 to
100.

We use a Python-based framework Tensorflow to construct
the architecture of DQS and its deep neural network. All
experiments are conducted on a computer with Intel (R) Core
(TM) i7 processor and 8GB memory. The statistics are the
average results.

B. TRAINING CONFIGURATION
The parameter settings of model training are shown in
TABLE 5. Among them, the exploration rate ε is represented

VOLUME 8, 2020 164929

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

FIGURE 5. The rewards with different number of scheduling cycles.

TABLE 5. Model training parameter settings.

by a three tuple, with the first element representing the initial
exploration rate, the second element representing the mini-
mum exploration rate and the third element representing the
decline rate for ε. The weights of the reward are the empirical
values obtained from the experiments, which are set to 1, 0.2,
-0.2 respectively.

The training process of the model is also the exploration
process of the agent. The agent will observe the state from
the environment and take action according ε greedy strategy
combining exploration and exploitation. At the beginning of
the training, we set the exploration rate ε to 1. After each
agent training, we decrease the exploration rate with discount
rate 0.995. Meanwhile, we set the minimum exploration rate
as 0.01 to prevent the model from overfitting. The memory
sizeM of agent is set to 2000. If thememory limit is exceeded,
the old logs will be overwritten. The batch size of training
is set to 32, which means model training begins after the
number of logs in memory exceeds 32. For each 100 epochs
of training, we will update the parameters of Q̃.
Fig. 5 shows the evolution of the reward gained by the

agent. Each MDC is deployed with 5 VMs in scenario 1 and
each MDC is deployed with 10 VMs in scenario 2. Here, the

ordinate represents the average reward of each scheduling
cycle. We can find that the rewards gained by the agent
gradually increase and eventually tend to be stable.

C. COMPARED ALGORITHM
In the experiment, the performance of DQS is compared
with four other algorithms. We use a fast and effective algo-
rithm, the greedy-based SFC scheduling algorithm (GFP)
[36], as the baseline. The first step of GFP is to determine
the deployment of SFCs according to the distance between
virtual nodes and the second step is to determine the schedul-
ing order of SFCs according to the number of unprocessed
VNFs. In GFP, the complexity of the SFC deployment can
be calculated as O (|E | . |S| .|T |) and the complexity of the
scheduling order can be calculated as O (|S| . |L| .|T |). Here,
L represents the number of VNFs in the SFC and T repre-
sents the maximum tolerance for scheduling latency. Because
|L| � |E |, the total scheduling complexity can be represented
as O (|E | . |S| .|T |).

The second algorithm is a Genetic Algorithm based SFC
scheduling method (GA) [37]. In GA, two integer arrays
O1 and O2 are used as chromosomes to represent the VNF
assignment and the sequence of scheduling. In each iteration,
the parental generations with shorter scheduling latency are
selected to perform crossover and mutation operations. At the
end of iterations, GA outputs the population with the shortest
scheduling latency. In GA, the complexity of decoding is cal-
culated as O (|S| . |L| . |T | .|I |), where I represents the num-
ber of iterations. The complexity of crossover and mutation
operations isO (|S| . |L| .|I |). Hence, the total complexity can
be calculated as O (|S| . |L| . |T | .|I |).
The third algorithm is a matching based SFC scheduling

algorithm (Matching) [39]. Matching can guarantee stable

164930 VOLUME 8, 2020

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

FIGURE 6. The performance of total scheduling latency.

scheduling, which means all resource nodes and VNFs are
satisfied with the assignment. In Matching, the assignment
of resource nodes at each timeslot is considered as an out-
come of the one-to-one matching game. The complexity of
matching progress can be calculated as O (|E | . |S| .|T |).
The fourth algorithm is a fair weighted scheduling method

(FWS). In FWS, the VNF that needs to be executed first gets
a priority as per the arrival time. The number of VNFs in
SFC and the waiting time spent by the SFC in the queue
are two other factors that determine the scheduling order.
Meanwhile, the affinity between VNFs is taken into consid-
eration in FWS. Two VNFs belonging to the same SFC are
considered to have higher affinity and we try to place them
on the same MDC. The complexity of priority computing
can be calculated as O (|S| . |L| .|T |). And the complexity
of routing selection can be calculated as O (|S| . |N | .|T |),
where N represents the number of total VMs. Because
|L| � |N |, the total scheduling complexity can be repre-
sented as O (|S| . |N | .|T |).

The scheduling of DQS in each timeslot mainly includes
computing of F and action matching. The computing of F is
a linear mapping process with little time cost. The complex-
ity of action matching can be calculated as O (|E | . |S| .|T |).
Among all the scheduling algorithms, GA has a significantly
higher time cost than other algorithms and other algorithms
have similar time complexity.

D. PERFORMANCE EVALUATION
1) COMPARISON OF TOTAL SCHEDULING LATENCY
We first compare the performance of the five algorithms in
total scheduling latency, which is the most important evalua-
tion index. Fig. 6(a) describes the performance evaluation of
average total scheduling latency among the five algorithms
in the small-scale scenario, where 5 VMs are deployed in
each MDCs and total number of VMs is 25. The number
of SFCs is set to the range of 10 to 50. In DQS training,

the number of SFCs for scheduling task is 30. The results
show that DQS can adapt to the change of SFC number.
With the increase of the SFC number, the advantages of DQS
over other algorithms are gradually revealed. The scheduling
latency generated by the five algorithms to process 10 SFCs is
similar. However, the scheduling efficiency of DQS is 41.2 %
higher than Matching, 81.2 % higher than GA, 136.4 %
higher than GFP, 61.8% higher than FWS when the number
of SFCs is 50. Fig. 6(b) shows the evaluation result in a
large-scale scenario, where 10 VMs are deployed in each
MDCs and total number of VMs is 50. We set the number of
SFCs in the range of 20 to 100. In DQS training, the number
of SFCs for scheduling task is 60. The results show that
Matching is a relatively stable algorithm when the number of
SFCs increases significantly. FWS has a similar performance
in total latency with Matching. By contrast, with the rapid
increase of solution space, GA is difficult to find a suitable
scheduling scheme in limited time.When the number of SFCs
reaches 100, the scheduling efficiency is 39.1% higher than
Matching, 246.2% higher than GA, 303.6% higher than GFP,
49.7% higher than FWS. Since the trained agent in DQS
can work well on different tasks, we speculate that DQS can
be used as a feasible online scheduling approach for MEC
system with fixed parameter settings.

2) COMPARISON OF VM UTILIZATION
In addition to the scheduling latency, the VM utilization
is also an effective index to evaluate the efficiency of the
scheduling algorithm. Fig. 7(a) and Fig. 7(b) show the VM
utilization of each algorithm in two scenarios respectively,
where the ordinate represents the average number of VMs in
the working state at each time slot. The results show a positive
correlation between the average VM utilization and schedul-
ing efficiency.With the increase of arrival SFC numbers, both
GA and GFP cannot make full use of VM resources. In the
small-scale scenario, the average VM utilization of DQS is

VOLUME 8, 2020 164931

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

FIGURE 7. The performance of average VM utilization.

FIGURE 8. The performance of average link utilization.

41.4% higher than Matching, 66.6% higher than GA, 117.2%
higher than GFP, 61.3% higher than FWS when the number
of SFCs is 50. In the large-scale scenario, the average VM
utilization of DQS is 39.5% higher than Matching, 216.1%
higher than GA, 267.2% higher than GFP, 52.7% higher than
FWS when the number of SFCs is 100. In DQS, we consider
load balancing of VMs, which reduces the average queueing
delay of SFCs. While in the other four algorithms, the SFCs
are more likely to be allocated to the VM that contains more
caching.

3) COMPARISON OF LINK UTILIZATION
Link utilization is an index closely related to queueing delay
of transmission. Fig. 8(a) and Fig. 8(b) show the link utiliza-
tion of each algorithm in two scenarios respectively, where
the ordinate represents the average number of occupied links

at each timeslot. The results show that the link utilization of
DQS is higher than the other four algorithms. In the small-
scale scenario, the average link utilization of DQS is 30.1%
higher than Matching, 43.7% higher than GA, 75.6% higher
than GFP, 67.3% higher than FWS when the number of
SFCs is 50. And in the large-scale scenario, the average link
utilization of DQS is 32.4% higher than Matching, 138.1%
higher than GA, 167.9% higher than GFP, 41.4% higher than
FWS when the number of SFCs is 100. DQS works better
than other algorithms because load balancing among MDCs
is considered, which effectively reduces the queueing delay
of transmission caused by link congestion.

4) SCHEDULING BOTTLENECK ANALYSIS
To show the simulation results more clearly, we display
a concrete example to visualize the scheduling process of

164932 VOLUME 8, 2020

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

FIGURE 9. The number of completed SFCs.

FIGURE 10. The number of SFCs in processing.

each algorithm. In this example, each MDC contains 5 VMs
and the number of SFCs is 20. Fig. 9 shows the progress
of SFC completing of each algorithm. Fig. 10 and Fig. 11
are heat maps showing the SFC distribution in different
states. In Fig. 10, the shade of red represents the amount
of SFC being processed; in Fig. 11, the shade of blue rep-
resents the amount of SFC in the waiting state. We find
DQS can percept the idle resources in the MEC environ-
ment. Compared with other algorithms, DQS reaches the
processing peak earlier and seldom blocks. At the same
time, we find that the congestion caused by an unreasonable
scheduling sequence is the most important factor affecting
efficiency.

5) INFLUENCE OF DELAYED ACTION STRATEGY IN DQS
As introduced in Section V, we adopt a timely sending strat-
egy for the SFC in the waiting state. In fact, the timing for
sending SFCs is an issue that may further improve scheduling

FIGURE 11. The number of SFCs in waiting.

efficiency. At the end of the simulation, we conduct an algo-
rithm parameter analysis and prove that the delay strategy is
indeed effective. Fig. 12 shows the results obtained in the
large-scale scenario experiment. In the experiment, we ran-
domly block a certain proportion of the SFCs waiting for
sending at each timeslot. The results show that this strategy
is effective when the number of SFCs is set to 80 or 100. And
the total scheduling latency is reduced by 7 ms and 16 ms
respectively. As shown in Fig. 7(b) and Fig. 8(b), the resource
utilization of DQS increases when the number of SFCs is less
than 80. At this point, the timely sending strategy is more
efficient. Once the number of SFCs exceeds 80, the resource
utilization of DQS reaches saturation. Delay strategy alle-
viates resource pressure and expands solution space, which
is proven to be an effective sending strategy. In the future,
we are going to explore the exact relationship between the
delay ratio and the number of SFCs, whichmay further reduce
the scheduling latency when the resource utilization reaches
saturation.

VOLUME 8, 2020 164933

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

FIGURE 12. Comparison of total scheduling latency under different action delay ratios.

VII. CONCLUSION
In this paper, we study the SFC scheduling problem in MEC
scenario. A deep Q-learning based approach DQS is pro-
posed to implement dynamic scheduling. Compared with
other existing algorithms, DQS obtains great performance
improvement in total scheduling latency and resource uti-
lization. Moreover, we show the difference of scheduling
process between several algorithms in the form of heat map
and analyze the factors affecting scheduling.

In practice, NFV implementation and VNF placement are
relevant to SFC scheduling, i.e., resource allocation may
constrain overall performance. In addition, some novel SDN
management frameworks of MEC like LayBack [42] have
been proposed, thus considering decomposition of SFC may
improve the performance of DQS. Combining with the points
mentioned above, we will expand DQS and apply it to an
online scheduling scenario.

REFERENCES
[1] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, ‘‘Zenith: Utility-aware

resource allocation for edge computing,’’ in Proc. IEEE Int. Conf. Edge
Comput. (EDGE), Jun. 2017, pp. 47–54.

[2] W. Xiao, W. Bao, X. Zhu, and L. Liu, ‘‘Cost-aware big data processing
across geo-distributed datacenters,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 11, pp. 3114–3127, Nov. 2017.

[3] Network Functions Virtualization. Accessed: Oct. 17, 2014. [Online].
Available: https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_
White_Paper3.pdf

[4] SDN Architecture Overview. Accessed: Oct. 11, 2014. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR_SDN-ARCH-Overview-1.1-111120-
14.02.pdf

[5] A. Bremler-Barr, Y. Harchol, and D. Hay, ‘‘OpenBox: A software-defined
framework for developing, deploying, and managing network functions,’’
in Proc. Conf. ACM SIGCOMM, 2016, pp. 511–524.

[6] G. P. Katsikas, M. Enguehard, M. Kuźniar, G. Q. Maguire, Jr., and
D. Kostić, ‘‘SNF: Synthesizing high performance NFV service chains,’’
PeerJ Comput. Sci., vol. 2, p. e98, Nov. 2016.

[7] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. J. Argyraki,
S. Ratnasamy, and S. Shenker, ‘‘Resq: Enabling slos in network function
virtualization,’’ in Proc. NSDI, 2018, pp. 283–297.

[8] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, ‘‘Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,’’ in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2017, pp. 1–9.

[9] H. Hawilo, M. Jammal, and A. Shami, ‘‘Network function
virtualization-aware orchestrator for service function chaining placement
in the cloud,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 643–655,
Mar. 2019.

[10] J. F. Riera, E. Escalona, J. Batalle, E. Grasa, and J. A. Garcia-Espin,
‘‘Virtual network function scheduling: Concept and challenges,’’ in Proc.
Int. Conf. Smart Commun. Netw. Technol. (SaCoNeT), Piscataway, NJ,
USA, Jun. 2014, pp. 1–5.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-
level control through deep reinforcement learning,’’ Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015.

[12] A. Ahmed and E. Ahmed, ‘‘A survey on mobile edge computing,’’ in Proc.
10th Int. Conf. Intell. Syst. Control (ISCO), Coimbatore, India, Jan. 2016,
pp. 1–8.

[13] M. T. Beck, M. Werner, S. Feld, and T. Schimper, ‘‘Mobile edge com-
puting: A taxonomy,’’ in Proc. Int. Conf. Adv. Future Internet, 2014,
pp. 48–54.

[14] D. Bhamare, M. Samaka, A. Erbad, R. Jain, and L. Gupta, ‘‘Exploring
microservices for enhancing Internet QoS,’’ Trans. Emerg. Telecommun.
Technol., vol. 29, no. 11, p. e3445, Nov. 2018.

[15] Q.-V. Pham, F. Fang, V. Nguyen Ha, M. Jalil Piran, M. Le, L. Bao Le,
W.-J. Hwang, and Z. Ding, ‘‘A survey of multi-access edge com-
puting in 5G and beyond: Fundamentals, technology integration,
and state-of-the-art,’’ 2019, arXiv:1906.08452. [Online]. Available:
http://arxiv.org/abs/1906.08452

[16] H. Tanaka, M. Yoshida, K. Mori, and N. Takahashi, ‘‘Multi-access edge
computing: A survey,’’ J. Inf. Process., vol. 26, pp. 87–97, Feb. 2018.

[17] E. Ahmed and M. H. Rehmani, ‘‘Mobile edge computing: Opportuni-
ties, solutions, and challenges,’’ Future Gener. Comput. Syst., vol. 70,
pp. 59–63, May 2017.

[18] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[19] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[20] Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and
J. Zhang, ‘‘Edge computing and networking: A survey on infrastructures
and applications,’’ IEEE Access, vol. 7, pp. 101213–101230, 2019.

[21] S. Wang, J. Xu, N. Zhang, and Y. Liu, ‘‘A survey on service migration in
mobile edge computing,’’ IEEE Access, vol. 6, pp. 23511–23528, 2018.

164934 VOLUME 8, 2020

T. Wang et al.: Adaptive Service Function Chain Scheduling in Mobile Edge Computing

[22] M. J. Kaur, ‘‘A comprehensive survey on architecture for big data process-
ing in mobile edge computing environments,’’ in Edge Computing. Cham,
Switzerland: Springer, 2019, pp. 33–49.

[23] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, ‘‘Edge
computing: A survey,’’ Future Gener. Comput. Syst., vol. 97, pp. 219–235,
Aug. 2019.

[24] V. Nivethitha and G. Aghila, ‘‘Survey on architectural design principles for
edge oriented computing systems,’’ J. Comput. Theor. Nanosci., vol. 16,
no. 4, pp. 1617–1624, Apr. 2019.

[25] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, ‘‘A survey on vehicular
edge computing: Architecture, applications, technical issues, and future
directions,’’ Wireless Commun. Mobile Comput., vol. 2019, Feb. 2019,
Art. no. 3159762.

[26] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[27] S. Bakiras, ‘‘Approximate server selection algorithms in content dis-
tribution networks,’’ in Proc. IEEE Int. Conf. Commun., May 2005,
pp. 1490–1494.

[28] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti,
and Y. Coady, ‘‘Dynamic resource allocation in computing clouds using
distributedmultiple criteria decision analysis,’’ inProc. IEEE 3rd Int. Conf.
Cloud Comput., Jul. 2010, pp. 91–98.

[29] H. Goudarzi and M. Pedram, ‘‘Multi-dimensional SLA-based resource
allocation for multi-tier cloud computing systems,’’ in Proc. IEEE 4th Int.
Conf. Cloud Comput., Jul. 2011, pp. 324–331.

[30] K. Su, L. Xu, C. Chen,W. Chen, and Z.Wang, ‘‘Affinity and conflict-aware
placement of virtual machines in heterogeneous data centers,’’ in Proc.
IEEE 12th Int. Symp. Auto. Decentralized Syst., Mar. 2015, pp. 289–294.

[31] D. Bhamare, A. Erbad, R. Jain, M. Zolanvari, and M. Samaka, ‘‘Efficient
virtual network function placement strategies for cloud radio access net-
works,’’ Comput. Commun., vol. 127, pp. 50–60, Sep. 2018.

[32] F. L. Pires and B. Baran, ‘‘Multi-objective virtual machine placement
with service level agreement: A memetic algorithm approach,’’ in Proc.
IEEE/ACM 6th Int. Conf. Utility Cloud Comput., Dec. 2013, pp. 203–210.

[33] L. Gupta, R. Jain, A. Erbad, and D. Bhamare, ‘‘The P-ART framework
for placement of virtual network services in a multi-cloud environment,’’
Comput. Commun., vol. 139, pp. 103–122, May 2019.

[34] L. Gupta, R. Jain, M. Samaka, A. Erbad, and D. Bhamare, ‘‘Performance
evaluation of multi-cloud management and control systems,’’ Recent Adv.
Commun. Netw. Technol., vol. 5, no. 1, pp. 9–18, Dec. 2016.

[35] J. F. Riera, X. Hesselbach, E. Escalona, J. A. Garcia-Espin, and E. Grasa,
‘‘On the complex scheduling formulation of virtual network functions
over optical networks,’’ in Proc. 16th Int. Conf. Transparent Opt. Netw.
(ICTON), Piscataway, NJ, USA, Jul. 2014, pp. 1–5.

[36] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, ‘‘Design and evaluation of algorithms for mapping and scheduling
of virtual network functions,’’ inProc. 1st IEEEConf. Netw. Softwarization
(NetSoft), Piscataway, NJ, USA, Apr. 2015, pp. 1–9.

[37] L. Qu, C. Assi, andK. Shaban, ‘‘Delay-aware scheduling and resource opti-
mization with network function virtualization,’’ IEEE Trans. Commun.,
vol. 64, no. 9, pp. 3746–3758, Sep. 2016.

[38] H. A. Alameddine, S. Sebbah, and C. Assi, ‘‘On the interplay between net-
work function mapping and scheduling in VNF-based networks: A column
generation approach,’’ IEEE Trans. Netw. Service Manage., vol. 14, no. 4,
pp. 860–874, Dec. 2017.

[39] C. Pham, N. H. Tran, and C. S. Hong, ‘‘Virtual network function schedul-
ing: A matching game approach,’’ IEEE Commun. Lett., vol. 22, no. 1,
pp. 69–72, Jan. 2018.

[40] S. Tao, L. Gu, D. Zeng, H. Jin, and K. Hu, ‘‘Fairness-aware dynamic rate
control and flow scheduling for network function virtualization,’’ in Proc.
IEEE/ACM 25th Int. Symp. Qual. Service (IWQoS), Jun. 2017, pp. 1–6.

[41] P. Marsch, I. D. Silva, O. Bulakci, M. Tesanovic, S. E. E. Ayoubi,
T. Rosowski, A. Kaloxylos, and M. R. Boldi, ‘‘5G radio access network
architecture: Design guidelines and key considerations,’’ IEEE Commun.
Mag., vol. 54, no. 11, pp. 24–32, Nov. 2016.

[42] P. Shantharama, A. S. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein,
and A. Scaglione, ‘‘LayBack: SDN management of multi-access edge
computing (MEC) for network access services and radio resource sharing,’’
IEEE Access, vol. 6, pp. 57545–57561, 2018.

TIANFENG WANG received the B.S. degree
in computer science and technology from Army
Engineering University, Nanjing, China, in 2018,
where he is currently pursuing the master’s degree
with the Department of Network Engineering. His
research interests include network function vir-
tualization, mobile edge computing, and satellite
networks.

JIACHEN ZU received the B.S. degree in elec-
tronic science and technology from Shanghai Jiao
Tong University, in 2017. He is currently pursuing
the Ph.D. degree with the Department of Network
Engineering, Army Engineering University, Nan-
jing, China. His research interests include network
function virtualization, service function chain, and
satellite networks.

GUYU HU received the B.S. degree in radio com-
munication from Zhejiang University, Hangzhou,
China, in 1983, and the M.Sc. degree in com-
puter application technology and the Ph.D. degree
in communications and information systems from
the Nanjing Institute of Communication, Nanjing,
China, in 1989 and 1992, respectively. In 1990,
he devotes to the research on network manage-
ment. Since 1997, he has been a Full Professor
with Army Engineering University, Nanjing. His

research interests include computer networks, maintenance and administra-
tion of the satellite networks, and intelligent network management.

DONGYANG PENG received the B.S. degree
in computer science and technology from Army
Engineering University, Nanjing, China, in 2018,
where he is currently pursuing the master’s degree
with the Department of Network Engineering. His
research interests include satellite networks and
network management.

VOLUME 8, 2020 164935

