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ABSTRACT Many problems in operations research including problems from management, production
planning and scheduling, transportation, location, and many others necessitate decision making in the
presence of uncertainty. Therefore, many theories and methodologies have been developed to deal with
optimization problems under uncertainty in general. To understand uncertain data envelopment analysis
models, the process was started by introducing the definition of uncertain variables, uncertain vectors,
fuzzy linear programming (FLP). Selection criteria of an incoming vector in improving uncertain linear
programming is established along with its unbounded nature. This paper based on the established theoretical
framework proposes an alternative linear programming model that can include some uncertainty information.
Finally, input-oriented CCR model with fuzzy variables is developed and an effective approach for measuring

efficiency is demonstrated with a numerical example.

INDEX TERMS Uncertain theory, uncertain linear programming, uncertain data envelopment analysis,

fuzzy linear programming.

I. INTRODUCTION

For efficiency analysis of business entities or organisation,
data envelopment analysis (DEA) is a well-known technique.
DEA requires precise inputs and outputs but the data for the
real-world problem is imprecise and in the form of qualitative,
linguistic. Fuzzy set theory and DEA can be integrated by
fuzzy DEA. Fuzzy DEA models take the form of fuzzy linear
programming (FLP) and we can find few papers solved by
this method.

In the literature of fuzzy DEA, only a few papers have
been published on solving these problems. However, some
authors have solved fuzzy DEA problems by 1) the tolerance
approach, 2) the ranking approach, and 3) the parametric
programming approach. The efficient frontier of the DEA
model is subject to uncertainty since the observed inputs and
observed outputs are usually uncertain. Sengupta described
two estimation viewpoints: The Least Absolute Value (LAV)
of error criterion, and chance-constrained programming [2].
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Sengupta combined a tolerance approach [7], [29] with a
fuzzy goal approach to solving fuzzy DEA.

In the case of linear membership functions, the fuzzy
DEA model was to maximize the satisfaction level of the
constraints in the fuzzy DEA model. Recently, Guo and
Tanaka [6] have introduced fuzzy inputs and fuzzy outputs
in the input-oriented CCR (Charnes, Cooper and Rhodes)
model [3]. They also studied the relationship between
Regression Analysis (RA) and DEA. The RA and CCR
model were considered as two special cases of a Goal Pro-
gramming problem. Kao and Liu [11] formulated two DEA
models: 1) The model that gives an upper limit efficiency,
and 2) the model that gives a lower limit efficiency. Then,
an interval-valued efficiency can be constructed from these
two extreme efficiencies. Further, Kao and Liu [10] stud-
ied fuzzy DEA models in the light of the model proposed
by Maeda et al. [16]. It falls into the category of paramet-
ric programming models. Kahraman and Tolga [8] eval-
uated two alternative Computer Integrated Manufacturing
Systems (CIMS) by using a fuzzy version of the CCR
model. They used the tolerance approach from Kahraman and
Tolga [8] to solve the model.
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Inaccurate or uncertain data may be the result of
non-quantifiable (say, qualitative measurements, expert
opinions), incomplete and unavailable information (confi-
dential or missed information). Inaccurate or indeterminate
data is often expressed with bounded intervals, sequence
data, or fuzzy numbers. In recent years, many researchers
have developed fuzzy DEA models to deal with situations
where some input and output data are inaccurate or inde-
terminate. There are a relatively large number of articles in
the DEA fuzzy literature. Fuzzy set theory has been widely
used to model uncertainty in DEA. Applications of fuzzy
set theory in DEA are usually divided into four groups
(Lertworasirikul [15], Lertworasirikul [14], Karsak [12]):
the tolerance approach, the a-based approach, the fuzzy
order approach, and the possible approach. Although most
of these approaches are powerful, they usually have some
theoretical and/or computational limitations and sometimes
relate to a very specific situation (e.g. Olfati et al. [27]).
The tolerance approach was one of the first fuzzy DEA
models developed by Sengupta [26] and further improved
by Kahraman ez al. [9]. In this approach, the main idea is to
incorporate uncertainty into DEA models by defining toler-
ance levels. The approach «-level is one of another popular
fuzzy models of DEA. This is evident from the number of
documents at the «-level and published in the DEA fuzzy
literature. In this approach, the main idea is to convert the
fuzzy CCR model into a pair of parametric programs to find
the lower and upper limits of the «-level member functions
of the efficiency score. The proposed method in this paper is
familiar to a-level model but the advantage of this method
obtains the result with more easy calculations in a shorter
period of time. The fuzzy order approach is also another
popular technique that has attracted much attention in the
fuzzy DEA literature. In this approach, the main idea is to
find the fuzzy efficiency score of the DMU using fuzzy linear
programs that require the order of fuzzy sets.

Application of fuzzy DEA to the newspaper preprint
insertion manufacturing process was given by Girod and
Triantis [5]. Kao and Liu [10] also used the concept of the
fuzzy sets theory for representing imprecise data. They were
studying the efficiencies of university libraries in Taiwan as
a real-world problem. Kao and Liu [10] also provided the
projection method to improve the efficiency of an ineffi-
cient DMU. After the fuzzy efficiencies for all DMUs were
obtained, they used the method of Charnes and Cooper [3]
called a simple approach to ranking a group of aggregated
fuzzy utilities to rank the fuzzy efficiency scores.

The rest of the paper is organized as follows: Section 2
presents some necessary backgrounds of uncertain theory
and particular uncertain parameters is given. Then an uncer-
tain linear programming (ULP) model will be described and
some important relevant result will be proved in Section 3.
Section 4 presents the application of a new approach to
uncertain DEA problem. Section 5 present Fuzzy math-
ematical programming with application in DEA models.
Section 6 introduces one of the convenient kinds of FLP
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problem. Section 7 will introduce uncertain data envelopment
analysis. Section 8 presents a numerical example. Finally,
Section 9 concludes the paper.

Il. DEFINITIONS AND FUNDAMENTAL BACKGROUNDS
In this section, some concepts including definitions and nota-
tion of uncertainty theory which are taken from [17], [18],
[24] and [20] are brought.

Definition 1: An uncertain variable is a measurable func-
tion X from an uncertainty space (I, 2, M) to the set of real
numbers, i.e., for any Borel set B of real numbers, the set

(X eB}={y eT'|X(y) € B}

Definition 2: The vector (X1, X2, ...,X,) is called an
uncertain vector if X1, Xp, ..., X,, are uncertain variables.

Definition 3: An uncertainty distribution ® : R — [0, 1]
of the uncertain variable, X is defined by

D(x) = M{X < x}

Note that usually, we consider linear and normal uncertain
variables for our study and the other kind is omitted here.

Definition 4: Let X be an uncertain variable. Then,
the expected value of X is defined by

oo 0
EX) :/ M{X > r}dr —/ MI{X < r}dr
0 —00

provided that at least one of the two integrals are finite.

Theorem 1: Let X and Y be denoted the independent uncer-
tain variables with finite expected values. Then, for any real
numbers a and b, we have

ElaX + bY] = aE[X] + DE[X]

Note that a normal uncertain variable X ~ A(e, o) has an
expected value E(X) = e.

Now, one of the important tools for solving LP programs
with uncertain variables will be discussed. In fact, the ranking
of uncertain parameters has a key role to establish a suitable
approach for solving these programs. Unlike the real situa-
tion, the emphasis is on the point that declares natural order
ship on the set of all uncertain variables do not exist. Hence,
it is clearly important to focus on job orders for uncertain
environments. One of the obvious and convention approaches
is ranking criteria using the expected value of the uncertain
variables. For this aim, a function from the set of all uncertain
variables to the real line is defined, where natural order exists
such that

E:FR)—> R
X - EX)

where F(RR) is the set of all uncertain variables.

Definition 5: Let X and Y be two independent uncertain
variables with similar distributions (Both are linear or both
are normal and so on).

1) Wesay X > Y iff E[X] > E[Y]

2) Wesay X =Y iff E[X] = E[Y]
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Remark 1: Wedenote X > Y if X =YorX > 7.

Lemma 1: Assume that X,Y and Z are uncertain vari-
ables. So,

1) X =X (reflexivity)

2) if X =Y, then Y = X (symmetry);

3) if X =7Y,Y = Z, then X = Z (transitivity).

Proof: 1t is straightforward based on the definition.

Remark 2: The relation ' =" is an equivalence relation on
uncertain variables based on above lemma. Furthermore, if X
is an uncertain variable, the set of uncertain variables defined
by [X] = {Y|X = Y} is called equivalence set of X.

Lemma 2: Assume X > Y then —X < —Y.

Proof: Since X > Y, we have E[X] > E[Y] if and only
if —E[X] < —E[Y]if and only if E[—X] < E[-Y] if and
only if —-X < —Y.

Lemma 3: Assume X,Y and Z are uncertain variables.
The relation < is a partial order on the set of all uncertain
variables.

Proof: Since, E : F(R) — R such that X — E(X),
then we will define a linear order in which the partial order is
eligible while it is valid naturally in the real line.

Remark 3: We emphasize that the relation < is a linear
order on the set of all uncertain variables based on above
lemma.

Lemma4:1fX <YandZ < §,thenX+Z < Y+, where
X, Y, Z and § are uncertain variables.

Proof. For achieving the mentioned result, we need to
investigate the following properties,

1) X <X (reflexivity);

2) fX <YandY <X, then X = Y (antisymmetry);

3) f X <YandY < Z, then X < Z (transitivity).

Clearly, the rest of the proof is straightforward.

Remark 4: We emphasize that the relation < is a linear
order on the set of all uncertain variables based on above
lemma.

Lemma 5:1f X <YandZ < §,thenX+Z <Y+, where
X,Y,Z and § are uncertain variables.

Proof: 1t is straightforward.

IIl. UNCERTAIN LINEAR PROGRAMMING
In this section, first the ULP is introduced and then some
concepts, definitions, and theorems and their results are pre-
sented which used throughout of the paper [10].

Definition 6: An ULP model is defined as follows:

max 1x
s.t. Hx <8
x >0 ey
Where’ H = (T[l])mxn ’ t = (tlv ey tn) ’ ﬂ = (ﬂl)mxl SUCh

that 75, #;, B; are independent uncertain variables fori € I =
{1,...,m}andjeJ ={1,...,n}.

Definition 7: Any x which satisfies all constraints of ULP is
termed as a feasible solution. The set of all feasible solutions
of ULP is called feasible space and it is denoted by S.
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Definition 8: Let x* € S. We say x* is an optimal solution
for ULP, if tx < tx* forall x € S.

Theorem 2: The ULP model (1) is equivalent to a crisp
model as follows,

max cx s.t.Px<b x>0 2)

where P = (p,-j)mxn e = (Cj)lxn ,b = (bi)yx; so that
Dij,» ¢j, bi are expected values corresponding to mj, t, B,
respectively and also x = (x;),,» Where x; is the real
decision making variable j = 1, ..., n).

Proof: Let 51 and s, be the feasible spaces of models (1)
and (2), respectively. Then x € sy, if and only if

n n
Zﬂy}g <BisE ijx/' <E[Bi]

j=1 j=1
n n
& ZE [mij]x < E1Bi] & Zpijxj <b;
j=1 J=1
S X ES 3)

Therefore, 51 = 5.
Now assume that x* is an optimal solution for the
model (1), then for all x, we have:

x* > tx < E [tx*] > E[tx]
n n
SE|Y x| ZE|D> 1
j=1 j=1

n n
DI =D @
=1 =1

It could obviously be concluded that x* is an optimal solution
for the model (2).

In this step, the above theorem will be illustrated by a
numerical example.

IV. NUMERICAL EXAMPLE. CONSIDER THE
FOLLOWING ULP
Consider the following ULP as follows:

Max £ =N@G, Dx; + N4, Dx
st N2, Dx; + NG, Dxa < N(6, 1)
NG, Dx1 + N (@2, Dxy < N5, 1)
x1,x2 =20 %)

where N (e, o) denotes the normal uncertainty distribution.
Using Theorem 2, the above program reduces to

MaxZ = 3x; + 4x»
st 2x1 +3x <6
3x1 +2x <5
x1, x>0 (6)
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The optimal solution is x* = (0.6, 0.8) and z* = 8.2 =
E[N(8.2,1.4)] = E[£*].

Now the most important concepts in linear programming
"basic feasible solution" (BFS), as well as the classical situa-
tion will be presented. Here, this concept in an uncertain envi-

ronment is defined. Consider the ULP program as follows:

Max ¢ = £x
s.t. l_lx:,B x>0 @)

x>0

where all parameters of this program are as well as given in
model (1).

LetP = (p,j)
rank (P) = m.

A partition of matrix P as [B, N] where B is as an m X m
is non-singular matrix, a that is where rank B = m such that
B = E|[B] where B is an m x m uncertain matrix which is
established by the columns of uncertain matrix in to B. Cleary,
the basic solution

= E [n],,., = E[] and assume that

mxn

Xp = (XBI,...,me)T =B_lb, xy =0

is a solution of Px = b, where b = E[B]. Now, based on
this definition the uncertain value of the objective function
for this solution is mentioned as { = £pxp. Let y; = B! pj
and g; = £py; are known for every column p; of B which is not
in B and such that there exists an i with y;; > 0. Now, if we
select pg, from B by B use of the criterion 6 = xp, /y,; =
min {xp, /y;jly;j > 0} and then replace pg, by p; in B, thus a
new BFS will be achieved as follows:

_ XB, /Vrj» for i=r
XB, = .
XB, — XB,Yij/yij,» for i#r
and
_ pj, fori=r
- 8
b {p,-, for i #r ®)

Definition 9: The ULP model is called non-degenerate,
where all basic variables which corresponds to every basis
B are nonzero and hence positive. The theorem proposes a
criterion for the selection of p; to allow as achieving a better
solution.

Theorem 3: If for any column py in P, which is not in B,
the condition ¢; < £; where g; and £; are respectively the
objective values of the current basic feasible solution and the
new basic feasible solution, holds, and if at least one y; >
0,i €I = {1,...,m} then it is eligible to obtain a new
BFS by replacing one of the columns in B by p; and a new
uncertain value for the objective function ¢ satisfies & > ¢.

Proof: Since £2;1. =£p;, i #rand fBr = £, hence:

m
- XB,. Vi X,
=B (XB; = —B’y’k> + g

i=1 Yrk Yrk
-y B <x3,. - B—y") + 0k )
i1 Yrk
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where 0 = ka’ Itis clearif 8 = 0, then ¢ = ¢. On the other
hand, in the case 8 > 0, we have

m
XB, XB,
=F |:§ £Bi (xB,' - ylk> + _£k:|
i=1 Yrk Yrk

m
B, r
=Y E|[£s] (xB,, - yik) +=LE (£)
=1 rk rk
“ xB, XB,
=Y E[£s] (x5 — “yi | + —E &)
. Tl rk
i=1
m X3, XB,
> Y E[ts] (x5 — vk ) + —CE ]
z=1 Yrk rk
xB, xB,
=E Z£3, (xg, - yik> + g
z;ér Yrk rk
XB XB
=E £5i (XB,- - r)"k) + =&
Z l Yrk ! Yrk
L l#)
XB XB “
=E Z£B, (XB, - r)’ik) + =2 Eayi
Yrk rk i—1
L t;&r
XB
=E £p, (XB, - r)"k)
Z Yrk !
L t#r

+ — Z£B Yik + — + £Bk.)’rk
Yrk 5

i#r

m m
=E Z£B,~XB,» +£p.xp, | =E |:Z £B,-xB,-:| =E[¢]

i=1 i=1
i#r

(10)

Or ¢ > ¢. This completes the proof.

Theorem 4. If for some columns p; which is not in the basis
matrix of any basic feasible solution to the model (6) which
&k < £ and alsoyy < 0,i € I = {1,...,m}, then ULP
program is unbounded.

Proof: Assume that xp is a basic feasible solution such
as xg = B~'b, where B = [pg,, ..., pg, ] is associated basis
matrix. Then, from model (3) we have Y ;" | xg,pp, = b. Also
let ¢ = £gxB, ¢k < £pand y;x < 0,i € I. So for any scalar
6 > 0, we have > ;" | xg,pp;, — Oxpk + Oxpk = b.

Therefore,

m
> (xg; — Oyix) pp; + Opr = b (11)
i=1

And hence, now there is a solution in which (m—+ 1) variables
can be different from zero. Now, the value of ¢ for the current
feasible solution is computed which is not essentially basic to
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model (10):

m
G = Z£1xz = Z£B (xB; — Oyix) + O£x
I i=1
m

=5—0) £pyu — 0%
i=1

m
=c—0 Z£B,-yik — O£y
i=1
=¢+0E—sK)p (12)

Clearly if & > 0 the value for can be made arbitrarily large.
As well as we like these columns unbounded solutions.

As we know same as the classical linear programs, it is easy
to prove that when there is a suitable (candidate) non-basic
variable it can enter the current basis and improve the value of
the objective function, we can continue the solving process by
inserting a non-basic candidate vector and removing a vector
from the current basis matrix, after a finite number iteration
to achieve the optimal solution or conclude the unbounded
case.

1) 3k suchthat gy — £ <0,y <0,i=1,...,m,or

2) V,6i-£>0
In the first case, the unbounded solution occurs but for
the second one, in the following theorem, we prove that an
optimal solution will be achieved.

Theorem 5: Assume that x3 = B~ !5 is a BFS for model
(3) such that ¢; > £; for all p; in p, then xp is an optimal basic
feasible solution (OBFS) for model (4).

Proof- Letx; > 0,j e J =1{1,...,
(3) that is

n} be any BFS for

xip1+--+xppn=2> (13)

Therefore, the corresponding uncertain value for its associ-

ated objective function, which is denoted by,
§*=£1x1+"'+£nxn (14)

On substituting p; =

Z Xiy1j | pB; +

Therefore, xp, = Z]';] Xy, i=1,...,m.
Now, let pj is the i'h column of B. So,

gj = £pyj = £pe; = £, = £; (16)

Y it YijpB;» into (12), we obtain

ijym] pB, =b  (15)

thus, for every column of P we have ¢; > £; . Consequently,
gj > £; using in (13) we see that
§1x1+"'+§nxn2§* (17

Yo £giyij into (16), we obtain

m
D Gym
=1

on substituting ¢; =

m
> x| £+ + £5, > ¢*  (18)

=1
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now if {g = £pxp, we have

¢o = xB,£B, + -+ + xB,£B,, > c* (19)

is an optimal solution for the model (3).

V. FUZZY MATHEMATICAL PROGRAMMING:
APPLICATION IN DEA MODELS

In LP models in the crisp scenario, the objective is to mini-
mize or to maximize a linear goal function under linear limits.
However, the decision-maker may not be able to determine
the goals or limits, but they can specify in a fuzzy concept.
In such conditions, it is better to use some kinds of FLP mod-
els in order to achieve more flexibility. Since fuzzy concept
can be appeared as an LP program in many cases, determining
the fuzzy programming problem is not unique.

A. APPLICATION IN INPUT-BASED CCR MODEL
Nowadays, Fuzzy sets theory has been applied as a method
to determine the unknown and uncertain parameters DEA
models. Recently, fuzzy version of DEA models has been
attracted many interests, see in [17] and [19]. Input multiplier
CCR model (19) with fuzzy data is as follows:

S
MaXZu,j/,,,
r=1
m
S.t Zvriip ~1
i=1
N m
Zurj)rj—Zvrfcij <0 forj=1,...,n
=1 i=

u, >0, for
v; > 0, for

r=1,...,s
i=1,....m (20)
where T = (1, 1,0, 0) and 0 = (0, 0, 0, 0).

Now if a kind of linear ranking function is applied to factor

matrix and a right-side vector, model (19) will be reduced
as (20),

s
Max Z Uryrp

r=1

s.t Zvrx, =
Zu,yrj_zvri,-jgo for j=1,...,n
r=1 i=1

u, >0, forr=1,...,s
vi>0, fori=1,...,m 21
Suppose that (u*, v*) is an optimized solution of DEA model

mentioned in (20), DUM,, is fuzzy efficient, if R(u*, y,) = 1,
otherwise DUM,, is not considered as fuzzy efficient.

B. APPLICATION IN FUZZY COST-EFFICIENCY
Here a cost-efficiency classic model will be introduced in
which costs in each DMU will be known and in cases which
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costs levels is assumed fuzzy numbers. According to the
fuzzy common unit vector C, = (cyp .. ., Cmp) Tor input x,,
the cost efficiency is evaluated as:

S
s ~ P
Min ¢,x, = E CipX;

r=1

n
S.t ijxljzxf, i=1,...,n
J=1

m
Z)\.jyyjzyrp, j=1,....m

j=1
Aj=0, forj=1,...,n
>0, fori=1,...,m (22)

The current model is in the form of the FLP program. Now,
assume that optimized solution is (x7*, A*), then costs effi-
ciency in ratio form determined in accordance with:

R (cpx™)
R (prp)

We have O~ < R(@E )p < 1 and DMU),, is cost efficient if and
only if R(CE)) is equal to 1.

R(CE), =

VI. FUZZY VARIABLES OF LINEAR PROGRAMMING

PROBLEMS (FVLP)

In this part, we are going to define one of the convenient kind

of FLP problem, where all variables are assumed in the fuzzy

numbers from. We will call them as FVLP problems.
Definition 10: An FVLP problem is defined as follows:

x>0 (23)

where b € (FOO))", ¥ € (FOM)',A = (a,-j)mxn €
R ol e R,

Definition 11: Tt could be said that vector x € (F(W)")
which is satisfied all constructions of models (19) is named
as a feasible solution.

Definition 12: A feasible solution X is an optimal solu-
tion for (22), if for all feasible solution x for (22), we

have cx, < cXx.

VII. UNCERTAIN DATA ENVELOPMENT ANALYSIS
DEA model has many applications for productivity inter-
pretation of the engineering and economic systems. DEA
studies organizations called DMUs (Decision-Making Units).
Generically as its definition illustrates, DMU is considered
as a unit which converts inputs into outputs and its per-
formances can be evaluated. DEA is a methodology with
characteristics of non-parametric frontier-estimation based
on LP approach. The relative efficiency of a set of DMUs
which have a common functional goal is evaluated by DEA.
It assume that there are n number DMU;, each DMU
produces s different outputs consuming m different inputs.
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Specifically, DMU; enthrall amounts ¥; = (y,;) of outputs
for r € N consuming amounts X; = (x;;) of inputs for i € I
andj € J. We assume X; > 0,X; # Oand ¥; > 0,Y; #
0,X, = (x1 P> ...,xm,,) and ¥, = (y1 Py ,ys,,) are inputs
and outputs values respectively of DMUy, which is being
evaluated.

The PPS determines the DMUs efficiency estimation.
Such a model is known as a input-oriented CCR envelop-
ment model. Using the minimization of inputs with outputs,
the model gives the efficiency score for a DMU. This model
generates efficiency score for a DMU by minimizing inputs
over outputs. Each observed DMU), an imaginary composite
unit is constructed that output forms DMU,. A; there is a
proportion which DMU,, is represented by j = 1, ..., n that
0 < op < 1is used in the construction of composite unite
for DMU,, and o Refers to the efficiency score for DMU,,
consume at least the same levels of outputs as DMU),.

In the case of inefficiency, in order to be efficient, DMU),
has to decreases its inputs. Inputs and outputs are assumed to
have definite values in ordinary DEA models. But in recent
different observations, infinite values of inputs and outputs
has been observed in some DEA applications.

Such data are named as “inaccurate”. Different forms
of inaccurate data are ordinal, qualitative, ordinal, interval,
Probabilistic or fuzzy for which some researchers were the-
oretically presented on the development of this technique in
fuzzy content [20]. Here, we use uncertain data envelopment
analysis which provides a means for handling inaccurate data.

For formulation of the uncertain DEA model, x;;, y,; for
i=1,....mj = 1,...,n,r = 1,...,s are assumed
as uncertain variables. Thus, the uncertain version of DEA
model is given as follows:

Min o

m
s.t E AjXij < opXip, 1€1
i=1

S
ijyrj <Yp, TEN
r=1

A>0, jeJ (24)

By Theorem 2, the current model can be converted to the
below LP model and then it can be solved by standard linear
programming solvers,

Min o

m
S.t ijxij <apxp, i€l
i=1

s
Z)‘jyrj =Y, T E€E N
r=1

A>0, jeJ (25)

where x;j = E[Xj] and y; = E[y] fori € I =
{1,....m},reR={1,...,s} andjeJ ={l,...,n}
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TABLE 1. The uncertain inputs and outputs.

DMTU; j=1 j=2 j=3 j=4
z1; £(29,49) L(27,47) L(25,47) L(29, 48)
Y £(4,5) £(4,5) £(4,5.1) £(4.1,5.1)
3, £(32,60) £(29,55) £(31,61) £(28,70)
T4 £(4210, 5200) £(4530, 5670) £(4310, 5330) £(4230, 5360)
x5 £(184,235) £(200, 256) £(192, 300) £(182,239)
Y15 £(3700, 4015) £(1912,2300) £(4011, 4400) £(2150,3000)
Y25 L£(3537235,62895029)  L£(60550228,81125439)  L£(3399540,5125256)  £(1299536, 7813564 )
Y3, £(111,125) £(356,500) £(80,100) £(114,122)
TABLE 2. The uncertain inputs and outputs (continued).
DMU;, i=5 7=6 =7 j=28
T, £ (26, 48) L(28, 48) L(27, 48) L(28,49)
Y £(4,5.1) £(4.1,5.1) £(4,5.1) £(4.2,5.1)
x3; £(20,34) £(30,60) £(37,52) L£(38,50)
T4 £(4350, 5350) £(4110, 5270) £(4590, 5560) £(400, 5540)
x5 £(189,270) £(190, 280) £(190, 285) L£(178,256)
Y15 £(1970,2190) L£(3217,4218) £(1870,2321) L(2750, 3200)
Y2, L£(6684542,9822048)  L£(67264574,114623564)  L£(92644574,12242458)  L£(4567894,101976104)
Y3, £(80,210) £(250,430) L£(72,80) £(100, 220)
TABLE 3. The efficiency scores.
DMU, j=1 j=2 j=3 ;=4 7=5 ;=6 ;=71 j=28
Ef ficiency 1 1 1 0.691624  0.904622 1 0.526733  0.816155
Notation description
VIIl. NUMERICAL EXAMPLE DEA Data Envelopment Analysis
Since efficiency has great importance in the banking industry, FLP Fuzzy Linear Programming
so we considered 8 Meli bank branches in Iran to clarify ULp Uncertain Linear Programming
K 3 DMU Decision Making Unit
the performance of our proposed approach in this study RA Regression Analysis
as 8 DMUs. Meli bank has a comprehensive network of LAV Least Absolute Value ]
CIMS Computer Integrated Manufacturing Systems

over 3,300 branches and 37,000 employees in Iran. Estima-
tion of countrywide coverage in Iran, service quality and
experienced multi-lingual staff are important factors of their
success. The results of the model optimization are shown
in Tables 1 and 2, which contains 5 inputs and 3 out-
puts, and they are represented by uncertain linear variables
)Vcij =L (a;cl:/, b;cl.j> 75’1’] =L (ai,é/, b;,[j ,di=1,...,5r =
I,...,3and j=1,...,8

The uncertain efficiency scores for each DMU is shown
in Table 3.

According to received reports and analyzing data from
these branches, it has been cleared that DMU,,p = 1,2,3
are 6 efficient units, while DMU,,p = 4,5,7 and 8 are
inefficient units. These results show thatif DMU,,p =4, 5,7
and 8 want to change their inferior positions, then they should
decrease their inputs accordingly. To optimize the stochastic
linear programming, different operational research software
programs can be used, e.g., Lingo and Gams. In this research,
we use Gams to modify the results.

IX. CONCLUSION

In this study, based on the proposed mathematical model
of uncertainty, a new computational approach to obtain
the optimal solution for linear programming with indefi-
nite presented variables in the objective and limiting matrix
and especially some important results proved. To illustrate
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LP Linear programming
BFS Basic Feasible Solution

OBFS Optimal Basic Feasible Solution

FVLP Fuzzy Variables of Linear Programming
PPS Production Possibility Set

CCR Charnes, Cooper, Rhodes

the advantages and effectiveness of the proposed approach,
several examples are given, in particular its application
in uncertain DEA. In particular, the results can be eas-
ily extended to other cases of uncertain variables, with a
suitable thematic introduction to these types of uncertainty.
We also emphasize that this work can be extended two-phase
approach to the evaluation and assessment of DEA models in
a fuzzy stochastic environment. One of the great advantages
of our numerical example is the use of the problem of real
cases, wherein the real-world there are many similar cases
to evaluate the performance of different branches of banks.
Our results have shown that the approaches presented in
the banking system provide a sharp assessment, while the
information is prepared on the basis of uncertainty. Also,
as it was pointed out that fuzzy versions of DEA models
attracted many interests, an interesting topic for future study
will be Pythagorean fuzzy set, where it is an effective math-
ematical tool for solving uncertain problems, especially such
as Pythagorean fuzzy interaction ability Bonferroni mean
aggregation operators when deciding on multiple attributes.
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