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ABSTRACT Software fault prediction (SFP) is a research area that helps development and testing process
deliver software of good quality. Software metrics are of various types and are used in SFP for measurements.
Inheritance is a prominent feature, which measures the depth, breadth, and complexity of object-oriented
software. A few studies exclusively addressed the efficacy of inheritance in SFP. This provokes the need to
identify the potential ingredients associated with inheritance, which can be helpful in SFP. In this paper,
our aim is to collecting, organizing, categorizing, and investigating published fault prediction studies.
Findings include identification of 54 inheritance metrics, 78 public datasets with various combinations
of 10 inheritance metrics, 60% use of method level & use of private datasets, an increased number of
studies using machine learning approaches. This study will facilitate scholars to studying previous literature
on software fault prediction having software metrics, with their methods, public data sets, performance
evaluation of machine learning algorithms, and findings of experimental results in a comfortable, and
efficient way, emphasizing the inherited aspect specifically.

INDEX TERMS Object oriented paradigm, software inheritance metrics, software metrics, machine
learning, software fault prediction.

I. INTRODUCTION
Measurement is needed to validate the effectiveness of soft-
ware development process. The phrase software metrics
describes measurements made on an artifact of software
whereas a software artifact has two significant elements:
the coded implementation, and the document of its design
specification. The initially calculated McCabe, Halstead, and
Albrecht metrics, presented during the 1970s, were typically
constructed on the coded final software products. Exam-
ples of software science metrics include [1] function point
analysis [2], and cyclomatic complexity metric [3], which
predominated in the early 1980s to measure software product.

Worldwide software development expenditure, for year
2014, was 3.8 billion dollars which included 23%quality con-
trol and testing cost for business applications [4]. Early fault
detection helps save costs, time, and reduce the complexity
of the software because it is proportionate to the testing. It is
a well known fact that extensive testing are impossible [5].
Testing cost sometimes amounts to over fifty percent of the
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entire software development cost. It is for these reasons that
it is more feasible to detect and test classes with faults to
produce software with better quality.

The faults are not uniformly dispersed within the software
components. Some classes have a relatively high number
of faults as compare to others and are clustered in a lim-
ited number of classes [6]. Source code quality is measured
through internal metrics whereas the behavior or function-
ality of the software is measured by external metrics [4].
In general, these two types of metrics are utilized to assess
the quality of the software to indicate the degree of reliability
of the software. Presently in software engineering, numerous
prediction approaches are being used in the research that
includes prediction of reuse, prediction of testing effort, pre-
diction of cost, prediction of security, prediction of faults,
prediction of quality, and prediction of stress [7]. Out of these,
software fault prediction is an emergent research domain
where defective classes are identified during the initial phases
of development project [8] by utilizing machine learning [9].
Many approaches make use of typical methods of machine
learning, which consist of Support Vector Machines (SVM),
Naive Bayes (NB) [10], Decision Trees [11], and Neural
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Networks [12]. In SFP, these techniques are exercised
by using metric measurements, and the fault information
obtained by similar software projects [13] or previous ver-
sions to construct models to predict faults. Suppose, by using
metrics to build a model of fault prediction [14] for the
calculation of inheritance of software, cohesion, coupling,
size, and complexity.

Typically, fault prediction process includes two stages.
The first part is called, the training phase, while the part
two called the prediction stage. In the first stage of train-
ing, the prediction model is constructed that utilizes method
level or class level metrics of software with fault information
associated with all the components of software programs.
Later, the same model is used in the next version of the
software for the prediction of fault proneness.

Methods of classification are utilized to put a label on
classes as fault-free or faulty by employing metrics set with
fault data. The software quality is improved by locating
faulty classes in the software with the use of fault prediction
models. The model performance influences the model tech-
nique [15], along with metrics [16]. Many scholars have built
and endorsed machine learning, and statistical techniques on
the models of fault prediction utilizing datasets, metrics, and
reduction of feature techniques to make improvements in the
performance of the models.

In the object-oriented paradigm, besides others, inheri-
tance is an important feature. The metrics of inheritance are
useful to recognize the class’s complexity based on fault
prediction [17]. Abreu, and Carapuca [18] mention, the larger
the relation of inheritance, less a class is expected to inherit
methods in larger numbers, therefore turn out to become
further complex and consequently necessitating extra testing.
Inheritance is helpful in the reuse, and many other aspects
for example testability, complexity etc. [19]. It should be
contained in limits to avoid technical hitches. In the litera-
ture, researchers suggested several metrics associated with
inheritance to identify the fault tendency and quality software
systems.The metric of inheritance defines the tree showing
software inheritance, the order of classes with linkage within
the master, and its child classes. Furthermore, specialization,
and generalization offer code re-usability. It must utilize
within a suitable range thus the software system does not turn
out to be a complex one [19].

While exploring the SFP domain, it is observed that so
much work has already been done on the properties supported
by Object-oriented software like cohesion, coupling, etc.
These are used either independently or in combination with
other metrics. C&Kmetrics set is an example where these are
used in combination and widely accepted by researchers [20].
It is observed that inheritance metrics are used in combine
cases widely in C&K suite, however, exclusive usage and
evaluation of inheritance metrics are missing. This spurs to
conduct a study to focus specifically on inheritance to show
the viability of its metrics in the context of SFP.

This paper aims to show up the available resource to
draw the effectiveness of inheritance in SFP since it is not

exclusively addressed in the research arena. This paper con-
tributes to cataloging about 54 inheritance metrics defined
so far in the literature. Object-oriented metrics, datasets,
techniques, and performance measures used in software fault
prediction. Also, identified 78 publicly available data sets that
have inheritance metrics with various combinations. Lastly,
discussion, and conclusion to show the effectiveness of inher-
itance in SFP.

Henceforth, the paper is planned into different
Sections where:
• Section II explained the theoretical background of an
object-oriented paradigm, software inheritance, SFP
techniques, performance measures, and datasets.

• Section III depicted literature reviewwhere the survey of
inheritance metrics, object-oriented metrics, their usage
in SFP, datasets with inheritance metrics, algorithms,
performance measures, and datasets used so far in the
literature are enlisted.

• Section IV elaborates on discussions specifically focus-
ing on the inheritance context.

• Section V discuss about Threat to Validity aspect.
• In the end, in Section VI, the conclusions, and future
directions of the survey are provided.

II. THEORETICAL BACKGROUND
A. OBJECT ORIENTED PARADIGM
Ole-Johan Dahl and Kristen Nygaard from Norway are the
innovators of the object-oriented language with their launch
of Simula67 in 1967. The subsequent foremost development
was Smalltalk, developed at XEROX by Palo Alto in the
1970s, followed by Eiffel who restored an earlier language
to incorporate object-oriented capabilities, such as C++,
Object Pascal, and Ada95.

Key feature in an object-oriented software is an object,
which encloses both data named attributes, and functionality
named methods. Besides, message passing, and inheritance
functionalities. This is opposite to the traditional structured
programming, where data is dealt with separately from the
procedures that act on them. Objects are typically formed
by an instantiation process, which utilizes a general template
called a class. Classes may be master or root class, con-
structed in conjunction through the group of attributes, and
methods. A child class gets features from a master class and
may include or exclude functionality as preferred.

B. SOFTWARE INHERITANCE
Software metrics are foundation to quantify complexity, qual-
ity of software, and project costs with effort estimation. Func-
tion points and cyclomatic complexity are traditional metrics.
These are being utilized in the paradigm of procedure lan-
guage. Nonetheless, these may not merely be utilized in the
context of object-oriented [21]. The procedural languages are
less complex while comparing with object-oriented program-
ming language [22]. The majority of studies specified hurdles
in moving from a procedural approach towards an object-
oriented paradigm [23].In object-oriented, it is problematic to
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comprehend how inheritance, abstraction, and encapsulation
associated with each other.

It is vital to distinguish between functionally oriented
approach and object-oriented design principles. Consecu-
tively to explain numerous features of object orientation to
allow superior administration, and quality management [24].
Pressman purposes five conditions, in which metrics of
object-oriented may be established [25].

• Location. It is linked with information tendency as soon
as it is centralized.

• Inheritance. Inheritance allows the choice to create a
new class. Permitting the methods, and attributes of
one or more classes fully or partially.

• Encapsulation. Encapsulation denotes the objects
encompass their attributes and data.

• Object abstraction. The method object abstraction
authorizes the designer to focus merely on rudimentary
with essential aspects of particular program sections.

• Information hiding. Information hiding means to hide
the object structures having attributes, and data.

In the object-oriented paradigm, inheritance makes it
possible for newly created objects to utilize the elements
of earlier objects. The source of inheritance is a base
class or superclass whereas a derived class or subclass, which
inherits through a base class. The term secondary class and
main class may also be utilized interchangeably for super
class, and sub class. The sub class may possess his ele-
ments and methods, but it may also inherit properties and
visible methods from the main class. Inheritance acquisition
offers [26]:

• Reusability. Reuse is a method established through
inheritance where super class public methods utilize into
sub class without code rewriting.

• Overriding. The secondary class may rewrite the pri-
mary class methods so the desired execution of the
primary class method is constructed in the secondary
class.

• Data hiding. Inheritance offers a data hiding feature. in
which super class marks a method as private therefore
this method may not be used or modify by child class.

• Extensibility. Expand logic of the main class as per the
business logic of the secondary class.

• Overriding. The secondary class may rewrite the pri-
mary class methods so the desired execution of the
method of a primary class is constructed in the secondary
class.

• Maintainability. In the case where the program is
splinted into parts. It is comfortable to walk through the
code.

The foundation of inheritance is an IS-A relationship In the
object-oriented paradigm, which explains ‘‘R is a Z type
of thing’’. Red is a color; the computer is a machine. The
inheritance is unidirectional, ‘‘the house is a building’’, but
‘‘the building is not a house’’. The inheritance has further
additional prominent features [26]:

• Specialization. Increasing a class functionality is
described as specialization [27].

• Generalization. Distribution of commonalities among
multiple classes is described as a generalization.

There are many forms of inheritance in the literature. These
are described in subsequent lines as under [28]:
• Single inheritance.A case where a subclass only inher-
its with one main class is denoted as single inheritance.

• Multiple inheritance. In the case of multiple inher-
itance, a child class is expending or inheriting from
numerous main classes. The issue in this type of inheri-
tance is that child class should handle the dependencies
on multiple main classes.

• Hierarchical Inheritance. In the case of hierarchical
inheritance a main class is expended by several child
classes.

• Multi-level inheritance. Multilevel inheritance indi-
cates a method where a subclass expanding through a
derived class, turning a derived class to a parent of the
newly created class.

• Hybrid inheritance. Hybrid inheritance is a combina-
tion of multiple inheritance and multi-layer inheritance.
As in multiple inheritance child classes are expended
with two main classes. But these main classes are not
base classes rather derived classes.

The advantages of inheritance features in the object-oriented
paradigm are mentioned as under:
• The Inheritance aspect supports reusability. After a class
derives or inherits a new class, it may gain access to all
the functionality of the inherited class.

• The reusability boosted reliability. Since the code of the
supper class has previously tested and debugged.

• Since the present code is being reused so it shows the
way to reduce efforts on software development, and
subsequently on the cost of maintenance.

• Inheritance causes the subclasses to pursue a single gen-
eral interface.

• Inheritance aids to decrease code duplication, and pro-
motions extensibility of code.

• Inheritance makes the possible formation of class
libraries.

Similarly, the drawbacks of inheritance features are explained
as under:
• Inherited functions act normally sluggish since there is
indirection.

• Misuse of inheritance might steer to bad results.
• Frequently, data members from the superclass remain
not being used, which might result in wasted main
memory.

• Inheritance enhances the coupling among the superclass
with the child class. So a modification in superclass
might affect every subclass.

C. SOFTWARE FAULT PREDICTION
Software fault prediction process typically involves two
phases which are denoted as training phase and the second
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is prediction phase where in the first phase, a model for
prediction is constructed, which utilizes method or class level
metrics of software with fault information associated with
every single module of the software. Later, the same model is
used to predict faulty classes in a new version of the software.
SFP is effective to enhance the quality of software along with
reducing the cost of testing. Also, it assists testing teams
to limit testing on faulty classes only. Fault prediction in
software possibly lays down yardstick for knowing, which
areas may require attention. Many software fault prediction
methods have been utilized [29], which contribute to three
main elements [30]; Set of features, Label of Class, and
finally the Model.

The set of features are consisting of single or multiple
metrics derived through artifacts of software, it is believed
that these are useful to predict labels of class. All of the
metrics are grouped into the product, project, and process
metrics. It is observed that metrics of the product are mostly
utilized in the research arena [31]. The further level of product
metrics includes method, class, and file levels where overall
60%method-levelmetrics are utilized followed by 24% class-
level metrics [15]. Metrics of the product also consist of,
volume, design, code, and complexity metrics. The perfor-
mance of SFP heavily depends on these metrics. Researchers
have assessed the utilization rate of metrics in [32] where
highly use product metrics in software fault prediction are
Halstead [1], McCabe [3], LoC in structural programming,
and in object-oriented paradigm C&Kmetrics suite [33]. The
subject metrics are become the approved standard metrics in
software fault prediction. PROMISE and D’Ambros [34] are
frequently used datasets repositories having these metrics.
Both the repositories encompass datasets of about fifty-two
percent of the research paper published after 2005 [9]. Since
these datasets are publicly available therefore it is frequently
used. The other reason is the non-availability of bug’s data of
industrial software.

The second extremely significant component in SFP is
the class label, which contains the real value of the metrics.
In SFP, the faulty / fault-free instances aremarked as nominal-
binary or continuous to mark the number of faults in any
occurrence. Although, use of continuous labels exist in the
literature [35], but dominating class labels in SFP or nominal
class labels [7], [29].

The third important pillar of SFP is model building,
which is a connection in-between class label, and feature
set. This may be utilized with the assistance of Statisti-
cal methods, Machine learning algorithm (ML), or even
expert opinion [15] where ML is an excessively used tech-
nique for model building [30]. It expressively expands the
accuracy of classification [36]. In SFP many algorithms
of ML are used. Malhotra et.al compared the performance
of these ML algorithms who deduce Random forest, and
Bayesian networks are outperformer as compare to other
ML algorithms [9].

D. FAULT PREDICTION TECHNIQUES
Fault prediction is topic of numerous researches studies.
A number of methods are recommended for the prediction
of software faults, which include machine learning, and Sta-
tistical methods. Both methods are explained in detail in
subsequent lines.

1) STATISTICAL METHODS
Several strategies of statistics are utilized to identify a simple
straight mathematical numerical equation, which certainly
recognizes in what way classification would be achieved.
Kapila et. [37] utilized two approaches of statistic to do
his study that includes univariate binary logistic regression
(UBR), and logistic regression. Both the approaches are ben-
eficial to investigate data contains binary variables. In the
technique of Bayesian inference [37], a model strategy is to
correlates metrics with software faults, and faults propensity.
The regression analysis method is extensively applied for bad
smell prediction, and method linear regression is applied in
the case when the dependent variable available merely for
dual classes.

2) MACHINE LEARNING
Typically machine learning focus on design and develop-
ment of algorithms with techniques. That extricate rules,
and patterns from massive databases. Neural Networks (NN)
are previously being utilized within the software to create
reliability growth models for the prediction of total modifi-
cation or reusability metrics. The NN model is trained to do
again a stipulated series of exact instances classification, as an
alternative to creating formulas or rules. Mahajan et. al [38]
mentioned that machine learning methods are beneficial to
determine software faults as complete processing is per-
formed by the computer.

Multilayer Perceptron (MLP) is used to manage classes
with faults. Radial Base methods are utilized for the cat-
egorization of faults as per dissimilar faults classes [39].
Xing et al. outline the importance of the SVM model which
can be utilized for an ample quantity of data. It brings better
Accuracy while making comparisons with other techniques
to predict software quality. The outcomes of SVM is at a
depleted level on public data sets [38].

E. MACHINE LEARNING ALGORITHM
1) SUPPORT VECTOR MACHINE(SVM)
Vapnik accompanied by his fellow researchers suggested
SVM. It has been extensively explored and used in several
disciplines. The fundamental concept of this model is to find
a similar gap among the two objects/classes by contemplating
a distance metric among both of them. The gap among these
entities/classes are by practice stated as a function of vectors
of its feature [40]. Additionally SVM may be utilized to
manage unbalanced classes [41].
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2) DECISION TREE
The classifiers of decision trees utilize comparisons to segre-
gate dissimilar occurrences of a group into suitable classes.
Classification falls into supervised learning that primarily,
a collection of acknowledged occurrences, so-called learn-
ing sets, are presented into a model. The model categorizes
individual instances of the collection, relates every type with
the attributes of each instance, and ascertains to, which group
all instances be appropriate. Established upon whatever the
trained model understood throughout the phase of learning,
you may categorize the instances of a set [42], which were
not ever realized earlier.

One of the applications of the use of decision trees refers
to form algorithms of pattern recognition [42]. The second
type of application is an analysis of images in machine learn-
ing that include detection of tumor cells, and brain tumors
examples [43].

3) AdaBoost
The AdaBoost algorithm is superior among known algo-
rithms for building a set of the classifier [44]. Each instance
of the learning data set is measured. The early measurement
is defined in weight (wi)= 1 / n, where wi represents training
occurrence, and n is the sum of training occurrence. The
furthermost applied algorithms with AdaBoost are single-
level decision trees. Since decision trees are concise and
encompass single classification decisions, so that named
decision stumps. A dull classifier called the decision segment
is formulated upon the learning of facts utilizing the weighted
samples. The algorithm AdaBoost makes a powerful classi-
fier by applying the weights via a recurring method [24].

4) RANDOM FOREST(RF)
Breiman [45] proposed a novel and promising classifier
in 2001 named as RF. It offers numerous benefits [32] for
instance its execution effectiveness on huge databases toman-
age thousands of input variables. Then presenting approx-
imations demonstrating which is a significant variable in a
classification phase.

5) K NEAREST NEIGHBORS (KNN)
While discussed in the research paper [46], amongst the sev-
eral approaches for the recognition of supervised statistical
patterns, the Nearest Neighbor rule attains a continuous high
performance, deprived of a priori suppositions regarding the
dispersion through, which training instances are take out.
It comprises a collection of positive, and negative case train-
ing. A novel occurrence is categorized by gauging the gap
with the closest training data. The classifier KNN stretches
out this notion by captivating the neighboring spots and giv-
ing the majority mark. It is usual to opt for a quantity for
the k which must be a lesser number with an odd figure to
breakdown draws generally 1, 3, or 5. The greater values of k
support in decreasing the impacts of the anomalous elements

in the training dataset. The selection of k is usually made by
cross-validation [46].

6) ARTIFICIAL NEURAL NETWORKS (ANNs)
ANNs is applied for classification purpose which is not sim-
ilar to Naive Bayes, and tree-based algorithm. Since none of
them need the discretization of the dataset. These may even
manage a solo feature that appears in the dataset. ANNs is an
utmost operative technique, utilized for a classification task
that is done on metrics of object-oriented [47]. The state-
of-the-art tendency in SFP is the explicit usage of ANNs
[5], [48]. Moreover, the choice of method to model is
appointed though considering the numerical details of the
training set. It is a dataset that guides towards ANNs, and the
response we deduce outcomes.

F. PERFORMANCE MEASUREMENT
Evaluating machine learning models require performance
measures, which are explained as follows:

1) ACCURACY
Accuracy (equation 1) gauges the fraction of the files cat-
egorized correctly, to the total of files. Accuracy, however,
excludes a thorough evaluation for example the number of
correct labels of various classes, and in this sense investiga-
tors, to assess themodel, utilize the F1 Score along with recall
and precision that is explained in the following lines.

Accuracy =
TP+ TN

(TP+ TN )+ (FP+ FN )
(1)

2) PRECISION
Precision (equation 2) gauges the fraction of files that
were classified correctly as faulty over the totality of files
categorized as either faulty or faulty-free. Simply, Confi-
dence or Precision as it is called in data mining expresses
the ratio of predicted occurrences these are indeed actually
defective files. This measures how decent a prediction model
is at detecting real defective files.

Precision =
TP

(TP+ FP)
(2)

3) RECALL
Recall explained in equation 3 computes the fraction of faulty
instances, which are accurately labeled faulty by the sum of
faulty instances existed. Sensitivity or Recall (as it is termed
in Psychology) is the fraction of actual faulty instances which
are properly predicted as faulty.

Recall =
TP

(TP+ FN )
(3)

4) F1 SCORE
The F1 Score is calculated by getting the (weighted) har-
monic average of recall, and precision as demonstrated in the
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equation (equation 4).

F1Score = 2 ∗
Precision ∗ Recall
(Precision+ Recall)

(4)

5) SPECIFICITY (TRUE NEGATIVE RATE (TNR)
TNR is the quantity of accurately predicted classes likely to
be fault-free among entirely real classes likely to be fault-free.

6) PF (FALSE POSITIVE RATE (FPR)
FPR is the fraction of all classes likely to be fault-free. These
are erroneously predicted as faulty.

7) FNR (FALSE NEGATIVE RATE)
FNR is the proportion of faulty classes, which are categorized
as non-fault prone.

8) ROC (RECEIVER OPERATING CHARACTERISTIC CURVE),
AND AUC (AREA UNDER THE CURVE)
ROC, and AUC is mapped out with the values of recall on
the y-axis, and the values of 1-specificity on the x-axis. The
usefulness of the model is determined by quantifying the area
underneath the ROC curve.

9) BALANCE
It denotes the best possible cutoff point of (sensitivity, pf)
for example the normalized Euclidean distance as from (0,1)
position in the ROC curve.

10) COMPLETENESS
It is the summation of all faults categorized as faulty classes
above the sum of authentic faults within a system.

11) F-MEASURE
F-measure is the harmonic mean of precision and sensitivity.

12) CONFUSION MATRIX
Equation 5 represents a simple cross-tabulation of class tags
mapped to those perceived in the field or reference data for
a sample of cases in certain locations. The matrix provides a
visual foundation for the evaluation of accuracy (Campbell,
1996; Canters, 1997), as well as for the description of classi-
fication accuracy, and characterization errors, that may help
to improve the classification or derivative approximations
through it [49].

ConfusionMatrix =
{
TP FN
FP TN

}
(5)

G. DATASETS IN SFP
Numerous data sets have been utilized in software fault pre-
diction. These may be grouped into private, public, partial,
and unknown dataset categories [15]. The public data sets
usage has risen from 31% to 52% since 2005 onward [9].
Fault information usually not accessible for private projects
but there are datasets openly available with fault informa-
tion, these may be downloaded for free. There are several

bug libraries, from this Tera-PROMISE, repositories, and
D’Ambros repositories that are often used for predicting
faults [34].

A publicly accessible repository called Tera-PROMISE
offers a large data set for multiple projects. An earlier ver-
sion of this repository has named as NASA repository [50].
The datasets of NASA are an important source of the Tera-
PROMISE repository since its datasets are an extensively
utilized library of software fault prediction. About 60% of
the papers published from 1991 to2013 make use of this
library [51]. The repository of PROMISE offers metrics asso-
ciatedwith the process, and product with digital nominal class
labels for building classification, and regression models.

The repository of D’Ambros holds data sets of five open-
source software applications, these are: Equinox, Eclipse JDT
Core, Lucene, Eclipse PDE UI, Mylyn, and Framework.

III. LITERATURE REVIEW
Fault prediction of software is a vital field of study and the
topic of several earlier types of research. These researches
generally give off fault prediction models that permit soft-
ware engineers to concentrate on development activities on
source code failures, increasing software quality, and boost-
ing resource utilization. In this section, the focus is on
the object-oriented paradigm, specifically on the inheritance
aspect, which helps predict faults. There is no systematic
review of the literature in this study, but to investigate in what
way distinct inheritance features are beneficial in software
fault prediction.

A. INHERITANCE METRICS
Inheritance is one of the utmost strong facets of an object-
oriented paradigm. Programming deprived of inheritance is
not object-oriented programming rather termed as program-
ming with an abstract data type. During the last decade or so,
numerous metrics of object-oriented have been suggested by
researchers, and in fact, only a few of them are being utilized
by many establishments as a measurement to accomplish
quality [52]. The metrics of inheritance are constructed on:

• Deepness of the inheritance tree.
• Over-all quantities of classes inherited in a program.
• Classes quantities indirectly or directly inherited by a
class.

• Classes quantities indirectly or directly inheriting from
a class.

• Methods quantities inherited by a class.
• Methods quantities overridden by a class etc.

The complexity of inheritance depends not solely upon
the number of inherited classes, but additionally upon the
number of inherited methods, together with their complex-
ity, as endorsed by Abreu and Carapuca, [18]. The higher
the inheritance relationship, the more complex the class, and
the more it requires testing because the number of meth-
ods the class may inherit increases. Methods with complex
decision-making structures are difficult to test, maintain, and
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are prone to errors [18]. They allow complexity metrics based
upon the previously mentioned criteria to identify possibly
largemethods or classes, assist with the preparation of review,
and testing jobs, which is a key part of the suggested software
quality process that mentions [53]. There is no complete
object-oriented inheritance metric that addresses all of these
issues. The main motivation for this paper is to collect and
organize the inheritance metrics defined so far by researchers
in the field of SFP.

1) DEPTH OF INHERITANCE TREE (DIT) [33]
The depth of inheritance metrics is to determine how much
ancestor classes might influence the metrics of this class.
In the situation of multiple inheritances, DIT will be the
greatest length from the root tree to the node.

DIT = Max inheritance path from the class to the root (6)

• The deepest class in the hierarchy will inherit a large
number of methods, so predicting their behavior will be
difficult.

• Into the design of software, at the bottom of the trees,
will create more complexity since several classes, and
methods have been used.

• At the bottom of a specific class within the hierarchy,
it is possible the larger the reuse of methods which are
inherited.

Visual Studio .NET suggested that DIT≤ 5, and some sources
recommend up to 8. Extremely deep class hierarchies are very
difficult to build. It is noted that a rise in DIT will increase the
degree of errors, and eventually decrease the software quality.

2) NUMBER OF CHILDREN (NOC) [33]
• Growing the NOCwill rise in the reuse of methods since
inherited methods are a mode of reusability.

• The larger the subclass, the larger the probability of
inadequate abstraction of the parent class. In the case
where class contains a large number of subclasses, that
might be a situation of misappropriation of the child
class.

• The quantity of subclasses provides the objectives of the
possible effect of the class has on design. In the case
where a class has a huge number of subclasses, it may
require more method testing in the class.

NOC = number of immediate sub−classes of a class (7)

High NOCs show fewer faults since this might be due to
excessive reuse that is suitable.

The breadth of a class hierarchy is measured by NOC since
the depth is measured by the highest DIT since the depth is
usually better as compared to the breadth.

3) ATTRIBUTE INHERITANCE FACTOR (AIF) [54]
Attribute Inheritance Factor is the proportion of the total of
inherited attributes of all classes in the system to the sum of
accessible attributes of all classes. It is a system-level metric

that calculates the scope of attribute inheritance in the system.
Mathematically AIF is calculated as follows:

AIF =

∑
Ai(Ci)∑
Aa(Ci)

(8)

4) METHOD INHERITANCE FACTOR (MIF) [54]
Method Inheritance Factor is the fraction of the total inher-
itance methods of all classes of the system to the sum of
available methods of all classes. MIF is a system-level metric.
It is recommended to keep the MIF between 0.25, and 0.37.
Mathematically MIF is calculated as follows:

MIF =

∑
Mi(Ci)∑
Ma(Ci)

(9)

Subclasses that inherit more than one method or attribute
from their parent class contribute to a higher MIF or AIF.
Redefining methods or properties of its parent class, and
adding subclasses of new classes may help reduceMIF (AIF).
An independent class with no inheritance and no children
helps to reduce the MIF (AIF).

The acceptable range of MIF is from twenty percent to
eighty percent, and the suitable limit of AIF is from zero
percent to forty-eight percent [55]. An alternative opinion
about the AIF is that it must idyllically be a zero since every
variable would be defined as private.

5) NUMBER OF METHODS INHERITED (NMI)
The metric NMI calculates the quantity of inherited methods
by a child class.

6) NUMBER OF METHODS OVERRIDDEN (NMO) [56], [57]
A larger quantity of methods overridden points out a issue in
design, signaling these methods overridden as a last-minute
design. Since it is recommended, a child class must be a
specialization of all its superclasses, which resultantly create
a new exclusive name for the methods.

7) NUMBER OF NEW METHODS (NNA) [56], [57]
The typical expectancy of a child class is how to specialize
(or add) superclass objects. If there is no method of the same
name in a superclass, the said method is described as an
appended method in the child class.

8) INHERITANCE COUPLING (IC) [58]
The IC metric is a connection between classes which allows
the usage of formerly defined objects, comprising variables,
andmethods. Inheritance reduces the complexity of a class by
decreasing the number of elements of a single class, however,
due to this maintenance, and design became tough. Inheri-
tance improves effectiveness, and reuse while using present
objects. Concurrently, inheritance has led to complexities in
software testing and understanding. This implies that inher-
itance coupling affects many quality attributes such as com-
plexity, efficiency, reusability, testability, understandability,
and maintainability.
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9) NUMBER OF INHERITED METHODS (NIM)
The metric NIM is a fair metric that describes the quantity
of behavior a class is supposed to reuse. It calculates the
sum of methods a class may retrieve from his parent class.
The higher the quantity of inherited methods, the superior
the class reusability by the subclasses. Evaluating this metric
with the number of parent classes sent, and theway it is sent to
undefined methods in the class may be interesting because it
indicates the number of internal reuses between the calling
class, and its parent class. It may be an incoming call to
an incoming method, although it is difficult to statistically
evaluate it. Besides, inheriting large superclasses may be
problematic because merely a subset of the methods may be
required/desired within the subclasses. So it is a threshold of
single inheritance basing on the object-oriented programming
language.

10) FANIN AND FANOUT METRIC [59]
The Fanin/Fanout metrics first defined by Henry and
Kafura [59], that is ‘‘module-level’’ metrics. Subsequently,
these are expanded for the object-oriented paradigm. For each
class A we record its fan-in as the count of classes, which use
features of class A. Similarly, the fan-out for class A is the
count of classes used by A.

Sheetz, Tegarden, and Monarchi derive a set of primitive
counts. The complexity between modules called Structural
complexity has been recognized as a significant part of
structured system complexity. Several researchers have used
module-defined fan-in and fan-out [60]. Expanding these
thoughts to variables in object-oriented systems looks suit-
able, and up-front. The number of methods that use variables
(fan input variable) is quite identical to the number of mod-
ules that call the module (input input), and the number of
objects accessed by the variable (variable output input), and
the digital module called by the module (fan).

11) FAN-DOWN
The metric Fan-Down is the quantity of classes under the
hierarchy of classes (subclasses).

12) FAN-UP
The metric Fan-Up is the quantity of classes over in the
hierarchy (superclass).

13) OBJECT-To-ROOT DEPTH
The metric Object to Root Depth is the largest number of
stages within the hierarchy which is directly over the class
object.

14) OBJECT-TO-LEAF DEPTH
The metric Object to Leaf Depth is the highest number of
steps in the hierarchy of object which is under the class object.

15) MEASURE OF FUNCTIONAL ABSTRACTION (MFA)
The MFA metrics are the share between the number of meth-
ods inherited by a class to the sum of methods of the class. Its
limits are between zero to one.

16) IFANIN
The metric IFANIN calculate the sum of immediate base
classes of the hierarchy.

17) NUMBER OF ANCESTOR CLASSES (NAC) [61]
Number of Ancestor Classes (NAC) metric quantifies the
over-all quantity of child classes, which a child class inherits
in the class inheritance hierarchy. NAC is of the same type
as {dit}, since it calculates the number of ancestors of a
class. Li [62] validated the piece of evidence that the unit of
the NAC metric is ‘‘class’’ as the trait obtained by the NAC
metric is the number of other classes.

18) NUMBER OF DESCENDENT CLASSES (NDC) [61]
Number Descending Classes (NDC) metric specifies the
overall quantity of child classes of the class. It is a substitute
for NOC. The metric NOC calculates the extent of a class’s
influence on its inheritance subclass. Li [62] argued that NDC
metrics obtain class attributes superior than {noc}.

19) CLASS-TO-LEAF DEPTH(CLD)
Tegarden et al. proposed the metric CLD, which is the highest
quantity of stages in the hierarchy that are underneath the
class [63].

20) NUMBER OF ANCESTOR(NOA)
Tegarden et al. proposed the NOA metric, which is the num-
ber of classes that a specified class directly or indirectly
inherits from [63].

21) NUMBER OF PARENTS(NOP)
Lake and Cook suggested the metric, which is the number of
classes that a particular class inherits directly [64].

22) NUMBER OF DESCENDANTS(NOD)
Lake and Cook [64] suggested the metric NOD, which is the
number of classes that directly or indirectly inherit from a
class.

23) DEPTH OF INHERITANCE TREE OF A Class (DITC)
Rajnish et al. [65], [66] introduced themetric. TheDITC class
inheritance hierarchy is calculated by totaling the protected,
private, public inherited attributes, and the protected, private,
public, and legacy methods at every stage [66]. The DITC
metric of a class at the respective stage ismeasured as follows:

DITC(CJ ) =
L∑
i=1

LEVi ∗ i (10)

where, LEVi =Method (Ca) +Attribute (Ca)
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Ca = A class in the ith level of the class inheritance
hierarchy. Attribute (Ca) = Calculate the sum of private,
protected, public, and inherited attributes inside a class in the
class inheritance hierarchy at each stage.

Method (Ca) = Calculate the sum of private, protected,
public, and inherited methods contained by a class in the class
inheritance hierarchy at each stage.

L = Total tallness in the class inheritance hierarchy. The
most extreme distance from the last node for example top
level in the class inheritance hierarchy, ignoring any shorter
ways if there should be an occurrence of multiple inheritance
is being utilized.

24) CLASS INHERITANCE TREE (CIT) METRIC
Rajnish et al. [65], [66] proposed the (CIT) metric, which
is used to calculate the class inheritance tree [66]. The key
objective of (CIT) is to calculate how the class is inherited
by various classes, and in what way class inherits numerous
classes at any level in the inheritance tree. CIT is expressed
as under:

CIT (Ci) =
L∑
i=1

CIN (Ci)+ COUT (Ci) (11)

where Ci represent a class at the ith stage in the inheritance
tree. The value of CIN (Ci) = 1 in case Ci is inherits various
classes in the inheritance tree, 0 in other case. The value of
COUT (Ci) = 1 in case Ci is inherited by various classes in
the inheritance tree, 0 in other case.

25) INHERITANCE COMPLEXITY OF CLASS(ICC) [67]
Sandip et al. [56], [68] presented metric for evaluation. The
ICC metric is explained in [68], and is explained in equation
12 in the following lines:

ICC(Ci) = M (Ci)+ A(Ci)+ IF(Ci)

IF(Ci) =
NoOfClasses InheritedDirectlyByCi

1+ NoOfClassesInheritedDirectlyByCi
(12)

where ICC represents the quantity of a class of an inheritance
tree.

Ci=Represents the classes at the ith stage in an inheritance
tree. A (Ci), calculate the quantity of private, protected, and
public inherited attributes at every stage in an inheritance tree.

M (Ci) = calculate the quantity of private, protected, and
public inherited methods at every stage in an inheritance tree.

26) INHERITANCE COMPLEXITY OF TREE (ICT)
The ICT metric is described in [67] study, and is measured as
per equation 13:

ICT (Ci) =
M (Ci)+ A(Ci)+ IF(Ci)

N

IF(Ci) =
NoOfClasses InheritedDirectlyByCi

1+ NoOfClassesInheritedDirectlyByCi
(13)

N = Sum of classes in an inheritance tree.

27) NUMBER OF METHODS (NOM)
Quantity of Methods declared in a class.

28) NUMBER OF ATTRIBUTES (NOA)
Quantity of Attributes declare in a class.

29) REUSE RATION (RR)

RR =
No of Subclasses
Total No of Classes

(14)

30) SPECIALIZATION RATION (SR)

SR =
No of Subclasses
No of Superclasses

(15)

31) NUMBER OF INHERITED ATTRIBUTE(NIA)
Quantity of inherited attribute in a class.

32) NUMBER OF INHERITED METHOD (NIM)
Quantity of inherited Methods in a class

33) NUMBER OF OVERRIDDEN METHODS(NoVM)
Quantity of overridden methods in a class.

34) INHERITANCE TREE DEPTH (ITD)
Classes are designed for inheritance purposes, hierarchically
in a tree structure. The depth of a class within the inheritance
hierarchy is the highest distance from the class node to the
root of the tree, and is computed through the quantity of
ancestor classes.

ITD = max{Inheritance Tree Path Length} (16)

The deep a class is in the inheritance hierarchy, the addi-
tional protected, and public methods it is probably attaining,
making it extra complicated. Deeper trees specify more com-
plexity of the design. Thus, deeper class inheritance is neither
needed nor required. The tests are more problematic, and
the world doesn’t normally hold considerably specializations.
Deeper hierarchies are also a theoretical integrity apprehen-
sion since it turns out to be hard to ascertain specialization
from, which class. This metric principally appraises reusabil-
ity. Besides also associate with understandability, and testing
ability [69].

35) AVERAGE DEGREE OF UNDERSTANDABILITY (AU)
Metric of F. T. Sheldon et al defines understandability,
the ease of understanding a structure of the program, or the
structure of class inheritance [70]. To compute AU, firstly
expressing the level of class understandability, which is
referred to by U, and explained in equation 17.

U of class Ci = PRED(Ci)+ 1 (17)

In the above equation Ci is ith class.
PRED(Ci) is the overall number of ancestors of ith class.
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Next, the Total Degree of Understandability (TU) of a class
inheritance tree is expressed as under:

TU of a class Inheritnce =
t∑
i=1

(PRED(Ci)+ 1) (18)

In the above equation t is the sum of the classes in the class
inheritance tree. Finally, the Average Degree of Understand-
ability (AU) of a class inheritance tree is described as under:

AU of a class Inheritnce =

∑t
i=1(PRED(Ci)+ 1)

t
(19)

36) AVERAGE DEGREE OF MODIFIABILITY (AM)
F.T. Sheldon et al defines Average Degree of
Modifiability(AM)metrics. The definition of modifiability in
the comfort by, which modification or amendments may be
incorporated into program structure or in a class inheritance
hierarchy [70]. To compute AM, firstly declare the level of
class modifiability refer to by M. The AM is calculated as
mentioned in equation 20.

M of a class Ci =
U (Ci)+ SUCC(Ci)

2
(20)

In the above equation Ci is ith class.
SUCC(Ci): the overall quantity of descendants of class i.
Next, the total degree of modifiability (TM) of a class

inheritance tree is defined as follows:

TM of a class Inheritnce = TU +
t∑
i=1

(SUCC(Ci)/2) (21)

where t is sum of classes in the class inheritance hierarchy
tree. Finally, the Average Degree of Modifiability (AM) of a
class inheritance tree is calculated as per equation mentioned
as under:

AM = AU +
t∑
i=1

(SUCC(Ci)/2)/t (22)

37) AVERAGE INHERITANCE DEPTH (AID)
Henderson-Seller stated that the AID metric of a class is
computed by a following equation:

AID =
(
∑
Depth Of each Class)
Number Of Classes

(23)

38) DERIVE BASE RATIO METRIC (DBRM)
DBRM is the share of the sum of derived classes to the sum of
root classes in the class inheritance tree. DBRM is described
as underneath:

DBRM =

∑N
i=1 TD(Ci)∑N
i=1 TB(Ci)

(24)

In the above equation
∑N

i=1 TD(Ci): Sum of derived classes
in the class inheritance tree.∑N

i=1 TB(Ci): Sum of root classes in the class inheritance
tree.

N: Sum of classes in the class inheritance tree.

39) AVERAGE NUMBER OF DIRECT CHILD (ANDC) METRIC
The ANDCmetric is the percentage of the overall quantity of
instant child with the overall quantity of classes in the inher-
itance tree. The calculation of the ANDC metric is explained
as under:

ANDC =

∑N
i=1 TDC(Ci

N
(25)

where
∑N

i=1 TDC(Ci): Sum of instant child in the class inher-
itance tree.

N: Sum of classes in the class inheritance tree.

40) AVERAGE NUMBER OF INDIRECT CHILD (ANIC) METRIC
The ANIC metric is the ratio of sum of indirect child to
the sum of classes in the inheritance tree. ANIC metric is
described as follows:

ANIC =

∑N
i=1 TIC(Ci

N
(26)∑N

i=1 TIC(Ci): Sum of indirect child in the class inheri-
tance tree.

N: Sum of classes in the class inheritance tree.

41) CLASS COMPLEXITY DUE TO INHERITANCE (CCI)
The idea of Class Complexity due to Inheritance (CCI) met-
rics is to forecast the superiority of a class in terms of reusabil-
ity, understandability, maintainability, and testability. Class
Complexity due to Inheritance (CCI) may be measured as
mentioned in equation 27.

CCIi =
K∑

inherit=1

CCIinherit +
j=1∑
l

MCj (27)

In the above equation CCIi is the complexity of an ith class
due to inheritance. k is the number of classes, and ith class
is directly inheriting class. CCI inherit the complexity of
an inherited class. l is the number of methods excluding
constructors, destructors, pure virtual function, the ith class
has. MCj is the complexity of the jth method in the ith class,
and it may be computed by utilizing a recently suggested
method complexity metric (MC). The classes with greater
CCI quantities are complex. Thus considered further prone
to errors.

42) METHOD COMPLEXITY (MC)
Method Complexity is constructed on McCabe’s cyclomatic
complexity [3]. Besides it also takes into consideration, con-
trol structure’s depth. MC metrics are described as under:

MCj = Pj + Dj + 1 (28)

In the aforementioned equation MCj is the complexity of jth

method, Pj is the number of predicates jth method has Dj is
the highest depth of control structures in jth method; the value
ofDj = 0 in the case where not nested control structures exist;
if there is one inside another then Dj = 1, and so on . . .
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43) AVERAGE COMPLEXITY OF A PROGRAM DUE TO
INHERITANCE (ACI)
The use of the average complexity of a program due to
inheritance metrics (ACI) is to forecast the quality of design
of the program having multi-classes. ACI metrics described
as under:

ACI =

∑n
i=1 CCIi
n

(29)

where: CCIi is the complexity of an ith class due to inheri-
tance, n is the sum of the classes in the program.

44) NUMBER OF METHODS EXTENDED (NME)
Abreu & Carapuca defined NME metrics. The number of
methods extended (NME) i.e. redefined in child class by
invoking a method with a similar name on a parent class.

45) TOTAL CHILDREN COUNT (TCC)
Abreu & Carapuca defined quantity of classes that inherit
directly from a class is the TCC of that class.

46) TOTAL PROGENY COUNT (TPC)
Abreu & Carapuca defined quantity of classes that inherit
directly or indirectly from a class is the TPC of that class.

47) TOTAL PARENT COUNT (TPAC)
Abreu&Carapuca defined The number of super classes from,
which a class inherits directly is the TPAC of that class.

48) TOTAL ASCENDANCY COUNT (TAC)
Abreu & Carapuca defined the number of super classes from,
which a class inherits directly or indirectly is the TAC of that
class.

49) TOTAL LENGTH OF INHERITANCE CHAIN (TLI)
Abreu&Carapuca defined the sum of edges in the inheritance
hierarchy graph.

50) CLASS COMPLEXITIES
There are two types of class complexities: Member Complex-
ity (MC) and Relational Complexity (RC). A class consists of
data members, methods, and relationships with other classes.
Complexity due to data members, and methods are called
member complexity, and complexity of class due to relation-
ships is called relational complexity. Therefore, complexity
(C) of a class may be denoted as

C = MC + RC (30)

The complexity (MC) due to the member function of the
class depends upon the logic of the method whereas relational
complexity (RC) of the class depends upon coupling and
inheritance. Higher complexity causes higher fault proneness.

51) DEGREE OF INHERITANCE OF A CLASS (DIC)
DIC is constituted for two foremost characteristics of inheri-
tance: with the growth in the level of inheritance, reuse rises

to three levels of depth, but further, than three-level, the capa-
bility for reuse has a tendency to drop as it represents a
deprived subclassification. Therefore, for each level of depth,
if it increases further than three, there is a penalization factor
that rises (DIC increases) and affects a reduction in reuse. The
quantity of inherited methods or attributes plays a significant
role in class inheritance and offers a clearer image of the
inheritance factor. Inheritance of a class (DIC) is quantified
in terms of methods and attributes such as:

DIC =


N_O_Inher_Attb * (4-Lvl) if lvl ≤ 3
N_O_Inher_Attb * (Lvl-3) if lvl ≥ 4
N_O_Inher_Mth * (4-Lvl) if lvl ≤ 3
N_O_Inher_Mth * (Lvl-3) if lvl ≥ 4

 (31)

In the above equation, the level is the highest distance from
the class to the root in an inheritance hierarchy, disregarding
any concise route in the situation of multiple inheritance.
Quantity of inherited attributes is a summation of attributes
public, and protected methods within a class that are inherited
from their instant superclass. The degree of inheritance of a
class (DIC) is one of the main constructions to improve reuse
and, thus, the software design quality.

52) EXTENDED DERIVED BASE RATIO METRICS (EDBRM)
This EDBRM make available the average quantity of the
percentage of derived, and root shared attributes from each
class in the class inheritance tree as described in the following
equation:

EDBRM =
N∑
i=0

DF(Ci)/BF(Ci)/N (32)

53) EXTENDED AVERAGE NUMBER OF DIRECT
CHILD METRICS
The Extended Average Number of Direct Child Metrics
acronym as EANDC, calculates the averages of shared meth-
ods and attributes to its direct sub classes. When the number
of shared properties, and directly connect sub classes are
higher, the more shared each class, and it needs additional
testing to be performed to guarantee that it does not disrupt
the sub classes after modification are incorporated. The equa-
tion mentioned below is used to calculate EANDC:

EANDC =
N∑
i=0

(TSP(Ci) ∗ TDC(Ci))/N (33)

54) EXTENDED AVERAGE NUMBER OF INDIRECT CHILD
The metrics EANIC calculates the averages of the number of
shared methods and attributes to its indirect sub classes. The
Class, which is at the deepest in inheritance tree has a greater
EANIC number as compare to the one in inheritance tree
with a lower depth. The depth quantity of a class inheritance
tree must be more than three to calculate these metrics. The
classes, which have depth quantity fewer than three may not
have any indirect classes, hence these have zero value of
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EANIC. The EANDCmay be calculated through the equation
mentioned below.

EANDC =
N∑
i=0

(TSP(Ci) ∗ TIC(Ci))/N (34)

B. INHERITANCE METRICS AND THEIR USAGE
Inheritance aspect is a vital attribute in the object-oriented
paradigm. It facilitates design at class level, and forms
’IS-A’ relations among classes. The design of the class is a
basic component of system development [71]. The utilization
of the inheritance aspect, shrinkages the cost of testing efforts
along with maintenance of system [33]. The reuse with inher-
itance will consequently provide software, which is more
maintainable, understandable, and reliable [72]. An experi-
mental study of Harrison et al. depicts inheritance absence
is simpler to grasp or control than software systems having
inheritance aspect [72]. But, experiments of Daley shows
software systems with tertiary inheritance may be easily
updated compared to systems without inheritance [73].

The metrics of Inheritance compute several facets of inher-
itance, for example, the breadth, and depth of the hierarchy,
in addition to the complexity of overriding [74]. Likewise,
Bhattacherjee and Rajnish performed an investigation inher-
itance metrics addressing classes [62]. Yet, it is established
that the greater the hierarchy of inheritance, the reusability of
a class will be better but maintainability of the system under
test (SUT) will be difficult. To simplify the understanding,
designers trying to maintain inheritance hierarchy shallow,
and discard reusability by the use of inheritance [33]. There-
fore, it’s essential to evaluate the complexity of the inheri-
tance hierarchy to solve the difference between shallowness,
and depth.

Many metrics addressing inheritance are defined by the
researchers. In this regard, Table 1 showing thesemetrics with
references. In this paper specifically, we get these inheritance
metrics from the perspective of SFP.

C. INHERITANCE IN SFP
The metrics of object-oriented are utilized for prediction of
software quality. The characteristics that ascertain the soft-
ware quality are understandability, fault tolerance, maintain-
ability, defect density, reusability, normalized rework rate,
and many others. Numerous studies have been performed
including object-oriented metrics verification through empir-
ical research paper on open-source software in the context of
fault prediction utilizing {loc}, {lcom}, {cbo}, {dit},
and {noc} metrics [80]. Reusability investigation on sys-
tems based on object-oriented utilizing metrics of coupling,
inheritance, and cohesion [81], heuristic-based C&K metrics
evaluation [82], reusability metrics for the design of object-
oriented [83], empirical scrutiny of C&K metrics for the
complexity of object-oriented design [84].

The metrics suite of C&K developed, and implemented by
Chidamber et al. is the utmost often use metrics collection
for object-oriented software [33]. Basili et al. [85] studied

TABLE 1. Catalog of Inheritance Metrics.

the set of design metrics of object-oriented proposed by
Chidamber et al. [86]. R. Subramanyam endorsed that
{dit}, {cbo}, and {wmc} metrics are class level fault
predictor [84].

Empirical assessments of the classification algorithm have
been constructed to predict faults through studies [87].
Basili et al. numerous C&K metrics are found to be related
to failure propensity [86]. Tang et al. evaluated metrics
suite of C&K, and discovered that not any of these metrics
except {rfc}, and {wmc} were considered important [88].
Briand et al. takeout forty-nine metrics to determine, which
model to use for fault prediction. Findings reveals except
{noc} all metrics are helpful to predict failure propen-
sity [85].Wust and Briand discovered that {dit}metrics are
inversely correlated to fault proneness, and {noc} measure
is a trivial predictor of failure propensity [89]. Yu et al.
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selected 8 metrics, and they studied the association among
them with the propensity to failure. Initial, they investigated
the correlation amongst the metrics where they discovered
four extremely related groups. Then they use univariate anal-
ysis to notice, which indicators may identify failures [90].
Malhotra and Jain used logistic regression methods to study
the association among the object-oriented metrics with faults
tendency. The receiver operating characteristics (ROC) inves-
tigation was utilized, and the accomplishment of the predic-
tive model was assessed using ROC [90]. Yeresime et al.
explored the methods including linear regression, logistic
regression, and ANN to predict software failure using C&K
metrics. They concluded the importance of {wmc}metric for
classification of fault [91].

The review of the literature reveals that the {noc}, and
{dit} metrics, correlated to inheritance features are used
in fault prediction together within C&K metrics only. Con-
sequently, it is deemed vital to authenticate the worth of
inheritance metrics from the perspective of SFP.

D. METRICS UTILIZATION IN SFP
A sizeable quantity of object-oriented metrics has been
formed previously, which includes Li and Henry (1993),
Abreu and Carapuca (1994), Henderson-Sellers (1996),
Lorenz and Kidd (1994), Bansiya and Davis (QMOOD met-
rics suite) (1997), Etzkorn et al., Tegarden et al. (1999),
Briand et al. (1997), Benlarbi and Melo (1999), Tang et al.
(1999) and Cartwright and Sheppered (2000) including
Bieman and Kang, Halstead, McCabe, Briand et al.
Hitz and Montazeri, Lee et al., Li and C&K met-
rics suite, to evaluate the internal structure of software
systems [35].

Metrics have different levels including class, method, file,
process, component, and quantitative levels. The metrics at
method-level are extensively utilized for the problem of fault
prediction. McCabe (1976) and Halstead (1977) metrics rec-
ommended in the 1970s however these are even now the
furthermost prevalent method-level metrics.

The metrics at class-level are only used in object-
oriented programs where the metrics suite of C&K
(Chidamber & Kemerer, 1994) is even now the utmost preva-
lent class-level metrics suite being utilized for prediction of
faults.

Few scholars including Khoshgoftaar, Gao, & Szabo,
2001; Ostrand, Weyuker, & Bell, 2005 utilized metrics gath-
ered per source file, which is termed file-level metrics [27].
Table 2 summarized the frequently used metrics set at
method, class, and file-level for SFP. The overall distribution
of metrics for SFP is shown in Figure 1.

E. DATASET
The information regarding the faults of software projects
is honestly rarely reachable. The issue is that information
on faults for the enterprise’s business projects are accumu-
lated digitally as these are propriety to the organization.
On the other hand, in the smaller projects fault information is

TABLE 2. Frequently used Metrics in Software Fault Prediction.

FIGURE 1. Distribution of Metrics.

not adequate. Consequently, data with labels seldom exist.
The accessibility of public datasets will grant the assessment
of the inheritance metrics in software fault prediction. Many
datasets having inheritance metrics are found [92]. Some of
them are situated in the repository of Tera-PROMISE, and
five datasets on the repository of D’Ambros [34].

The publicly available inheritance metrics includes Depth
of the Inheritance Tree {dit}, Inheritance Coupling {ic},
Number of Children {noc}, Functional Abstraction Mea-
sure {mfa}, Inherited Method Number {nomi}, Inherited
Attribute Number {noai}, Dependent of the Son {doc},
number of methods called per class {fanOut},number of
classes that are called class methods{fanIn)}, and number
of immediate base classes{ifanin}. A total of 78 public
datasets found, which have inheritance metrics. Unluckily,
all ten metrics have not existed collectively in any dataset.
Nevertheless, groups of inheritance metrics found is different
datasets, which are explained as under:

1) FOUR INHERITANCE METRICS [dit, noc, ic, mfa]
It is found that about 63 public datasets having four
inheritance metrics namely Depth of the Inheritance Tree
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TABLE 3. Public Data sets with 4 Inheritance Metrics.

TABLE 4. Public Datasets [dit,noc,ic]Metrics.

{dit}, the Number of Children {noc}, Inheritance Cou-
pling {ic}, and Functional Abstraction Measure {mfa}.
These are available at the repositories of D’Ambros, and Tera-
PROMISE [93]. The Table 3 shows the public dataset name
in 1st column, the total number of instances in the second
column, the percentage of faults in the third column, and the
availability of metrics are mentioned withXmark.

2) THREE INHERITANCE METRICS [dit, noc, ic]
It is found that about 2 public datasets having three inheri-
tance metrics namely Depth of the Inheritance Tree {dit},
the Number of Children {noc}, and Inheritance Coupling
{ic}. These are available at the repositories of D’Ambros,
and Tera-PROMISE. Table 4 illustrations the explanation of
these datasets where the name of the dataset in the first col-
umn of the table, in second contains the number of instances,
and the fault percentage in the third column. The remaining
columns markedXto show the availability of the metric data
in the associated dataset.

TABLE 5. Public Datasets[dit,noc,ic,doc,fanIn] Metrics.

3) FIVE INHERITANCE METRICS [dit,noc,ic,doc,fanIn]
It is found that about 5 public datasets having five inheri-
tance metrics namely Depth of the Inheritance Tree {dit},
the Number of Children{noc}, Inheritance Coupling{ic},
Dependent on Child{DOC}, and number of classes that are
called class methods {fanIn}. These are available at the
repositories of D’Ambros, and Tera-PROMISE. Table 5 illus-
trations the explanation of these datasets where the name
of the dataset in the first column of the table, in second
contains the number of instances, and the fault percentage in
the third column. The remaining columns marked Xto show
the availability of the metric data in the associated dataset.

4) FIVE INHERITANCE METRICS[dit,noc,noai,nomi,ifanin]
It is found that about one public dataset having five inheri-
tance metrics namely Depth of the Inheritance Tree {dit},
the Number of Children {noc}, Number of Attribute Inher-
ited {noai}, Number of Method Inherited {nomi}, and
Number of immediate base classes of hierarchy {ifanin}.
These are available at the Tera-PROMISE repository. Table 6
illustrations the explanation of these datasets where the name
of the dataset in the first column of the table, in second
contains the number of instances, and the fault percentage in
the third column. The remaining columns marked Xto show
the availability of the metric data in the associated dataset.

TABLE 6. Five Inheritance Metrics [dit, noc, noai, nomi, ifanin].

5) FOUR INHERITANCE METRICS[dit, noc, noai, nomi]
It is found that about one public dataset having four inheri-
tance metrics namely Depth of the Inheritance Tree {dit},
the Number of Children {noc}, Number of Attribute Inher-
ited {noai}, and Number of Method Inherited {nomi}.
These are available at the tera-PROMISE repository. These
are available at the repositories of D’Ambros, and Tera-
PROMISE. Table 7 illustrations the explanation of these
datasets where the name of the dataset in the first column of
the table, in second contains the number of instances, and the
fault percentage in the third column. The remaining columns
marked Xto show the availability of the metric data in the
associated dataset.
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TABLE 7. Public Datasets [dit, noc, noai, nomi] Metrics.

TABLE 8. Public Datasets [dit, noc, noai, nomi, fanIn, fanOut]Metrics.

6) SIX INHERITANCE METRICS [dit, noc, noai,
nomi, fanIn, fanOut]
It is found that about six public datasets having six
inheritance metrics namely Depth of the Inheritance Tree
{dit}, the Number of Children {noc}, Number of
Attribute Inherited {noai}, number of classes that call
class methods{fanIn}, and number of methods called per
class{FanOut}. These are available at the repositories of
D’Ambros, and Tera-PROMISE. Table 8 illustrations the
explanation of these datasets where the name of the dataset in
the first column of the table, in second contains the number
of instances, and the fault percentage in the third column. The
remaining columns marked Xto show the availability of the
metric data in the associated dataset.

In the literature review, it is perceived that researchers
utilize public, and private datasets for the validation of their
research works. In this regard, Table 9 shows the author’s
name, year of publication, and public/private datasets used
in studies.

The utmost significant difficulties for software fault pre-
diction experiments are the use of non-public (private)
datasets. Numerous companies developed fault prediction
models utilizing patented data and displayed these models
in conferences. Nevertheless, it is not probable to match the
outcomes of such studies with outcomes of our own models
since their datasets may not be grasped [7]. The distribution
of datasets is shown in Figure 2.

Table 10 showed the fault distribution in the publicly
available data sets. The dataset is grouped according to the
percentage of fault they contain. The first column shows the
range of percentage of fault, the second column number of
public datasets fall in this group, and the third column shows
the name of datasets with usage in studies.

F. ALGORITHMS AND PERFORMANCE MEASURES
Statistical methods are reflected as black-box solutions since
these are extremely dependent on data, it is encouraging to
perceive that more researchers are discovering the capability
of machine learning methods to predict fault-prone modules.

TABLE 9. Data usage by studies.

FIGURE 2. Data Sets Distribution.

The literature review revealed that 59% used machine learn-
ing, and 22% used statistical methods [21]. Different machine
learning methods and performance measures are exam-
ined which use object-oriented metrics for fault prediction.
These are grouped into tables where studies from 1990-2003
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TABLE 10. Datasets used by studies.

are depicted in Table 11, studies in between 2004-2007
in Table 12 and studies between 2008-2020 mentioned
in Table 13 [7], [94]–[104].

IV. DISCUSSION
In this section, findings of the literature review mentioned
in Section III will be discussed, and highlight the potential
resources available to make use of inheritance aspects in SFP
arena.

It is also important to mentioned here that many solu-
tions have been developed to solve the class imbalance prob-
lem such as sampling, cost-sensitive, and ensemble methods
[4], [105]. However, these solutions are not equally effective
as most empirical studies do not take into consideration the
impact of class imbalance on prediction models and which,
imbalance method works well or help to learn capabilities in
software defect prediction. Selectingmodels, which are stable
and efficient with class imbalance will give a better result.

A. METRICS
Many object-oriented metrics are used in experiments where
the C&K metrics suite is a widely used set of metrics in
SFP [106].

The literature review reveals that about 54 inheritance met-
rics are defined in the literature by the researcher to address
the inheritance aspect. Out of these only two inheritance met-
rics are used in SFP namely {dit}, and {noc}. The reason
for their extensive use is that these metrics are the part of
C&Kmetrics suite, which is widely utilized in research exper-
iments by the researchers. There are fever studies, which
address the inheritance aspect exclusively.

TABLE 11. SFP studies (1990-2003).

Recently a experiment study highlight the potential
of inheritance in SFP where they have used {noc},
{dit}, {mfa}, {ic}, {nomi}, {noai}, {ifanin},
{fanOut}, {fanIn}, and {doc} inheritance metrics.
The literature review also indicated that the use of method-

level metrics is superior to then class level, which is 60, and
24 percent respectively.

B. DATASETS
The literature review reveals that experimental studies used
public, and private datasets where the ratio to use private
datasets is higher than public datasets, which is 60 to 31 per-
cent respectively. The bug data are available at PROMISE,
D’Admros, and NASA repositories.

The literature review indicate a total of 78 public datasets
containing 10 inheritance metrics, which includes {noc},
{dit}, {mfa}, {ic}, {nomi}, {noai}, {ifanin},
{fanOut}, {fanIn}, and {doc}.
Unluckily, all ten inheritance metrics have not discovered

within a single dataset. But, the various combination of inher-
itance metrics is found in public datasets.
• Agroup of four inheritanceMetrics{dit, noc, ic,
{mfa} found in 63 public datasets available at
PROMISE, and D’Adam repositories.
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TABLE 12. SFP studies (2004-2007).

• A group of three Inheritance Metrics {dit,noc,ic}
found in 2 public datasets available at PROMISE, and
D’Adam repositories.

• Agroup of five InheritanceMetrics{dit, noc, ic,
doc,fanIn} found in 5 public datasets available at

PROMISE, and D’Adam repositories.
• A group of five Inheritance Metrics {dit, noc,

noai, nomi, ifanin}found in one public
dataset available at PROMISE, and D’Adam
repositories.

• A group of four Inheritance Metrics {dit, noc,
noai, nomi} found in one public dataset available

at PROMISE, and D’Adam repositories.
• A group of six Inheritance Metrics {dit, noc,

noai, nomi, fanIn, fanOut} found in six
public datasets available at PROMISE, and D’Adam
repositories.

TABLE 13. SFP studies (2008-2020).

C. ALGORITHMS
The literature review reveals that experimental studies used
statistical, and machine learning models for their experi-
ments.Machine learningmodels have widely used a compari-
son to statistical methods in the context of SFP. Recent studies
show the use of Support Vector Machine, Naive Bayes, Deci-
sion Tree, and ANN models for fault prediction.

D. PERFORMANCE MEASURES
The literature review reveals that experimental studies use
many performance measures to validate the results of
machine learning models. Frequently used performance mea-
sures include Accuracy, Precision, Recall, F1-Score, AUC,
and ROC [107].

V. THREAT TO VALIDITY
Many inheritance metrics are described in the literature, how-
ever it is possible that other metrics might be a better indicator
of faults. Since we only concentrate on inheritance metrics
that were published in the various researches and these are
accessible in the certain datasets. The survey results shown
are basing on the inheritance metrics only. These datasets
might not be characteristic of all business sectors. These
datasets might not be excellent representatives in terms of
class numbers and sizes.

The main threat to the validity of this survey is related to
bias in selecting papers to inclusion and exclusion criteria.
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There might be a slight risk that some important papers might
have been missed in the search process. All the selected
papers were extracted and quality assessed by the author
which is reassessed twice a time specifically focusing inher-
itance aspect.

While performing a survey, it is essential to be mindful of
possible threats to the validity of the acquired outcomes and
drawn conclusions. A first potential cause of bias associates
with the data being utilized, whether the data is representative
of the domain in question and can result be generalized.
Since the data utilized in this survey branches from the public
domain, so our findings can be matched with others and
can be subjected to reproduction if required. Also, numer-
ous authors have debated in support of the suitability of
the PROMISE data repository and eclipse datasets and/or
applied some of its data sets for their experimentations. Thus,
we believe the acquired findings to be suitable for the SFP
community.

VI. CONCLUSION AND FUTURE WORK
In this paper, a literature review is conducted to see the effi-
cacy of inheritance metrics on SFP is validated. The review is
conducted by collecting, organizing, categorizing, and inves-
tigate published fault prediction studies. The outcomes of
the study show 54 inheritance metrics defined so far by the
researchers. Only two inheritance metrics are being used in
SFP. Besides, 78 public datasets identified, which contain
ten inheritance metrics with various combinations. The usage
of method-level metrics is 60%, and a similar number is
for the use of private datasets. The use of machine learn-
ing approaches is increasing, which uses many performance
measures.

This studywill assist scholars to examine the earlier studies
frommetrics, methods, datasets, performance evaluationmet-
rics, and experimental outcomes viewpoints in an easy, and
efficient way exclusive attention on the Inheritance aspect.

In the context of future work, we anticipate some scholars
would make use of the inheritance aspect mentioned in this
paper, and attempt to assess other inheritance metrics than the
ones we utilized. Besides, utilizing regression using machine
learning techniques for faults predict with inheritance metrics
will be significant work to be done.
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