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ABSTRACT The development of efficient and effective evolutionary multi-objective optimization (EMO)
algorithms has been an active research topic in the evolutionary computation community. Over the years,
many EMO algorithms have been proposed. The existing EMO algorithms aremainly developed based on the
final population framework. In the final population framework, the final population of an EMO algorithm is
presented to the decision maker. Thus, it is required that the final population produced by an EMO algorithm
is a good solution set. Recently, the use of solution selection framework was suggested for the design of EMO
algorithms. This framework has an unbounded external archive to store all the examined solutions. A pre-
specified number of solutions are selected from the archive as the final solutions presented to the decision
maker. When the solution selection framework is used, EMO algorithms can be designed in a more flexible
manner since the final population is not necessarily to be a good solution set. In this paper, we examine the
design of MOEA/D under these two frameworks. We use an offline genetic algorithm-based hyper-heuristic
method to find the optimal configuration of MOEA/D in each framework. The DTLZ and WFG test suites
and their minus versions are used in our experiments. The experimental results suggest the possibility that a
more flexible, robust and high-performanceMOEA/D algorithm can be obtained when the solution selection
framework is used.

INDEX TERMS Evolutionary multi-objective optimization,MOEA/D, final population framework, solution
selection framework, hyper-heuristics.

I. INTRODUCTION
Multi-objective optimization problems are commonly found
in many real-world applications [1]–[4]. The main goal of
solving a multi-objective optimization problem is to opti-
mize (either maximize or minimize) several objective func-
tions simultaneously. However, the objective functions of
a multi-objective optimization problem are conflicting in
nature. Thus, it is not possible to obtain a single optimal solu-
tion that optimizes all the objective functions simultaneously.
Usually a set of optimal solutions with different tradeoffs is
obtained. The set of tradeoff optimal solutions is known as
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the Pareto optimal solution set. The Pareto optimal solutions
form the Pareto front in the objective space.

Owing to the advantage of being able to search for a
set of non-dominated solutions in a single run, evolution-
ary multi-objective optimization (EMO) algorithms have
been a popular approach for solving multi-objective opti-
mization problems. Over the years, various EMO algo-
rithms such as SMS-EMOA, NSGA-III, HyPE, MOEA/D,
and MOEA/D-HH have been proposed [5]. Since it is
often impractical/difficult to include user preference a priori,
most EMO algorithms in the literature are of the posteri-
ori type [6]. That is, the main aim of these EMO algo-
rithms is to find a set of well-distributed non-dominated
solutions to approximate the Pareto front. Then, a decision
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maker chooses a solution from the obtained solution
set.

Based on generation update mechanisms, EMO algorithms
can be classified into two categories. One is non-elitist algo-
rithms (e.g., MOGA [7] and NSGA [8]) and the other is
elitist algorithms (e.g., SPEA [9] and NSGA-II [10]). In non-
elitist algorithms, the current population is entirely replaced
with the offspring population. No solution in the current
population can survive to the next generation. As a result, it is
very difficult to design an efficient EMO algorithm based on
the non-elitist framework.

In elitist algorithms, good solutions (called elite individu-
als) in the current population survive to the next generation.
The most frequently-used mechanism for generation update
is the (µ + λ)-selection strategy [10]. In this mechanism,
λ solutions are generated from the current population with
µ solutions. Then, the best µ solutions are selected from
the (µ + λ) solutions for the next generation. Some elitist
EMO algorithms have an archive of a pre-specified size to
store non-dominated solutions [11]–[13]. Different archiv-
ing methods such as the Pareto dominance-based archiv-
ing methods, decomposition-based archiving methods, and
indicator-based archiving methods can be used in the archiv-
ing process [15]. The archive is updated at every genera-
tion. In these EMO algorithms, the current population or the
archive at the final generation is presented to the decision
maker.

Even though the elitist framework is much more effi-
cient than the non-elitist framework, it still has a difficulty.
As discussed in [14], good solutions can be deleted during
the generation update phase. Since the population size (and
the archive size) is pre-specified, some solutions must be
discarded during the generation update phase. New solutions
cannot be compared with those discarded solutions in previ-
ous generations. As a result, solutions in the final population
(and the final archive) are not always non-dominated among
all the examined solutions [15].

In both the non-elitist and elitist frameworks, solutions in
the final generation are presented to the decisionmaker. Thus,
EMO algorithms should be designed to have a set of well-
distributed non-dominated solutions in the final generation.
In this paper, both the non-elitist and elitist frameworks are
referred to as the final population framework (since most
of recent algorithms are based on the (µ + λ) selection
mechanism).

Recently, it was proposed to use an unbounded external
archive in the design of EMO algorithms [14]. The idea
is to present a solution set selected from all the examined
solutions to the decision maker. In this paper, this algorithm
framework is referred to as the solution selection framework.
Whereas this frameworkwas used for performance evaluation
of existing EMO algorithms in some studies [16], [17], it has
not been used for the design of new EMO algorithms. Unlike
the final population framework, the final population in the
solution selection framework does not have to be a good
solution set. The solution selection framework can use an

EMO algorithmwith a bounded internal archive together with
an unbounded external archive (whereas we do not discuss
such an EMO algorithm in this paper).

This paper aims to clearly demonstrate the flexibility of
the solution selection framework in the design of EMO
algorithms. We use Multi-objective Evolutionary Algorithm
based on Decomposition (MOEA/D) [18] as a sample to
empirically show the advantages of the solution selection
framework. MOEA/D is a well-known and frequently-used
EMO algorithm especially for many-objective optimization.
A number of approaches have been proposed to further
improve the performance of MOEA/D (e.g., with respect to
the choice of a scalarizing function and the specification of
weight vectors). In our former study [19], we demonstrated
that the performance of MOEA/D is sensitive to the specifi-
cation of the reference point and more robust performance is
obtained by the solution selection framework.

Motivated by the promising experimental results in our
former study about the reference point specification [19],
we further investigate other components and parameters in
MOEA/D in this paper. Our experiments are conducted using
the two algorithm frameworks, as follows:

1. Final population framework. The output of the
MOEA/D algorithm is the solutions in the final pop-
ulation.

2. Solution selection framework. The output of the
MOEA/D algorithm is a solution set selected from all
examined solutions in an unbounded external archive.

The examined MOEA/D components include a scalariz-
ing function, a crossover operator, and a mutation operator.
The examined parameters include the neighborhood size, the
normalization parameter, the initial reference point and the
final reference point in the dynamic reference point mech-
anism, the crossover rate, and the mutation rate. Since the
parameter space is large and complex, we use an offline
genetic algorithm-based hyper-heuristic method to search for
the optimal configuration of MOEA/D under each algorithm
framework for each test problem. Then, the obtained opti-
mal algorithm configurations are compared and analyzed.
As test problems, we use the three-objective DTLZ1-4 [20],
WFG1-9 [21], and their minus versions [22]. We search for
the best MOEA/D design for each of these 26 test problems
under each algorithm framework.

The main contributions of this paper are listed as follows:

• A GA-based hyper-heuristic method is used to search
for the optimal configurations of MOEA/D under two
different algorithm design frameworks, namely the final
population framework and the solution selection frame-
work.

• A number of important components and parameters of
MOEA/D are identified and form the algorithm design
space for MOEA/D.

• Both the obtained MOEA/D configurations by the
GA-based hyper-heuristic under the final population
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framework and the solution selection framework are
evaluated with two different scenarios.

• The experimental results demonstrate the usefulness of
the solution selection framework in designing a flexible
and high-performance MOEA/D algorithm.

This paper is organized as follows. First, we briefly explain
multi-objective optimization and MOEA/D in Section II.
Next, we explain our genetic algorithm-based hyper-heuristic
method and the experiment settings in Section III. Then,
we compare the experimental results under the two algorithm
frameworks in Section IV. Finally, we conclude this paper in
Section V.

II. BACKGROUND
A. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
Let us assume that we have the following M -objective mini-
mization problem:

Minimize f (x) = (f1 (x) , . . . , fM (x)) subject to x ∈ X,

(1)

where x = (x1, . . . , xD) is a D-dimensional solution vector,
X is the feasible region, and fi(x) is the i-th objective to be
minimized (i = 1, 2, . . . ,M ).
Definition 1 (Pareto Dominance Relation):A solution vec-

tor xA is dominated by xB if and only if fi(xB) ≤ fi(xA) for all
i ∈ {1, 2, . . . ,M} and fj(xB) < fj(xA) for at least one index j.
Definition 2 (Pareto Optimal Solution): A solution x∗ is a

Pareto optimal solution if and only if it is not dominated by
any other solution in X.
The Pareto set (PS) consists of all Pareto optimal solutions.

The projection of the Pareto set to the objective space is the
Pareto front (PF).

B. MOEA/D
The basic idea of MOEA/D [18] is to decompose a multi-
objective optimization problem into N single-objective sub-
problems using a set of predefined weight vectors W =

{w1,w2, . . . ,wN } and a scalarizing function. Then, the N
subproblems are evolved in a cooperative manner by exploit-
ing the information from other subproblems during the search
process.

A set of uniformly distributed weight vectors W is used
in most MOEA/D implementations in the literature. Each
weight vector wj =

(
wj1,w

j
2, . . . ,w

j
M

)
must fulfil the fol-

lowing relation:

wj1 + w
j
2 + · · · + w

j
M = 1, (2)

where wji ≥ 0 (i = 1, 2, . . . ,M ) and j ∈ {1, 2, . . . ,N }. In our
study, the Das and Dennis method [23] is used to systemat-
ically generate the weight vectors. Since each subproblem j
has a single individual xj (j ∈ {1, 2, . . . ,N }), the population
size equals to the number of subproblems (the number of
weight vectors) in MOEA/D.

C. COMPONENTS AND PARAMETERS IN MOEA/D
MOEA/D includes a number of components and parameters
which need to be specified. They are explained in this sub-
section.

1) SCALARIZING FUNCTIONS
It is known that a scalarizing function plays an essen-
tial role in MOEA/D. The scalarizing function is used
to calculate the fitness value of each individual. In this
paper, we consider five scalarizing functions: the weighted
sum

(
gWS

)
, Tchebycheff

(
gTCH

)
, modified Tchebycheff

(gMTCH), penalty-based boundary intersection (PBI)
(
gPBI

)
,

and inverted penalty-based boundary intersection (IPBI)
(gIPBI) functions. The five scalarizing functions are given as
follows:
Weighted Sum (WS) [18]:

Minimize gWS (x|w) = w1f1 (x)+ . . .+ wM fM (x) , (3)

Tchebycheff (TCH) [18]:

Minimize gTCH
(
x|w, z∗

)
= max

i=1,2,...,M
{wi · |z∗i − fi (x) |}, (4)

where z∗ =
(
z∗1, z

∗

2, . . . , z
∗
M

)
is the reference point (which

is served as the origin of the weight vectors). In our study,
we consider a dynamic reference point mechanism proposed
in [24]. In principle, the ideal point is used as the reference
point. However, the ideal point is unknown for real-world
problems. Thus, the common practice is to specify each
element z∗i of z

∗ by theminimum value of each objective fi (x)
over all solutions examined so far, as shown in (5) and (6).

z∗i = zmini − εi, εi ≥ 0, (5)

zmini = min {fi (x) , x ∈ S} , i = 1, 2, . . . ,M , (6)

where εi is a non-negative number, and S consists of all
examined solutions. The value of εi is set to zero in the
original MOEA/D.

A dynamic reference point mechanism [24] has shown to
be useful for improving the performance ofMOEA/D. As dis-
cussed in [24], in the early stage of evolution, the estimated
reference point is usually inaccurate since the population is
not close to the Pareto front. The accuracy of the estimated
reference point is gradually improved through the evolution.
Based on these discussions, the following linearly decreasing
formulation was proposed in [24]:

εi =
(
εinii − ε

end
i

)( T − t
T − 1

)
+ εendi , (7)

where T is the maximum generation number, t is the current
generation index (t = 1, 2, . . . ,T ), and εinii and εendi are the
initial and final settings of εi, respectively.
Modified Tchebycheff (MTCH) [25]:

Minimize gMTCH (x|w, z∗) = max
i=1,2,...,M

{
∣∣z∗i − fi (x)∣∣ /wi},

(8)
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where z∗ is the reference point. In this paper, we use the
formulation in (5)-(7) as in the Tchebycheff function. If wi =
0, wi is set to 10−6 to avoid division by zero.

Penalty-based Boundary Intersection (PBI) [18]:

Minimize gPBI
(
x|w, z∗

)
= d1 + θd2, (9)

where the penalty parameter θ is a user-definable non-
negative real number. The commonly-used value for θ is 5.
The two distances d1 and d2 are defined as

d1 =
∣∣∣(f (x)− z∗)Tw∣∣∣ / ‖w‖ , (10)

d2 =
∥∥f (x)− z∗ − d1(w/ ‖w‖)∥∥ , (11)

where z∗ is the reference point specified by (5)-(7).

Inverted PBI (IPBI) function [26]:

Maximize gIPBI
(
x|w, zN

)
= d1 − θd2, (12)

where θ is the penalty parameter. The two distances d1 and
d2 are defined as

d1 =
∣∣∣(zN − f (x))Tw∣∣∣ / ‖w‖ , (13)

d2 =
∥∥∥zN − f (x)− d1(w/ ‖w‖)∥∥∥ , (14)

where zN =
(
zN1 , z

N
2 , . . . , z

N
M

)
is the estimated nadir point.

Each element zNi of zN is specified by the maximum value of
each objective fi (x) in the current population.

2) NORMALIZATION MECHANISM
In this paper, we consider a simple normalization mecha-
nism [27] in MOEA/D to deal with problems with differently
scaled objectives. The estimated ideal point z∗(with εi = 0
in (5)) and the estimated nadir point zN are used to normalize
the objective value zi as follows:

zi :=
zi − z∗i

zNi − z
∗
i + ε

, (15)

where ε (which is referred to as the normalization parameter
in this paper) is a positive real number used to prevent the
denominator from becoming zero in the case of zNi = z∗i .

3) NEIGHBORHOOD STRUCTURES
Neighborhood structure is an important feature of MOEA/D.
Each subproblem has its own neighborhood which is defined
by the Euclidean distance between weight vectors. For each
subproblem, two parents are randomly selected from its
neighborhood to generate a new solution. Then, the newly
generated solution is compared with all solutions in its neigh-
borhood (including the current solution of the current sub-
problem). All inferior neighbors are replaced with the newly
generated solution. In the original MOEA/D, the same neigh-
borhood is used for both mating and replacement.

In [28], the use of two different neighborhood struc-
tures for mating and replacement was investigated. For
many-objective knapsack problems, it was shown that the
search ability of MOEA/D can be improved by using a

larger neighborhood structure for replacement than mating.
In this paper, we also examine the use of two neighborhood
structures.

4) GENETIC OPERATORS
In the literature, many EMO algorithms use the SBX
crossover [29] and the polynomial mutation [30] for
multi-objective continuous optimization problems. In addi-
tion to these commonly-used genetic operators, we also
examine some other operators: the whole arithmetic
crossover (WAX) [31], the local arithmetic crossover
(LAX) [32], the Gaussian mutation [30], and the random
mutation [6].

III. HYPER-HEURISTICS USING A GENETIC ALGORITHM
A. ALGORITHM DESIGN SPACE FOR MOEA/D
As explained in the previous section, MOEA/D has a number
of components and parameters to be specified. In this paper,
we search for an optimal configuration of MOEA/D under
each algorithm framework (i.e., final population and solution
selection) for each test problem. More specifically, we try
to find the best combination of the components and param-
eters in Table 1. The domain of each component/parameter
is shown in the column labeled ‘‘Domain’’ in Table 1. For
example, one of {WS, TCH, PBI, IPBI, MTCH} is selected
as a scalarizing function. For the penalty parameter θ in PBI
and IPBI, a real number is specified in the closed interval
[0, 10]. In this paper, the MOEA/D algorithm design means
the choice of a possible value in the domain for each compo-
nent/parameter in Table 1.

In our experiments, the population size for MOEA/D is
fixed to 91, and the distribution index for the SBX crossover
and the polynomial mutation is fixed to their default value 20.

B. GENETIC ALGORITHM-BASED HYPER-HEURISTIC
In this paper, we use a genetic algorithm-based hyper-
heuristic method to find the optimal MOEA/D algorithm
design for the final population framework and the solution
selection framework.

We use the following parameter specifications in the hyper-
heuristic method in our computational experiments:

Coding: 53-bit binary string,
Population size µ: 100,
Initial population: Random binary strings,
Termination condition: 100 generations,
Crossover: Uniform crossover with probability 1,
Mutation: Bit-flip mutation with probability 1/53,
Selection: Tournament selection with tournament size 3,
Generation update: (µ+ µ)-selection strategy,
Fitness evaluation: Average hypervolume.
In our hyper-heuristic method, each component/parameter

is represented by a binary substring. For example, the
scalarizing function g is represented by a 3-bit substring
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TABLE 1. Parameter space for MOEA/D.

Sg = s1s2s3. It is decoded as

Decode
(
Sg
)
= 1+ round

(
4
7

∑3

i=1
si23−i

)
, (16)

where round (·) means round to the nearest integer. The WS,
TCH, PBI, IPBI and MTCH functions are represented by the
decoded values 1, 2, 3, 4, and 5, respectively. The penalty
parameter θ for the PBI and IPBI functions is represented
by a 10-bit substring Sθ = s1s2s3s4s5s6s7s8s9s10. The 10-bit
substring Sθ is decoded as

Decode (Sθ ) =
10
1023

∑10

i=1
si210−i, (17)

where the 1024 real numbers in the interval [0, 10] are exam-
ined as the penalty parameter θ.Then, anMOEA/D algorithm
is represented by a binary string of length 53, where the
coding for each component/parameter is listed in the third
column of Table 1.

The hypervolume (HV) indicator is used to evaluate each
individual (i.e., the binary string of an MOEA/D configura-
tion). The larger HV value indicates the better performance.
In order to handle the stochastic nature of the MOEA/D
algorithm, each MOEA/D configuration is applied to a test
problem for five times. The average HV value over the five
runs is used as the fitness value of each individual in the
hyper-heuristic method.

In the final population framework, the HV value of the
final population of each run of the MOEA/D configura-
tion is calculated. In the solution selection framework, 91
solutions (which is the same as the population size of
MOEA/D) are selected from non-dominated solutions among
all the examined solutions in each run of the MOEA/D

configuration. We use the distance-based solution subset
selection method [33].

In the distance-based selection method, first, one of
the extreme non-dominated solutions is randomly selected
among the M extreme non-dominated solutions as the first
solution. The second solution is the non-dominated solution
with the largest distance from the first solution. Then, the non-
dominated solution with the largest distance from the first
and second solutions is selected as the third solution. The
selection process is repeated until 91 solutions are selected.
We use this method since it is computationally efficient (e.g.,
it is fast). Of course, we can use various HV-based solu-
tion subset methods [34]–[36]. Whereas they can find better
solution subsets with higher HV values, they need much
more computation time than the distance-based method.
In our hyper-heuristic method, 10,000 MOEA/D configura-
tions (100 individuals × 100 generations) are applied to the
given test problem five times. The solution subset selection is
performed 50,000 times in a single run of the hyper-heuristic
method. Thus, we use the fast distance-based solution subset
selection method in the hyper-heuristic method in this paper.
The termination condition for each MOEA/D configuration
is 10,000 solution evaluations.

HV calculation needs a reference point. Since it is
assumed that we have no knowledge about the true Pareto
front of the test problem during the algorithm design by
the hyper-heuristic method, we combined all solution sets
obtained by the five runs of all MOEA/D configurations in
the current population of the hyper-heuristic method. Then,
we select only the non-dominated solutions among them
to form an approximated Pareto front. The ideal point and
the nadir point are calculated using the approximated Pareto
front. The objective space is normalized so that the calculated
ideal and nadir points become (0, 0, . . . , 0) and (1, 1, . . . , 1).
Then, the reference point r for HV calculation is specified as
r = (r, r, . . . , r) with r = 1.1 (i.e., a slightly worse point
than the calculated nadir point in the normalized objective
space).

IV. EXPERIMENTAL RESULTS
A. OBTAINED MOEA/D CONFIGURATIONS
Our computational experiments are performed for each of the
three-objective DTLZ1-4 [20],WFG1-9 [21], and their minus
versions [22] under each algorithm framework. The obtained
MOEA/D configurations for the 26 test problems under the
final population and solution selection frameworks are shown
in Table 2 and Table 3, respectively.

In Table 2 and Table 3, we can see that the optimal
MOEA/D configurations are totally different between the
final population framework and the solution selection frame-
work. As an example, when the final population framework
is used, only the PBI and TCH functions are chosen as the
scalarizing function for the DTLZ and WFG test suites (see
Table 2). However, when the solution selection framework
is used, the WS function is selected for DTLZ2, DTLZ3,
WFG2, WFG3, and WFG6 (see Table 3).
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TABLE 2. The MOEA/D configurations obtained by the Genetic algorithm-based hyper-heuristic method for each three-objective test problem under the
final population (FP) framework.

TABLE 3. The MOEA/D configurations obtained by the genetic algorithm-based hyper-heuristic method for each three-objective test problem under the
solution selection (SS) framework.

Another example is the specification of the neighbour-
hood size. In the final population framework, the mating
neighborhood size (TMate) is always smaller than or equal

to the replacement neighborhood size (TRep). However, this
is not always the case in the solution selection framework.
As an example, for WFG9, the mating neighborhood size

163202 VOLUME 8, 2020



L. M. Pang et al.: Decomposition-Based Multi-Objective Evolutionary Algorithm Design

TABLE 4. The mean hypervolume value over 31 runs of each MOEA/D on three-objective test problems using 10,000 solution evaluations under the final
population framework. The best result is highlighted by yellow colour and the worst result is highlighted by red font.

(i.e., TMate = 10% of the population size) is larger than
the replacement neighborhood size (i.e., TRep = 5% of the
population size).

B. EVALUATION UNDER THE FINAL POPULATION
FRAMEWORK
In this subsection, the performance of each MOEA/D config-
uration in Table 2 and Table 3 is evaluated under the final pop-
ulation framework. That is, the output of each algorithm is the
solutions in the final population. For comparison purposes,
we also perform the experiments for standard MOEA/D with
the five scalarizing functions. For the standard MOEA/D, the
following default parameters are used in the computational
experiments:

Population size: 91,
Scalarizing functions: WS, TCH, MTCH, PBI, and IPBI,
Neighborhood size: 20,
Crossover: SBX with probability 1,
Distribution index for the SBX crossover: 20,
Mutation: Polynomial mutation with probability 1/D,
Distribution index for the polynomial mutation: 20.
As in [18], [22], and [26], the penalty parameter θ in

the standard MOEA/D-PBI and MOEA/D-IPBI are set as
5 and 0.1, respectively. Our computational experiments are
performed on the PlatEMO platform [37]. Each MOEA/D
algorithm is independently run 31 times on each test problem.

In order to evaluate the performance of the MOEA/D, the
HV indicator and the inverted generational distance (IGD)

indicator are used. A larger HV value and a smaller IGD
value indicate the algorithm has better performance. It should
be noted that the HV indicator is also used to evaluate each
MOEA/D configuration in the hyper-heuristic method (in
Section III.B).

As we have explained in the previous section, a reference
point is needed for calculating the HV value. In this section,
the true Pareto front information of each test problem is used
for evaluating the performance of MOEA/D. The true ideal
and nadir points are used to normalize the objective space.
The reference point r = (1.1, 1.1, 1.1) is used for the hyper-
volume calculation. For the IGD calculation, a reference point
set is needed. In our experiments, about 10,000 reference
points are uniformly sampled over the entire Pareto front of
each test problem in PlatEMO [37] as the reference point set
for the IGD calculation except for WFG3 (see the footnote of
Table 4).

Table 4 shows the mean hypervolume value over 31 runs
of each MOEA/D configuration for the three-objective
test problems. The stopping condition for each MOEA/D

1Since the reference point set for WFG3 on the PlatEMO does not cover
the flag region (the true Pareto front of the three-objective WFG3 has a flag
region [38]), we generated the reference point set for the three-objective
WFG3 problem by choosing non-dominated solutions from solution sets
obtained by different EMO algorithms. We used NSGA-II, NSGA-III,
MOEA/D-PBI, SMS-EMOA and SPEA2 with the population size 100 and
100,000 solution evaluations over 31 runs. A total of 7905 non-dominated
solutions were obtained, which were used as the reference points for HV and
IGD calculation of WFG3.
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configuration is 10,000 solution evaluations. We use the
terms ‘‘MOEA/D-WS’’, ‘‘MOEA/D-TCH’’, ‘‘MOEA/D-
MTCH’’, ‘‘MOEA/D-PBI’’, and ‘MOEA/D-IPBI’’ to denote
the standard MOEA/D with the five scalarizing func-
tions, respectively. The terms ‘‘Auto-MOEA/D-FP’’ and
‘‘Auto-MOEA/D-SS’’ are used to denote the obtained
MOEA/D configurations in Table 2 (tuned under the final
population framework) and Table 3 (tuned under the solution
selection framework), respectively. Since Auto-MOEA/D-FP
is tuned under the final population framework, it is expected
that Auto-MOEA/D-FP has the best performance among all
the algorithms. The Wilcoxon’s rank sum test at a signif-
icant level of 5% is used to evaluate the statistical differ-
ence between Auto-MOEA/D-FP and each of the other six
MOEA/D versions. The signs ‘‘+’’, ‘‘−’’, and ‘‘=’’ are used
to indicate the compared MOEA/D version is statistically
better than, worse than, or equivalent to Auto-MOEA/D-
FP. The best and worst results among the seven MOEA/D
versions are highlighted using yellow color and red color,
respectively.

In Table 4, Auto-MOEA/D-FP shows high performance.
Auto-MOEA/D-FP outperforms all the other six versions
on almost all test problems. For some test problems, Auto-
MOEA/D-FP is not the best in Table 4. However, the results
obtained by Auto-MOEA/D-FP are very similar to the best
results on those problems. From the experimental results,
we can also see that the best results for almost all test
problems are obtained by Auto-MOEA/D-FP and Auto-
MOEA/D-SS. This observation shows that a tuning procedure
is beneficial for improving the performance of MOEA/D.

Even though Auto-MOEA/D-SS shows the best perfor-
mance on some test problems, it also shows the worst per-
formance on some other test problems. For example, it has
the worst performance on WFG3. However, Auto-MOEA/D-
SS has the best performance when it is evaluated under the
solution selection framework (which will be shown in Table 6
in the next subsection). This observation suggests that the best
algorithm configuration for the solution selection framework
can be totally different from that for the final population
framework.

FIGURE 1. Solutions in the final population of a single run with the
median HV value for WFG3 under the evaluation of the final population
framework (with the stopping condition of 10,000 solution evaluations).
The blue points are the Pareto front and the red points are the obtained
solutions.

The solution sets obtained by Auto-MOEA/D-FP and
Auto-MOEA/D-SS for WFG3 under the evaluation of the

FIGURE 2. Selected solutions from all the examined solutions in a single
run (corresponding to the same single run in Fig. 1) for WFG3 under the
evaluation of the solution selection framework (with the stopping
condition of 10,000 solution evaluations). The blue points are the Pareto
front and the red points are the obtained solutions.

final population framework are shown in Fig. 1. That is,
Fig. 1 shows the solutions in the final population of a single
run of each algorithm. A single run (over 31 runs) with
the median HV value (from Table 4) is selected. We can
see that the final population of Auto-MOEA/D-SS is not a
good solution set. That is, only a few solutions are obtained
since many solutions are overlapping with each other. Fig. 2
shows the solution sets obtained by Auto-MOEA/D-FP and
Auto-MOEA/D-SS for WFG3 under the evaluation of the
solution selection framework. That is, Fig. 2 shows the
selected solutions from all the examined solutions in the
same single run as in Fig.1. We can see from the comparison
between Fig. 1 and Fig. 2 that better solution sets can be
obtained from the solution selection framework. We can also
see that the obtained solution set by the solution selection
framework in Fig. 2 (b) is the best with respect to the HV
indicator among the four solution sets in Fig. 1 and Fig. 2,
whereas the final population of the corresponding run in
Fig. 1(b) is the worst.

The performance of MOEA/D is also examined using a
different performance indicator (i.e., IGD) and a different ter-
mination condition (i.e., 50,000 solution evaluations) under
the final population framework. Table 5 shows the summary
of statistical comparison results between Auto-MOEA/D-FP
with the other sixMOEA/D versions using theWilcoxon rank
sum test. The signs ‘‘+’’, ‘‘−’’, and ‘‘=’’ indicate the number
of test instances on which the results of Auto-MOEA/D-FP
are significantly better than, worse than, or equivalent to other
MOEA/D versions.

We can see from Table 5 that Auto-MOEA/D-FP (which
is designed for HVmaximization under 10,000 solution eval-
uations) also shows high performance under different condi-
tions. As an example, when Auto-MOEA/D-FP is evaluated
using the HV indicator with 50,000 solution evaluations, its
performance is significantly better than each of the other
MOEA/D versions for at least 20 (out of 26) test problems.
Auto-MOEA/D-FP also shows good performance when the
IGD indicator is used for evaluation.

C. EVALUATION UNDER THE SOLUTION SELECTION
FRAMEWORK
In this subsection, each MOEA/D configuration is inde-
pendently run 31 times on each test problem under the
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TABLE 5. Summary of statistical comparison results between Auto-MOEA/D-FP with the other MOEA/D versions under different conditions.

solution selection framework. The same parameter settings
as in Section IV.B are used in the experiments. Actually, the
same 31 runs are used in Section IV.B and IV.C. That is, all
the examined solutions are stored in an unbounded external
archive in each run in Section IV.B where only the final
population was used. In this subsection, the output of each
MOEA/D algorithm is a set of selected solutions from the
unbounded external archive.

Various solution subset selection methods can be used
to select pre-specified numbers of solutions from the
unbounded external archive [19]. We use greedy HV-based
and IGD-based solution subset selection methods in our
experiments to evaluate each MOEA/D version in this paper.
A recently proposed lazy greedy inclusion technique [39]
is used for the speed-up of greedy inclusion solution subset
selection. The lazy greedy HV-based inclusion method [39]
is used in the solution selection framework when the per-
formance of MOEA/D is evaluated by the HV indicator.
Likewise, the lazy greedy IGD-based inclusion method is
used when the performance of MOEA/D is evaluated by the
IGD indicator. It should be noted that the distance-based
greedy solution subset selection method is used for the design
of Auto-MOEA/D-SS by the hyper-heuristic method. This
is because the solution subset selection method needs to be
performed 50,000 times in a single run of the hyper-heuristic
method (i.e., a very fast method needs to be used).

Table 6 shows the mean HV value over 31 runs of each
MOEA/D version for each test problem under the solution
selection framework. The termination condition in Table 6 is
10,000 solution evaluations. The Wilcoxon’s rank sum test
at a significant level of 5% is used to evaluate the statistical
difference between Auto-MOEA/D-SS and each of the six
versions of MOEA/D. In Table 6, the signs ‘‘+’’, ‘‘−’’, and
‘‘=’’ are used to indicate that the comparedMOEA/D version
is statistically better than, worse than, or equivalent to Auto-
MOEA/D-SS. The best and worst results among the seven
MOEA/D versions are highlighted using yellow color and red
color, respectively.

Auto-MOEA/D-SS shows high performance on many test
problems when it is evaluated under the solution selec-
tion framework in Table 6. Even though Auto-MOEA/D-SS
does not show the best performance on some test problems,
it shows very similar performance to the best results obtained
on those problems.

Whereas Auto-MOEA/D-SS shows the worst performance
on DTLZ2, WFG3, WFG9, Minus-DTLZ2 and Minus-
WFG7 in Table 4 (evaluation under the final population
framework), it shows the best performance onWFG3,WFG9,
and Minus-WFG7, and comparable performance on DTLZ2
and Minus-DTLZ2 (i.e., the HV values are very similar to
the best results on these two test problems) in Table 6. These
observations clearly show that the optimal algorithm config-
uration for the solution selection framework can be totally
different from that for the final population framework.

Moreover, we can see that better results are obtained in
Table 6 than Table 4 for almost all cases. Actually, higher
average HV values are obtained in 181 cases (out of 26 test
problems × 7 algorithms =182 cases). This observation
shows the usefulness of the solution selection frameworkwith
an unbounded external archive. Theoretically, the result of the
solution selection framework is always better than or equal
to that of the final population framework if we can select
the best solution set from the examined solutions. Since the
HV-based greedy selection method is used (i.e., since the
greedy algorithm is not an exact optimization algorithm),
better results are obtained in Table 4 than Table 6 for one
case (among the 182 cases). This observation suggests that
further improvement is needed for solution selection in future
studies.

In Table 6, Auto-MOEA/D-SS shows high perfor-
mance. However, if compared with the high performance
of Auto-MOEA/D-FP in Table 4, the performance of
Auto-MOEA/D-SS is not so dominant in Table 6. This is
because the distance-based solution selection is used in the
hyper-heuristic algorithm (for efficient calculation). If the
HV-based solution selection method is used, the performance
of Auto-MOEA/D-SS will be further improved. However,
at the same time, much more computation time is needed.

In Table 6, we can also see that the difference in
the average HV values between Auto-MOEA/D-FP and
Auto-MOEA/D-SS is very small for all test problems (in
comparison with the difference in Table 4) even when there
exists a statistically significant difference. This may mean
that the search for the best algorithm configuration is not
easy under the solution selection framework since differ-
ent configurations have similar performance. The search
ability of the hyper-heuristic method will be improved by
increasing the number of runs to evaluate each algorithm
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TABLE 6. The mean hypervolume value over 31 runs of each MOEA/D on three-objective test problems using 10,000 solution evaluations under the
solution selection framework (with the lazy greedy HV-based solution subset selection method). The best result is highlighted by yellow colour and the
worst result is highlighted by red font.

configuration. However, this needs more computation
time.

The performance of MOEA/D under the solution selection
framework is also examined using a different performance
indicator (i.e., IGD) and a different termination condi-
tion (i.e., 50,000 solution evaluations). Table 7 shows the
summary of statistical comparison results between Auto-
MOEA/D-SS with each of the other six MOEA/D versions
using different evaluation conditions. The signs ‘‘+’’, ‘‘−’’,
and ‘‘=’’ indicate the number of test instances on which the
results of Auto-MOEA/D-SS are significantly better than,
worse than, or equivalent to other MOEA/D versions.

In Table 7, Auto-MOEA/D-SS shows similar performance
to Auto-MOEA/D-FP on average when the termination con-
dition of 50,000 solution evaluations is used. Although sta-
tistical differences are observed in the performance between
Auto-MOEA/D-SS and Auto-MOEA/D-FP, their average
HV values are very similar as in Table 6. Auto-MOEA/D-SS
outperformed the other five MOEA/D versions on average
in Table 7 when the HV indicator is used for performance
comparison.

When the IGD indicator is used in Table 7, the performance
of Auto-MOEA/D-SS is not the best. For more than 15 test
problems (out of 26 test problems), Auto-MOEA/D-SS is
outperformed by Auto-MOEA/D-FP. One possible reason
is that different configurations are needed to obtain good

solution sets for different performance indicators. That is,
the obtained configurations for the HV indicator are not
always good for the IGD indicator. Another possible reason
is that the optimization of Auto-MOEA/D-SS has not been
fully completed as discussed for Table 6 (i.e., use of the
distance-based selection method and similar performance of
different configurations).

D. DISCUSSION
In general, offline automated algorithm design methods for
evolutionary algorithms have the following limitations:

1) LARGE COMPUTATION LOAD RELATED TO FITNESS
EVALUATION
Large computation load for evaluating each solution (i.e.,
each evolutionary algorithm implementation) are needed.
Noisy evaluation of each solution due to the stochastic nature
of evolutionary algorithm also poses a difficulty to the offline
automated algorithm design methods. In order to handle the
noisy evaluation issue, multiple runs are needed. Otherwise,
it is very likely that a solutionwith a lucky run (e.g., lucky ran-
dom initial solutions) will be chosen as the final solution. That
is, the search by the hyper-heuristic algorithm is to choose a
lucky solution (instead of a good algorithm implementation).
However, it is difficult to perform many runs due to the large
computation load.
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TABLE 7. Summary of statistical comparison results between Auto-MOEA/D-SS with the other MOEA/D versions under different conditions.

2) LARGE COMPUTATION LOAD RELATED TO OPTIMIZATION
By using various components and parameters of an evo-
lutionary algorithm as decision variables in an offline
automated algorithm design, the optimization problem by
hyper-heuristic become small. Thus, it may be easy to find
a good solution. However, the obtained good solution is
not always a good algorithm implementation since many
components and parameters are not optimized by hyper-
heuristics. Thus, we need to appropriately choose only impor-
tant (influential) components and parameters, and we need
to appropriately specify other components and parameters in
the hyper-heuristic algorithm. Both of these two tasks are not
easy.

In addition to these difficulties, in the automated design of
EMO algorithms, the following are difficult:

3) CHOICE OF A PERFORMANCE INDICATOR IN THE
HYPER-HEURISTIC ALGORITHM
In order to evaluate each implementation of an EMO
algorithm, a performance indicator is needed. The choice
of a performance indicator and its specification (e.g.,
a reference point for hypervolume calculation) is not
easy.

4) CALCULATION OF THE PERFORMANCE INDICATOR
When the hypervolume indicator is selected, its calculation
is time-consuming for many-objective problems and large
solution sets.

Moreover, when an unbounded external archive is used, the
following are difficult:

5) SELECTION OF THE FINAL SOLUTION SET
We may need an efficient and effective solution selection
method since the size of the unbounded external archive can
be very large.

6) MEMORY SIZE FOR THE UNBOUNDED EXTERNAL
ARCHIVE
If an original multi-objective problem has a large
number of decision variables (e.g., a large-scale
problem with one million decision variables),
it may need some trick to store a huge number of solutions.

V. CONCLUSION
In this paper, we empirically demonstrated the usefulness
and flexibility of the solution selection framework using the
MOEA/D algorithm on 26 test problems. An offline genetic
algorithm-based hyper-heuristic method was used to search
for the optimal MOEA/D configurations for each test prob-
lem under the final population framework and the solution
selection framework. The experimental results suggested the
optimal configurations can be totally different under the two
frameworks. Better solution sets were obtained from the
solution selection framework with a greedy solution subset
selection method for almost all test problems than the final
population framework.

As shown in this paper (and some other studies [14], [19]),
better solution sets are usually obtained from the solution
selection framework than the final population framework.
However, new algorithm design has not been studied under
the solution selection framework in the literature. This is
clearly a promising future research direction. Another impor-
tant research direction is the development of a new efficient
and effective solution subset selection method to facilitate the
solution selection framework.
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