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ABSTRACT Land surface temperature (LST) is an important indicator for assessing the surface urban heat
island (SUHI) effect. This paper presents a novel approach to derive LST estimates by integrating machine
learning algorithm and spatiotemporal fusion model at high spatial and temporal resolution. The spatial
resolutions of Landsat TM and Landsat 8 LST data were first downscaled using random forest (RF) algorithm
from 120 m and 100 m, respectively, to 30 m. The resultant LST data were fused with MODerate-resolution
Imaging Spectroradiometer (MODIS) LST data, by means of the Flexible Spatiotemporal Data Fusion
method (FSDAF), in order to generate high spatiotemporal resolution summer daytime LST data covering
the center of Chengdu city in China. The proposed new method was used to estimate the spatiotemporal
variations of the summer daytime SUHI from 2009 to 2018 over Chengdu city. Results show that: (1) RF
performs way better than the classical downscaling algorithm—thermal sharpening algorithm (TsHARP) for
LST, and produces higher accuracy for different land covers; (2) the fused high spatiotemporal resolution
summer daytime LST values were evaluated with in situ LST obtained from Chengdu Meteorological
Office and the final validation results indicated that the proposed method, in generating LST dataset, can
provide more details of urban thermal environment and produce higher accuracy than the traditional FSDAF;
(3) significantly increasing trends of summer daytime SUHI intensity (SUHII) in the study area were
observed. SUHII increased from 2.78 ◦C in 2009 to 4.04 ◦C in 2018. The highest and lowest summer daytime
LST estimates were recorded over impervious surface area (ISA) and waters, respectively.

INDEX TERMS Machine learning algorithm, land surface temperature, spatiotemporal fusion, surface urban
heat island (SUHI).

I. INTRODUCTION
The urban heat island (UHI) refers to the urban centers experi-
encing higher temperatures than their surrounding rural areas
due to human activities, and is one of the most well-known
negative impacts of rapid urbanization in local environment,
climate, human health and energy consumption [1], [2].
Therefore, better monitoring and understanding the variation
of UHI intensity (UHII) at various temporal (inter-annual,
seasonal, diurnal) and spatial (from local to global) scales
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is of critical importance for global environmental and urban
climate research and impact studies, which has strong impli-
cations for designing effective measure to mitigate the
UHI [3], [4]. Satellite remote sensing provides an unhin-
dered tool for studying UHI, especially the Surface Urban
Heat Island (SUHI), which represents the spatial tempo-
ral structures of land surface temperature (LST) differences
between urban and suburban areas [5]. So far, various studies
have been conducted using satellite derived LST to study
SUHI for hundreds of cities around the world [6]. For
instance, Peng et al. [7] analyzed the SUHI intensity (SUHII)
of 419 largest cities around the world during 2003-2008 using
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MODerate-resolution Imaging Spectroradiometer (MODIS)
MYD11A2 LST data. Similarly, Clinton and Gong [8] used
MODIS (MOD/MYD11A2) LST data to investigate the
SUHI in every urban area between latitude 71 and −55 in
2010.

Currently, LST data available for use in the study of SUHI
are derived from Thermal Infra-Red (TIR) remote sensing
such as Landsat TM/ETM+/8 andMODIS. However, the low
spatial temporal resolution of the currently available satellite
LST products largely inhibit their potential application in
SUHI studies [9]. For example, Landsat TM/ETM+/8 TIR
data provide LST data at spatial resolution between 60 m
and 120 m. Moreover, their temporal resolution, which is
around half to one whole month, together with frequent cloud
contamination may prohibit its application for monitoring
SUHI [10]. By contrast, MODIS provide high LST temporal
resolution of one day or half a day, but with low spatial res-
olution (1000 m), and this may limit detailed spatial analysis
of SUHI [11]. In other words, due to the tradeoffs among
these spatial and temporal resolutions [12], there is currently
no single satellite system that can directly acquire LST data
of the whole earth at high spatiotemporal resolutions. It is,
thus, necessary to develop a new method that can integrate
multi-sensors to generate LST data at high spatial and tem-
poral resolution for monitoring SUHI dynamics.

In recent years, several spatiotemporal image fusion
models were developed in order to produce high spatial
and temporal surface reflectance images [13]–[16]. Although
these fusion models were originally designed to fuse short-
wave surface reflectance rather than LST fusion [17]–[20],
they have also offered a new ground for effectively predict-
ing fine LST time series. Liu and Weng [21] adopted the
STARFM model to simulate ASTER-like LST images using
MODIS for west Nile over Los Angeles, and LST predic-
tion residual was less than 1◦C. However, caution should
still apply while directly using STARFM for LST predic-
tion in urban environments since LST is usually affected
by the surrounding features [9]. In order to generate diurnal
Landsat-like LSTs, Wu et al. [22] used high spatial temporal
LST data from Landsat, MODIS, and GEOS/SEVIRI and
proposed the spatiotemporal integrated temperature fusion
model (STITFM), which successfully predicted LST with
an accuracy of 2.5 K compared with in situ data. Also,
Zhu et al. [23] put forward a Flexible Spatiotemporal Data
Fusion method (FSDAF), which can minimize the chance for
error to predict dense time series LST data and has shown
some advantages beyond other fusion methods [24].

At present, many of the existing methods were devel-
oped to fuse LST data from Landsat LST and MODIS
LST in order to predict daily or 8-day LST at the Landsat
TIR spatial resolution. Although the United States Geolog-
ical Survey (USGS) distributes resampled data from Land-
sat TIR channel, it is important to recall that the actual
spatial resolution of these datasets is still about 100 m
(Landsat TM 120 m, Landsat 8 100 m). Therefore, directly
applying the spatiotemporal fusion model in generating high

temporal LST data with data from Landsat TIR channel
remains far from meeting the needs of SUHI monitoring.
For example, Sobrino et al. [25] found the spatial resolu-
tion of LST greater than 50 m can assess SUHI effect at
district level, otherwise cannot distinguish the urban ther-
mal environment between the different urban areas. Also,
Stathopoulou and Cartalis [11] demonstrated that LST data
are easily affected by regional landscape characteristics, and
that high spatial resolution LST data could improve the
SUHII estimation accuracy. Therefore, an improved LST data
fusion approach should be developed to derive a sequence of
LST datasets at 30 m spatial resolution for SUHI quantitative
monitoring.

Chengdu city in Southwestern China enjoys a subtropical
monsoon humid climate with many cloudy and rainy days
throughout the whole year. Despite the well-established fact
that poor weather conditions in this area result in very low
probability of obtaining one cloud-free Landsat LST image
throughout the year, little to no attention has been paid to
addressing the problem. In this paper, in order to monitor the
spatiotemporal variations of the summer daytime SUHII in
Chengdu during 2009—2018, random forest (RF) was firstly
adopted to downscale the Landsat TM and Landsat 8 LST
data from 120 m and 100 m spatial resolution, respectively,
to 30 m. The FSDAF was then adopted to generate high spa-
tiotemporal resolution LST images from downscaled Landsat
TM, Landsat 8 and MODIS LST data, in order to analyze
the spatiotemporal variations of summer daytime SUHI in
Chengdu.

II. MATERIALS AND METHODS
A. STUDY AREA
Chengdu city (Figure 1a), the capital of Sichuan province,
is in Southwestern China, between 102◦ 54′ E and 104◦

53′ E longitudes, and 30◦ 05′ N and 31◦ 26′ N latitudes.
The urban area lies on the western slope of the Longmen
Mountain, it is low to the southeast and high to the north-
west. With a typical subtropical monsoon humid climate,

FIGURE 1. Study area: (a) The location of Chengdu city in Sichuan
province, China, and (b) Geolocation of the study area and the
distribution of weather stations in Chengdu city, with Landsat OLI true
color image.

VOLUME 8, 2020 164269



Y. Yao et al.: New Approach for SUHI Monitoring

the average annual precipitation is 918.2 mm, and annual
average number of sunny days does not exceed 25 days.
Rainfall is mostly abundant in the period from June toAugust,
and the annual average number of 340 days experience cloudy
and rainy weather. Although much rain is found in summer
(June - August), it also important to note that this season
remains the hottest during the year, with a seasonal mean tem-
perature of 28 ◦C [26]. High spatial resolution remote sensing
data are thus vulnerable to poor atmospheric conditions over
the area, largely limiting their potential for summer daytime
SUHI monitoring.

Chengdu city is one of the most densely populated and
economically vibrant cities in the world, the population of
the city exceeded 16.33 million in 2018. In recent years,
Chengdu has experienced rapid urbanization and industri-
alization growth rate, while large areas of cropland and
grasslands being converted into urban and built up areas.
The center of Chengdu city, covering an area of approx-
imately 3200 km2 was selected for the present study
(Figure 1b).

B. DATA AND PREPROCESSING
1) IN SITU LST
In situ LST data were collected from Chengdu Meteoro-
logical Office covering the summer (from June to August)
of 2009 and 2018. Data were acquired from 7weather stations
distributed across the study area (Figure 1b).

2) LST RETREIEVAL FROM LANDSAT DATA
Landsat satellites’ products constitute an important dataset
for LST retrieval because of the relatively high resolution
of Landsat. Landsat TM collects TIR channel data at 120 m
spatial resolution while Landsat 8 has two TIR bands at
100 m spatial resolution. Cloud free Landsat TM and Land-
sat 8 (path/row: 129/39) covering the study area were down-
load from the U.S. Geological Survey (http://earthexplorer.
usgs.gov/). However, Landsat has a 16-day revisit cycle,
which limit the use of Landsat data in SUHI studies. Data
were geographically corrected and rectified to the Universal
Transverse Mercator system (UTM/WGS84). Radiometric
correction was applied to convert the digital number (DN)
for Landsat TM and Landsat 8 into surface reflectance val-
ues using ENVI 5.3 software. Fast line-of-sight atmospheric
analysis spectral hypercubes (FLAASH) model was adopted
to remove the atmospheric influence [27]. We retrieved
LST data from Landsat TM TIR band 6 and Landsat 8
TIRS band 10 using the mono-window algorithm, because
it is a highly effective method for retrieving LST [28].
For details of the mono-window algorithm, please refer to
Qin et al. (2001) [29].

3) PREPROCESSING OF MOD11A1 AND MOD11A2
MODIS daily LST product (MOD11A1) and 8 Day average
LST product (MOD11A2) at the local time, around 10:30 am,
covering the summer of 2009 and 2018 were obtained from

NASA’s Earth Observing System Data and Information Sys-
tem (https://earthdata.nasa. gov). These are 1 km spatial
resolution LST products covering the study area (h26v05).
MOD11A1 and MOD11A2 LST data were retrieved by
means of the generalized split window algorithm [30]. Many
research results show that the accuracy of the MODIS LST
data is high in most large cities around the world [31]–[33].
We used MODIS Reprojection Tool to re-project data to the
same coordinate system as Landsat. Then, we reduced the
potential geometric errors by co-registering MOD11A1 and
MOD11A2 to Landsat LST data. Finally, we used the quality
control band in the MOD11A1 and MOD11A2 to determine
cloud contaminated pixels in order to exclude them from
further analysis.

C. IMPLEMENTATION FOR LST PREDICTION AND
MONITORING SUMMER DAYTIME SUHI
In this study, the implementation consists of two parts that
are, testing the proposed approach and monitoring summer
daytime SUHI (Figure 2).

FIGURE 2. Flowchart of testing the proposed approach and monitoring
summer daytime SUHI.

In the first part, three dates were chosen, 2 April 2018,
18 April 2018, and 5 June 2018. Both the down-
scaled Landsat 8 LST image using the RF model and
MOD11A1 images captured on 2 April 2018 at 03:32 and
03:00 UTC, respectively, were used in this study as the start
time (t1) input base data for the proposed method (Table 1),
while the other MOD11A1 data captured at 03:00 UTC on
18 April 2018 and 5 June 2018 were used as the predicted
time (tm) input base data for generating the high spatial res-
olution LST predictions at tm. In the following parts, we call
LST derived from the proposed method or FSDAF as ‘‘pre-
dicted LST’’, and LST directly from MODIS and Landsat as
‘‘observed LST’’. To test the performance of our proposed
method, the observed Landsat 8 LST images at tm were used
as the referenced data for validation. In order to validate the
accuracy of the predicted LST data, the coefficient of deter-
mination (R2), the absolute average difference (AAD), and
the root mean square error (RMSE) were computed between
the predicted LST images and the observed LST images.

If the performance of the proposed method in the first
part is better, we can conduct the next part. We selected the
pairs of downscaled Landsat TM LST image acquired on
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TABLE 1. The selected downscaled Landsat 8 LST data and MOD11A1 for
testing the proposed method.

24 March 2009, downscaled Landsat 8 LST image acquired
on 2April 2018, and theMOD11A1 data in the same period as
the input base data at t1 (Table 2). Afterwards, MOD11A2 at
tm were used to fusion the predicted LST data at 30 m spatial
resolution and temporal resolution of 8 days at tm in 2009 and
2018. Finally, the predicted summer daytime LSTs were
averaged and used to assess the spatiotemporal variations of
the summer daytime SUHI in the study area.

TABLE 2. The selected downscaled Landsat LST data and MODIS LST for
monitoring summer daytime SUHI.

1) DOWNSCALING LST USING A RANDOM FOREST MODEL
RF is an integrated extension of decision tree. The basic con-
cept of RF is to construct a set of uncorrelated classification
and decision regression trees. RF is capable to unite a big
number of binary decision trees constructed using bootstrap
samples from the training dataset and randomly select a sub-
set of independent variables and dependent variables at each
node [34]. The results of RF training turn out to be the voting
output for all decision trees. Recently, LST downscaling with
machine learning algorithms, such as RF [35], support vector
machine (SVM) [36], artificial neural network (ANN) [37],
genetic algorithm techniques (GA) [38] have been proposed
and gained more recognition with high computing preci-
sion and fast operation. RF is an effective machine learn-
ing method with the advantage of high accuracies in fitting
the nonlinear statistical relationship between LST and other
variables. Compared to common statistics-based downscaling
LST methods, RF is more efficient in complex regions, espe-
cially in urban areas. Bartkowiak et al. [34] evaluated three

LST downscaling methods in Alpine vegetated areas, RF was
found capable of modelling non-linear relationships between
LST and variables in a very robust way. It has been proven
that RF can improve LST downscaling performance in arid
regions (especially in deserts) [39]. Li et al. [40] compared
3 machine learning algorithms, and indicated that RF yielded
accurate results both in urban and rural areas.

Choosing the predictor variables in RF downscaling
approach should reflect the spatial variation of LSTs over dif-
ferent areas. Therefore, in this paper, four predictor variable
groups were selected according to the correlations between
LST and different biophysical variables. Table 3 provides a
brief description of the predictor variables employed in this
study. FromTable 3, biophysical indices were calculated from
the reflectance bands of Landsat TM and Landsat 8 with
the spatial resolution of 30 m. The land classification maps
were obtained using SVMbased on cloud-free Landsat image
in summer. A DEM was acquired from the NASA’s Shuttle
Radar Topography Mission (SRTM), at approximately 90 m
resolution. DEM derivatives such as aspect, slope and hill
shade were established using the spatial analysis tool in
ArcGIS.

A detailed procedure for LST downscaling is presented
in Figure 3.

In the first part (testing the proposed approach), LST
retrieval fromLandsat 8 with 100m resolution and the predic-
tor variables were registered to the UTM projection over the
study area. In this study, the Landsat 8 LST was aggregated to
900 m as the original low resoluton LST (LSTOLR), the pre-
dictor variables including the biophysical indices, terrain fac-
tors, and reflectance band were aggregated to 900 m as well.
On this low spatial resolution level, RF model the statistical
relationship between low resolution LST LR at 900 m and the
predictor variables, it can obtain as follows:

LST LR = f (ρL + bL + tL) (1)

where the subscript LR means variable at low resolution,
L indicates the aggregated the high spatial resolution pre-
dictors to 900 m, ρ represents the reflectance band, b is the
biophysical indices, the t is the terrain factor.

The residual LST (1) was the difference between the
LSTLR and LSTOLR, as shown in Equation (2):

1 = LST LR − LSTOLR (2)

Therefore, the training model was applied to the predic-
tor variables with high resolution (100 m) given the scale
invariance, which assume a unique statistical relationship
between LST and other variables exists within a sensor scene
at multiple spatial resolutions [35]. The downscaled LSTwith
100 m resolution (LSTH ) can be expressed as follows:

LSTH = f (ρH + bH + tH )+1 (3)

where the subscript H indicates the high resolution (100 m)
variables.

In part 2 (monitoring summer daytime SUHI), LST esti-
mates were derived from Landsat TM and Landsat 8 at their
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TABLE 3. Predictor variables used for downscaling LST.

FIGURE 3. Schematic representation of LST downscaling procedure
based on Random Forest algorithm.

original low resolution (120 m and 100 m, respectively)
LST (LSTOLR). The biophysical indices, terrain factors, and
reflectance band were also resampled to 120 m and 100 m,
respectively. On this low spatial resolution level, RF model
calculated the statistical relationship between low resolution
LSTLR and the predictor variable using Equation (1). Using

Equation (2) and Equation (3), the trainingmodel was applied
to the predictor variables with high resolution (30 m). RF was
applied to downscale Landsat TM LST and Landsat 8 LST
from 120m and 100 m, respectively, to 30 m.

2) IMPLEMENTATION OF THE PROPOSED APPROACH
Figure 4 presents a detailed procedure of the proposed
approach. In this study, we used FSDAF to fusion high spa-
tiotemporal resolution LST data in order to monitor summer
daytime SUHI covering the study area by combining the
spatiotemporal characteristics ofMOD11A1,MOD11A2 and
downscaled RF LST image. FADAF was originally devel-
oped by Zhu et al. [23] to fuse high spatial and temporal
data from one high resolution image and two low resolution
images. Zhang et al. [24] fused MODIS and Landsat image
by the FSDAF method to generate dense time series LST
data. FSDAF integrated the advantages of STARFM, spectral
unmixing analysis and spatial interpolation to minimize the
chance for error, while capturing the LST change with time
and increase the availability of high spatial and temporal LST
data. The principle of FSDAF is that data from the different
sensors are comparable and consistent.

In this study, FSDAF mainly includes the following
steps [23]: (1) classifying downscaled LST using RF at t1;
(2) detecting the changes in each class of MODIS LST from
t1 to tm; (3) predicting the high spatial resolution LST at tm
according to predicted temporal changes and calculating the
residuals of MODIS LST; (4) interpolating the MODIS LST
at tm by the thin plate spline (TPS) function to predict the
high spatial resolution LST; (5) distributing the calculated
residual in step (3) to the predicted high spatial resolution
of LST; (6) generating final high resolution predicted LST
at tm according to the assigned weight by neighborhood
information.

The calculation process can be expressed as follows:

L̂STtm
(
xij, yij

)
=LSTt1

(
xij, yij

)
+

∑n

k−1
Wk×1LST(xk , yk )

(4)

1LST
(
xij, yij

)
= εhigh

(
xij, yij

)
+1LST(c) (5)

164272 VOLUME 8, 2020



Y. Yao et al.: New Approach for SUHI Monitoring

FIGURE 4. Flowchart of the proposed method for monitoring summer daytime SUHI in the study area during 2009 to 2018.

in which L̂STtm
(
xij, yij

)
is the predicted high spatial reso-

lution LST at time tm,
(
xij, yij

)
is the coordinate index of

the jth high spatial resolution pixel within the ith low spatial
resolution pixel. LSTt1

(
xij, yij

)
is the downscaled RF LST

data at time t1, Wk is the weight of the kth similar pixel.
1LST(xk , yk ) represents the LST change from t1 to tm of sim-
ilar pixels. In Equation (5),1LST

(
xij, yij

)
is the prediction of

the total change of the target pixel
(
xij, yij

)
between t1 and tm.

εhigh
(
xij, yij

)
is the residual which is allocated to the jth high

spatial resolution pixel in the ith low spatial resolution pixel.
1LST(c) is the change in LST over a certain class in the high
spatial resolution data from t1 to tm. For more detailed steps of
the FSDAF model and the calculation of the weight, kindly
refer to previous studies [23]. TPS function can be used to

compute the residual by the following Equation:

εhigh
(
xij, yij

)
= m×L(xi, yi)×W

(
xij, yij

)
(6)

L(xi, yi) = 1L(xi, yi)−
1
m

∑m

j=1
LSTTPtm

(
xij, yij

)
−

∑m

j=1
LSTt1

(
xij, yij

)
(7)

LW (xij, yij) = Eh0(xij, yij)×HI (xij, yij)+ Ehe(xij, yij)

× [1− HI (xij, yij)] (8)

Eh0
(
xij, yij

)
= LSTSPtm

(
xij, yij

)
− LSTTPtm

(
xij, yij

)
(9)

LSTSPtm
(
xij, yij

)
= fTPS−b

(
xij, yij

)
(10)

in which L(xi, yi) is the residual values between high spatial
resolution observed LST and predicted LST, m is the number
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TABLE 4. The accuracy of SVM classification in 2018.

of the sub-pixels in low spatial resolution pixel. 1L(xi, yi)
represents the change in LST of low spatial images from
time t1 to time tm, W (xij, yij) is the normalized weight of
LW (xij, yij). LSTTPtm is the LST at time tm predicted based on
temporal change. LW (xij, yij) presents the weights of resid-
ual distribution, Eh0(xij, yij) is the temporal prediction error,
HI (xij, yij) is the homogeneous coefficient, Ehe(xij, yij) repre-
sents the equal error within a low spatial pixel. LSTSPtm

(
xij, yij

)
is the LST at time tm of each pixel in high spatial reso-
lution image based on TPS after optimizing the parameter.
fTPS−b

(
xij, yij

)
is the TPS functions.

3) SUHI INTENSITY ANALYSIS
SUHII indicator was used to assess summer daytime SUHII
in the study area from 2009 to 2018. The urban and rural area
difference in the average summer daytime LST was adopted
to identify summer daytime SUHII variations by Equation 11:

SUHII = LSTurban − LSTrural (11)

III. RESULTS
A. LAND COVER CLASSIFICATION WITH LANDSAT TM
AND LANDSAT 8
In order to analyze the spatiotemporal variations of the sum-
mer daytime SUHII in Chengdu, the first step was defining
urban and rural areas in 2009 and 2018. Cloud-free Landsat
TM and Landsat 8 data of 2009 and 2018 were acquired
in summer. The land cover maps of Chengdu in 2009 and
2018 were classified using SVM [43], [44]. The urban land
cover classes have been identified as follows: (i) vegetation;
(ii) water; (iii) bare soil; (iv) impervious surface area (ISA).
A Google Earth image acquired in the year 2018 at 1m spatial
resolution was used as the reference data to evaluate the accu-
racy of classification results. A total of 1500 sample points
from theGoogle Earth imagewere used as validation points to
assess the accuracy of the classified results. Table 4 illustrates
the producer’s and user’s accuracies.

Urban area is defined as a high intensity and densely
occupied by ISA. Rural area is defined as the buffer zone that
includes a rural area (as 150% of the urban area) around the
urban area (Figure 5).

B. TESTING THE PROPOSED APPROACH
In order to test the performance of RF in downscaling LST
data, thermal sharping algorithm (TsHARP) as the most com-
mon statistics-based LST downscaling algorithm [45], [46]
was also used to downscale LST. Firstly, Landsat 8 LST

FIGURE 5. The delineation of urban and rural areas of the study area
based on the land cover classification map in the years 2009 and 2018.

FIGURE 6. Spatial distributions of (a) 100-m observed Landsat 8 LST on
2 April 2018, (b) 900-m aggregated LST on 2 April 2018, (c) 100-m
downscaled RF LST on 2 April 2018, and (d) 100-m downscaled TsHARP
LST on 2 April 2018.

observed on 2 April 2018 (Figure 6a) was aggregated to
900 m as the low resolution LST (Figure 6b). The LST
downscaling results of RF and TsHARP from 900 m to
100 m are shown in Figure 6c and Figure 6d, respectively.
Table 5 shows the variable importance (VI) scores of RF in
the study area. The contributions of DEM, FV, Red band are
higher than other variable because Longquan Mountain is to
the east of the study area, the spatial distribution of summer
daytime LSTs is controlled by DEM, vegetation fraction and
the red band that is sensitive to vegetation changes. Besides,
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TABLE 5. Random forest variable importance scores in the study area.

IBI shows high importance proves LSTs is also affected by
impervious surface cover in the study area.

As shown in Figure 6a, four kinds of subareas notably
subarea 1 in the ISA, subarea 2 in the bare soil area, sub-
area 3 in the water area, and subarea 4 in the vegetation area
were used to further test the LST downscaling performance
for different land cover types. By computing the RMSE and
the mean error (ME) between the 100 m downscaled LST and
100 m observed Landsat 8 LST, the statistical results on the
performance of RF in LST downscaling and TsHARP model
for different land cover types are shown in Table 6.

TABLE 6. Downscaling statistics for RF and TsHARP method over the
study area and different land cover types.

Figure 7 shows the spatial distributions of LST error over
ISA, bare soil, water body, and vegetation by using the RF
and TsHARP.

From Table 6, we can see that RF produces higher LST
downscaling accuracy than TsHARP. Over the study area,
the RMSE of RF is 2.15 K, which indicates better perfor-
mance compared to TsHARP. The ME of the downscaled
LST for the RF is -0.07 K, about 0.26 K lower than TsHARP.
In Figure 7, the downscaling performances of RF is better
than TsHARP in different land cover types of the study area.
From Figure 7b, 7d, 7f, and 7h, obvious underestimations and
over estimations of the different land cover types when using
TsHARP can be observed. The RMSEs of four land cover
types range from 3.43 to 6.93 K by using TsHARP, while the
MEs are also not close to 0. This result shows that TsHARP,
that is only based on NDVI, has unsatisfactory results in
downscaling LST over various and complex land cover types.
This is because NDVI has great sensitivity to differences in
land cover categories. The RMSEs of RF ranged from 1.44 to
2.03K,while theMEswere close to 0, which proves RF based
on the relationship between LST and multitype variables can
produce the satisfactory LST downscaling results.

Therefore, the downscaled RF LST image could be used
as the start time LST base data of FSDAF for generat-
ing the high spatial resolution LST predictions at predict
time. The next step is testing the proposed method in the

FIGURE 7. Spatial distributions of LST differences over (a) ISA by using RF,
(b) ISA by using TsHARP, (c) bare soil by using RF, (d) bare soil by using
TsHARP, (e) water body by using RF, (f) water body by using TsHARP,
(g) vegetation by using RF, and (h) vegetation by using TsHARP.

first part (testing the proposed approach) of this study.
Figure 6c and 8a were the downscaled RF LST at 100 m
spatial resolution and MOD11A1 on 2 April 2018.
Figure 8b and 8e are the observed MOD11A1 data on
18 April 2018 and 5 June 2018 for predicting the LST data at
100 m spatial resolution on the same date (Figure 8c and 8f).
The observed Landsat 8 LST (Figure 8d and 8g), recorded on
18 April 2018 and 5 June 2018 can be used to evaluate the
predicted LST results at the similar time.

Figure 9 shows scatter plots of correlation between the
observed Landsat 8 LST at 03:32 UTC and predicted LSTs at
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FIGURE 8. Spatial distributions of LST: (a) 1000-m MOD11A1 acquired on
2 April 2018, (b) 1000-m MOD11A1 acquired on 18 April 2018, (c) 100-m
predicted LST on 18 April 2018 using the proposed method, (d) 100-m
observed Landsat 8 LST on 18 April 2018, (e) 1000-m MOD11A1 acquired
on 5 June 2018, (f) 100-m predicted LST on 5 June 2018 using the
proposed method, and (g) 100-m observed Landsat 8 LST on 5 June 2018.

03:00 UTC on 18 April 2018 and 5 June 2018, respectively.
From Figure 9, it can be observed that the R2 between the
predicted LST and the observed Landsat LST are 0.9025 and
0.9415, and AAD values are 0.031 K and 0.027 K, respec-
tively. RMSE values are 0.089 K and 0.082 K on the same
dates. These accuracy assessment results show that the pro-
posed method has a better performance to generate the high
spatiotemporal resolution LST data.

C. MONITORING SUMMER DAYTIME SUHI
The accuracy assessment results in the first part (testing
the proposed approach) proves that the performance of the

FIGURE 9. Scatter plots of the relation between observed Landsat 8 LST
and predicted LST image for: (a) 18 April 2018, and (b) 5 June 2018.

FIGURE 10. Spatial distributions of LST (a) 120-m observed LST on
24 March 2009, (b) 30-m downscaled RF LST on 24 March 2009, (c) 30-m
downscaled TsHARP LST on 24 March 2009, (d) 90-m resampled Landsat 8
LST on 2 April 2018, (e) 30-m downscaled RF LST on 2 April 2018, and
(f) 30-m downscaled TsHARP LST on 2 April 2018.

proposed method is better, which paves way to the next step
that consist of predicting 8 day summer day summer daytime
LST data at 30 m spatial resolution.

Firstly, Landsat TM LST at 120 m spatial resolution
observed on 24 March 2009 (Figure 10a) and Landsat 8 LST
observed on 2 April 2018 were resampled to 90 m spatial
resolution (Figure 10d) and downscaled by RF to 30 m
(Figure 10b and 10e), and further comparedwith the TsHARP
as shown in Figure 10c and 10f.

Since there is no real satellite derived LST data at 30 m
spatial resolution, we validated the downscaled LST data
using in situ LST data. Figure 11a and 11b shows the scat-
terplots of correlations between the downscaled RF LST and
downscaled TsHARP LST versus in situ LST retrieved on the
24th March 2009. Figure 11c and 11d shows scatterplots of
downscaled RF LST and downscaled TsHARP LST versus in
situ LST acquired on 2nd April 2018. From Figure 11, we can
see the R2 of the downscaled LSTs by RF exceed 90%, thus
an accuracy improvement of approximately 10%, compared
to TsHARP method.

Therefore, high spatiotemporal resolution summer day-
time LSTs covering the study area in 2009 and 2018 were
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FIGURE 11. In situ LST versus (a) 30-m downscaled RF LST on
24 March 2009, (b) 30-m downscaled TsHARP LST on 24 March 2009,
(c) 30-m downscaled RF LST on 2 April 2018, and (d) 30-m downscaled
TsHARP LST on 2 April 2018, respectively.

predicted based on the downscaled RF LST andMODIS LST.
The predicted 8 day LST data at 30 m spatial resolution
and their correspondingly observed MOD11A1 are shown
in Figure 12. Figure 12a and Figure 10b, Figure 8b and
Figure 10e were the two pairs of MOD11A1 and downscaled
RF LST on 24 March 2009 and 2 April 2018, respectively.
The downscaled LST was utilized as the input base LST data
at t1 to the proposedmethod. Then, the second input base LST
at tm was the MOD11A2 at the predicted summer daytime on
the following days of the year: 153-160 and 241-248 in 2009,
153-160, 161-167, 201-208, 225-232, and 233-240 in 2018.
This permitted to fusion predicted LST data at 30 m spatial
resolution and LST data at 8 days temporal resolution.

In addition, the traditional FSDAF model was also used to
evaluate the performance of the predicted LST results based
on the proposed method. Figure 10a and Figure 12a were
the observed Landsat TM LST at 120 m spatial resolution
and MOD11A1 on 24 March 2009, Figure 6a and Figure 8b
were the observed Landsat 8 LST at 100 m spatial resolution
and MOD11A1 on 2 April 2018 as the input base LST at
t1 to FSDAF. Then, the second input was MOD11A2 at tm
to fusion 120 m predicted summer daytime LST in 2009,
and 100 m predicted summer daytime LST in 2018. It is
noted that, although the Landsat TIR channel (Landsat TM
120 m, Landsat 8 100 m) is first resampled to 30 m by USGS
before distribution to the users, the actual spatial resolution
of observed LST retrieved form Landsat TIR channel and
the predicted LST results based on FSDAF remains approxi-
mately 100 m.

Comparing the predicted LST form the proposed method
and the traditional FSDAF at the same period, one notes that
the general spatial distribution of the predicted LST results
from the proposed method is consistent with FSDAF results.

Hence, the new approach could provide much better spatial
resolution and provide important details of urban thermal
environment such as continuous river, urban inner road and
ring road. The R2 between the predicted LST and in situ LST
(Table 7) also show that the proposed method can produce
high spatiotemporal resolution LST datawith higher accuracy
than traditional FSDAF.

TABLE 7. Comparison of the predicted LSTs using the proposed method
and traditional FSDAF, respectively, with in situ LSTs during the summer
daytime (03:00-04:00 UTC) in 2009 and 2018.

Both summer averaged daytime LST in 2009 and
2018 were computed (Figure 13). The summer mean daytime
LST in 2009 were averaged on days 153-160 and 241-248.
The summer mean daytime LST in 2018 were similarly
averaged on days 153-160, 161-167, 201-208, 225-232, and
233-240. Figure 13a and 13d are the summer mean daytime
LST at 1000 m resolution using MOD11A2 in 2009 and
2018, respectively. Figure 13b and 13e are the summer mean
daytime LST at 30 m resolution using the proposed method
in 2009 and 2018, respectively. Figure 13c is the summer
mean daytime LST at 120 m spatial resolution using FSDAF
in 2009, Figure 13f is the summer mean daytime LST at
100 m spatial resolution using FSDAF in 2018.

As shown in Figure 13, high summer daytime LSTs
were mainly concentrated in the urban center and gradu-
ally extended to the urban surroundings from 2009 to 2018.
The reason for this might be related to the anticipated rapid
urbanization driven by population increase and fast economic
growth in Chengdu. The local government deployed large
industrial enterprises to the suburban of the city.

In order to further study the impact of urbanization on
the urban thermal environment, we investigated the changes
of summer mean LST data derived from the new method,
the traditional FSDAF method and MOD11A2, respectively,
over four dominant land cover types, such as ISA, vegetation,
bare soil, and water body during 2009 to 2018. The results are
shown in Table 8. Firstly, compared to the traditional FSDAF,
the summermean daytime LST of each land cover types using
the new method is closely relate to the results derived from
MOD11A2 suggesting significant consistency. Besides, sim-
ilar trends were identified in all three LST product sets. High-
est summer daytime LSTs were observed over ISA, followed
by bare soil, vegetation andwater body. ISA exhibited highest
summer daytime LST because it is more readily dissipated
as sensible heat and less energy is stored effectively, which
means low thermal inertia resulting in an analogous thermal
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FIGURE 12. Spatial distributions of (a) 1000-m MOD11A1 on 24 March 2009, (b) 30-m predicted LST on 2-9 Jun 2009 using the proposed method,
(c) 30-m predicted LST on 29 Aug-5 Sep 2009 using the proposed method, (d) 120-m predicted LST on 2-9 Jun 2009 using FSDAF, (e) 120-m predicted LST
on 29 Aug-5 Sep 2009 using FSDAF, (f) 30-m predicted LST on 2-9 Jun 2018 using the proposed method, (g) 30-m predicted LST on 10-17 Jun 2018 using
the proposed method, (h) 30-m predicted LST on 20-27 Jul 2018 using the proposed method, (i) 30-m predicted LST on 13-20 Aug 2018 using the
proposed method, (j) 30-m predicted LST on 21-28 Aug 2018 using the proposed method, (k) 100-m predicted LST on 2-9 Jun 2018 using FSDAF,
(l) 100-m predicted LST on 10-17 Jun 2018 using FSDAF, (m) 100-m predicted LST on 20-27 Jul 2018 using FSDAF, (n) 100-m predicted LST on 13-20 Aug
2018 using FSDAF, and (o) 100-m predicted LST on 21-28 Aug 2018 using FSDAF.

TABLE 8. Mean summer daytime LST over different land cover types in 2009 and 2018.

response behavior like bare soil. Vegetation had a lower
summer daytime LST since vegetation’s thermal capacities
easily release heat stored through canopy transpiration. The
water had the lowest summer daytime LST because water
areas possess specifically large heat conservation capabilities.
Therefore, in Chengdu, changing spatial patterns’ control will
be more useful in handling SUHI. The strategy of embedding
high density vegetation, such as plantingmore shade trees and
other vegetation species has been proved as an effective way
to mitigate SUHI. In addition, no further urbanization should
be envisaged in areas where the urban thermal environment is
seriously deteriorating. Instead, actions to improve the local

thermal environment need to be undertaken such as using
highly reflective, porous and light-colored paving materials
and building. Improving energy efficiency would also halt the
expansion of SUHI.

Figure 14 shows the summer daytime SUHII over the
period from 2009 to 2018. Significantly increasing trends of
summer daytime SUHII in the study area were observed using
all four LST data. Using the new method, as proposed in this
paper, it has been found that SUHII increased from 2.78 ◦C
in 2009 to 4.04 ◦C in 2018 in Chengdu city. Compared to
the traditional FSDAF andMOD11A2, these results are more
closely related to the SUHII acquired from in situ LST data,
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FIGURE 13. Spatial distribution of the summer daytime LSTs. (a) summer mean daytime 1000-m LST using MOD11A2 in 2009;
(b) summer mean daytime 30-m predicted LST using the proposed method in 2009; (c) summer mean daytime 120-m predicted LST
using FSDAF in 2009; (d) summer mean daytime 1000-m LST using MOD11A2 in 2018; (e) summer mean daytime 30-m predicted LST
using the proposed method in 2018; (f) summer mean daytime 100-m predicted LST using FSDAF in 2018.

FIGURE 14. Temporal changes of SUHII in the study area for the year
2009 and 2018.

thus signaling that the proposed method is susceptible to
provide reliable SUHI monitoring results.

IV. DISCUSSION
Considering the limitations of the existing spatiotemporal
fusion models, this paper has presented a spatiotemporal
fusion method by integrating RF and FSDAF to generate
high spatiotemporal resolution summer daytime LST data.
The results show that the proposed method can generate high
resolution LST images with high accuracy (the RMSE and
AAD value are both less than 0.089 k). Compared to the
traditional FSDAF, the proposed method can increase the
spatial resolution of the predicted LST image from 100 m

and 120 m to 30 m. In addition, results of this method for
monitoring summer daytime SUHII are more correlated with
the SUHII derived from in situ LST data.

However, the proposed method also has shortcomings that
cannot be neglected. One issue relates to the fact that pre-
dicted LST data can be largely influenced by the quality of
the input LST data at start time and predicted time. In this
study, due to limitations of cloudy and rainy weather, we only
selected Landsat andMODIS LST data for only 2 years as the
input base data to fusion high spatiotemporal resolution LST
data. It could be helpful in the future, to find an approach that
tackles this problem by integrating some other high spatial
resolution remote sensing data, in order to detect the diurnal
and seasonal variations of daytime SUHIs. Secondly, since
there is no actual satellite-derived LST data at 30m resolution
to evaluate the accuracy of predicted LST at 30 m spatial
resolution yet, we evaluated the accuracy by in situ LST
obtained from 7 weather stations, but the number of weather
stations is relatively limited. The reliability of the proposed
method may be influenced by the big differences in spatial
resolutions between 30 m LST data and 1000 mMODIS LST
data for LST data fusion. Future studies may utilize more in
situ LSTs and in situ sensors mounted on fixed meteorologi-
cal stations or traverses of vehicles to evaluate the predicted
results. Thirdly, future studies may use the spatiotemporal
fusion model to generate high spatiotemporal urban surface
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biophysical variables covering longer and continued time
period to allow for genuine quantitative analysis of the rela-
tionship between SUHI and the urban surface biophysical
indicators.

V. CONCLUSION
In this study, the proposed method was successfully used
to generate high spatial resolution (30 m) and temporal res-
olution (8 days) LST images from available Landsat TM,
Landsat 8 and MODIS LST data in the summer of 2009 and
2018. Then, we generated the predicted summer daytime
LST over the study period, analyzing the spatiotemporal
change of summer daytime SUHII in Chengdu. Several con-
clusions were drawn from this research: (1) the performance
of the proposed method could predict LST with relatively
strong accuracies (R2, AAD, RMSE values were in the range
of 0.9025-0.9415; 0.027-0.037; 0.082-0.089, respectively).
(2) Compared to the traditional FSDAF, the predicted summer
daytime LST images derived from the proposed method can
increase the spatial resolution of the predicted LST image
from about 100 m to 30 m and provide more details of urban
thermal environment. The predicted high spatiotemporal res-
olution summer daytime LST can be used for quantitatively
monitoring the variations of SUHI. (3) The significantly
increasing trends of SUHII in the study area were observed
by using the proposed method, rising from 2.78 ◦C in 2009 to
4.04 ◦C in 2018. As discussed above, the limitations of the
proposed method should be addressed, and the quantitative
analysis of the relationship between SUHII and high spa-
tiotemporal urban surface biophysical variables should be
thoroughly studied in future works.
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