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ABSTRACT Trajectories optimisation is a major research topic in air transport and air traffic management,
due to its profound impact both on passengers, airlines and the environment in general, and consequently
on the perceived value and cost of air transportation. While the challenges associated to the optimisation of
the en-route part of a flight are well understood, relative less attention has been devoted to the last part, i.e.
the approach and landing. Here we show how open large-scale data sets of aircraft trajectories can be used
to characterise the efficiency of flights landing at an airport, measured through the time and distance flown
below 10, 000 feet. The yielded picture is highly heterogeneous, with the time spent at low altitude varying
from an average of 10minutes for Zurich, up to 16minutes for London Heathrow. Flights arriving at the same
airport also experience highly different times, e.g. from 12 to 20 minutes for London Heathrow, depending
on factors like traffic volumes, time of the year and of the day, and on interactions with other traffic patterns
and airports. From a more general perspective, this contribution illustrates how the availability of large data
sets can be used to improve our understanding of the real behaviour of the system, and especially its deviation
from what planned.

INDEX TERMS Air traffic control, aircraft navigation, big data applications, data mining, air pollution.

I. INTRODUCTION
One of the main concerns in air transport, and specifically in
Air Traffic Management (ATM), is the optimisation of trajec-
tories to allow aircraft to reach their destinations in the short-
est possible time. A suboptimal trajectory has clear economic
consequences, both for passengers (i.e. longer travel times)
and airlines (i.e. higher fuel and crew costs); but it also affects
the environment, as more fuel burnt implies larger quantities
of pollutant emissions - to illustrate, a medium-range aircraft
contributes to climate change with around 1.5Kg of CO2 per
minute of flight [1]. While prima facie the best trajectory is
expected to be a straight (or geodesic) one, real operations
are more complex, with multiple factors modifying this trivial
solution. For instance, planners try to avoid en-route head-
winds, and to take advantage of tailwinds; and they further
have to comply with the structure of airspaces and routes,
designed to ensure an effective air traffic control, and hence
the safety of operations.
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Research efforts to define and measure efficiency in air
transport have been focused on three complementary aspects.
On one hand, several works have tried to assess how efficient
the actual system is from a global perspective, i.e. its capacity
of matching flights offer with demand. Examples of this
include [2], focusing on the transportation demand of the state
of Indiana; [3], focusing on the hub-and-spoke network of
the Java Island; and [4], analysing the efficiency of 24 major
international airports.

Moving the focus to flights themselves, a second set of
works have been focused on understanding the efficiency
of different airspaces and on comparing them. Specifically,
[5] proposed a set of metrics to define the lateral and ver-
tical deviation from an ideal trajectory, and to evaluate the
additional fuel needed because of these deviations. A similar
problem was tackled by [6], finding that vertical deviations
account for a 3% increase in fuel consumption in the US
airspace. Comparable analyses were performed for Japan [7],
US [8], Europe [9]–[11] and China [11].

As a third line of research, the focus is finally shifted to
individual flights, to understand how decisions can be taken
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to make them more efficient. This can be approached in two
ways. On one hand, one can suppose that the structure of
the airspace is given, i.e. it cannot be modified; each aircraft
can then try to optimise its trajectory taking into account
various elements, like the total distance flown, or more
sophisticated costs (i.e. what is known as dynamic cost
indexing [12]). While a complete review of these proposals is
outside the scope of this work, the interested reader can refer
to, among others, [13]–[20]. On the other hand, more radical
solutions to improve the efficiency of the airspace can be
designed if the underlying structure is allowed to change. This
gives rise to the concepts of dynamic airspace sectorisation
[21], [22], in which sectors are dynamically reconfigured
according to the expected traffic flows; and of free-flight
[23], [24], in which flights are not required to follow specific
air routes.

The problem of flight efficiency becomes even more com-
plex at the end of the flight, i.e. in the approach phase.
This is due to several reasons. First of all, being airports
the final destination of all flights, they usually concentrate
a large volume of traffic in their surroundings. Some cities
further havemore than one airport, whose traffic patterns may
interact. Additionally, approaches have to be designed taking
into account terrain characteristics (e.g. mountains) and other
restrictions (as the presence of populated areas). Finally, paths
may be altered by changing and adverse weather conditions,
forcing the closure of some runways, or the use of specific
configurations. Each airport has then to publish a set of
approach and landing procedures, called STARs (STandard
ARrivals), which substantially deviate from an ideal, straight
path. As in the case of trajectories, a substantial amount
of research effort has been devoted to the design of more
efficient landing procedures, through for instance the concept
of continuous descent [25]–[28].

One common assumption of efforts focused on improving
approach efficiency is that procedures can be changed and
optimised, but that, when they are in place, all operations will
follow them. In other words, as all flights follow the same
rules, they will all suffer from the same inefficiencies, leaving
little room for improvement. Several factors may nevertheless
affect this. First of all, flights may use different approach
procedures, evenwhen coming from similar directions, which
may have different efficiencies. Secondly, high volumes of
traffic may saturate the runways, forcing aircraft to wait in
holding patterns. Finally, and in order to avoid other traffic
patterns, aircraft may be forced to fly at lower altitudes, with a
consequent increase in fuel consumption. The consequences
of these factors are difficult to estimate a priori, i.e. at the
time of designing the approach procedures or by just look-
ing at a map. A procedure may theoretically be extremely
efficient, i.e. leading the aircraft to the runway in an almost
straight trajectory; but it may actually be inefficient due to
exogenous factors. In a similar way, two aircraft approaching
an airport throught the same trajectory may be subject to
different circumstances, resulting in substantially different
fuel consumptions.

To the best of our knowledge, there has been no sys-
tematic evaluation of the real efficiency of airport arrival
procedures, mainly because such evaluation is only possible
through large-scale real data that have been made available
to researchers only in recent years. Some works have resort
to simulations, using synthetic data generated by models for
different airport configurations [29], [30]. On the other hand,
a limited number of works have analysed the efficiency of
specific airports, for which data were available, e.g. Stock-
holm Arlanda Airport [31], Los Angeles airport [32], or Fort
Worth [33]. A natural question thus emerges: can the data that
are currently freely available, e.g. from ADS-B (Automatic
Dependent Surveillance - Broadcast), be used to evaluate
the real efficiency of the arrival procedures of an arbitrary
airport?

Along this line, this work thus aims at evaluating the
arrival and landing efficiency, understood as the distance
and time flown at low altitude, of 16 large European air-
ports; at identifying the reasons behind inefficiencies; and at
estimating their economic and environmental consequences.
A large data set of real trajectories is used, with a special
focus on the horizontal and vertical profile of flights below
10, 000 feet. Results depict a large heterogeneity of situa-
tions, with a large variability within each airport, and due to
different reasons. Beyond these specific results, the present
work is an example of how novel technologies (open-source
ADS-B trajectory data) and techniques (large-scale data anal-
ysis) can be combined to optimise air transport beyond what
possible through more classical approaches.

II. DATA GATHERING AND PRE-PROCESSING
The starting point of the analysis here presented is a large
data set of ADS-B position reports, covering the time window
from May 1st , 2018 to December 31st , 2019, obtained from
the OpenSky Network (https://opensky-network.org) [34].
ADS-B (Automatic Dependent Surveillance - Broadcast) is
a technology allowing aircraft to continuously send radio
messages, stating their position and other information of rele-
vance [35], [36]; these messages are then received by ground
stations, and integrated into coherent reports. Messages are
collected on average every 6.37 seconds, for a total of 3.4TB
of data - i.e. around 5.5GB/day.

For each airport, landing flights have been identified when
the last known position was within a radius of 3 nautical
miles from the center of the airport, and the last reported
altitude below 500 meters. In the case of cities with multiple
airports, an additional filter has been applied, to ensure that
the landing was in the correct one - e.g., in the case of Madrid
Barajas, flights whose longitude was greater than−3.50 were
discarded, as they are heading towards Madrid Torrejón.
In order to assess the time to land, the first known posi-
tion of the aircraft between 9, 500 and 10, 000 feet was
recorded; if such position was not available, for instance due
to bad coverage along the approach path, the flight was dis-
carded. To ensure coherence of the data, flights were also dis-
carded when the time between their crossing the 10, 000 feet
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TABLE 1. List of airports considered in this study. Ranking refers to the position of each airport in the European ranking of the most busy airports
in 2019, according to the number of passengers. The column # flights reports the number of flights available in this study, after the filtering described in
Sec. II. The columns # Ops. 2019, # Pax. 2019 and Cargo (t) 2019 respectively refer to the number of movements, passengers and cargo (in tons) for
year 2019, as reported in the airport’s Wikipedia page. Values marked with a ∗ have been obtained from the airport website, while † indicates values for
year 2018. An horizontal dash finally indicates that the airport did not report that value.

FIGURE 1. Probability distribution of the landing time for the 16 considered airports, calculated as the time between crossing
10,000 feet and touchdown. Grey bands indicate the 15th-85th percentiles range; black and red horizontal lines respectively the
average and median of the distributions. A great variability can be observed, with times to land going from an average of
10 minutes for Zurich (LSZH) to 16 minutes for London Heathrow (EGLL). Also, flights arriving at a same airport have a
high variability, as depicted by the long grey bars.

altitude and landing was below 3 minutes; and when the code
of the aircraft was unknown. Finally, the time to land has
been calculated as the difference between the time of the
last position report and of the 10, 000 level crossing. All
computations have been implemented in Python 3.7, with
standard data manipulation libraries, and executed on an
AppleMacBook Pro (15-inch, 2017model), with a quad-core
Intel Core i7 processor and 16GB of memory.

Data for the top 30 European airports have been extracted
and analysed. Nevertheless, and due to the previous filters,
inhomogeneous ADS-B coverage across Europe, and the
need of having representative trajectories, some of them
have been discarded. Details about selected airports and the
number of available flights are reported in Tab. 1. It can be
appreciated that some of them, i.e. LGAV (Athens Interna-
tional Airport), LEBL (Barcelona-El Prat Josep Tarradellas
Airport), EGKK (Gatwick Airport) and LIRF (Leonardo da
Vinci-Fiumicino Airport), are still described by a low number

of flights; conclusions about them have then to be drawn with
due prudence.

III. LANDING EFFICIENCY ASSESSMENT
As a first overview to the results, Fig. 1 reports the dis-
tribution of the landing time for all airports. As previously
detailed, here landing time refers to the time from crossing
an altitude of 10, 000 feet to touchdown. This time is of
importance in operations, as flying at low altitude is slower
and implies higher fuel consumption; hence, a reduction of
this time implies both savings in costs, and a reduction of the
environmental impact. Grey bands of Fig. 1 correspond to the
15th-85th percentiles range, while black and red horizontal
lines respectively to the average and median of the distribu-
tion. Two relevant observations can already be made. First
of all, and opposed with what may be intuitive, airports are
characterised by a great variability in the landing time - for
instance, it varies between 12 and 20 minutes for aircraft
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FIGURE 2. Landing time (i.e. time since crossing 10,000 feet to touchdown) as a function of the traffic. Each point in each scatter plot reports the
median of the landing time for one day, as a function of the number of landings detected on the same day. The four airports with the lowest
number of reliable flights (LEBL, LIRF, EGKK and LGAV, see Tab. 1) are plotted in grey. Note that no clear relationship can be observed for most
airports.

landing at London Heathrow (EGLL). This suggests that
landing procedures are not fixed, and that important varia-
tions in efficiency can be experienced. Secondly, large air-
ports (e.g. EGLL, EHAM) are generally less efficient than
small ones (as, for instance, LSZH or EDDL), pointing
towards the complexity of the airspace as the main cause
behind inefficiencies. The case of Zurich Airport (LSZH) is
especially noteworthy, as it presents a small average landing
time and dispersion, even though it is surrounded by moun-
tains and its approach is considered one of the most complex
in Europe.

If traffic seems to be globally associated to less efficient
approaches, the same may hold true at a more micro-level; in
other words, one may expect a larger landing time in those
days with a higher volume of traffic. To test this hypothesis,
Fig. 2 reports a scatter plot for each airport, depicting the
median landing time of each day as a function of the number
of operations. Note that, in order to obtain a more reliable
estimation, this latter number includes all detected landings,
thus not just those fulfilling the filters described in Sec. II.
If these was a relationship between landing times and traffic
volumes, this would appear as structures in the scatter plot;
instead, points are forming clouds, thus suggesting no clear
relationship. At the same time, a test indicates that, at least for
7 of the considered airports, such hypothesis can be accepted
in a statistically significant way, with increases in the average
landing time of around a 10% - see Tab. 2.

TABLE 2. Relationship between the landing time and the daily traffic
volume. For each considered airport, the second and third columns report
the average landing time of those day whose traffic volume was
respectively below and above the median. The fourth column reports the
p-value of a two-sided t-test for the null hypothesis that both averages
are identical. Asterisk mark those airports whose p-value is statistically
significant at α = 0.01 after a Šidák correction for multiple testing [37].

We further analyse whether the hour of the day and the
season have an effect on the average and spread of the land-
ing time. As can be seen in Figs. 3 and 4, depicting the
distribution of landing times as a function of respectively
the hour of the day and the season, clear trends appear,
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FIGURE 3. Probability distribution of the landing time across flights for the 16 considered airports, as a function of the time of the
day. The six columns respectively correspond to the time windows 24h-04h, 04h-08h, 08h-12h, 12h-16h, 16h-20h, and 20h-24h. Grey
bands indicate the 15th-85th percentiles range; black and red horizontal lines respectively the average and median. Finally, the blue
line (right axes) reports the fraction of traffic observed in each bin.

FIGURE 4. Probability distribution of the landing time across flights for the 16 considered airports, as a function of the season of the
year. Bands and line are defined as in Fig. 3. Win: winter; Spr: spring; Sum: summer; Aut: autumn.

at least in some airports. For instance, Amsterdam Airport
Schiphol (EHAM) and Barcelona-El Prat (LEBL) present a
clear positive correlation between mean landing time and
traffic, with peaks in the 8h-12h time band. On the other
hand, the situation is less clear in the case of seasons, with

some airports (e.g. Schipol or Zurich Airport LSZH) even
presenting a negative correlation; this is probably due to
the too low resolution of an analysis based on four con-
secutive months. In order to better spot the presence of an
overall correlation, Fig. 5 reports two scatter plots, with the
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FIGURE 5. Scatter plots of the deviation from the median landing time as
a function of the deviation from the median traffic volume, aggregated by
hour of the day (top panel) and season (bottom panel). Each point
represents one airport at a given hour (top) or season (bottom). See main
text for details about the calculation of the deviations.

deviation of landing time as a function of the deviation of
traffic, for the hour- (top panel) and season-based (bottom
panel) aggregation. Here, the deviation of the landing time
is defined as 1time = log2 Mh/Mglobal , where Mh is the
median of the landing time in the considered hour band, and
Mglobal the median of all landing times for the studied airport.
In other words, a value of 1time = +1 indicates that the
landing time for a given hour band is the double of what
normally expected; conversely, a value of−1 indicates a 50%
reduction. Similarly, 1traffic = log2 Tf /(1/6), where Tf
is the fraction of traffic observed, and 1/6 accounts for an
expected uniform distribution of traffic across the six bands.
For the bottom panel of Fig. 5, the same definitions apply,
except that values are calculated for seasons instead of hour
bands. A weak positive correlation is observed in both cases,
stronger in the case of the hour bands (R2 of 0.543 vs. 0.274),
thus confirming the importance of traffic towards the landing
efficiency.

IV. DETECTING THE ORIGIN OF INEFFICIENCIES
If a higher volume of traffic seems to be driving the system
towards more inefficient landing trajectories, the next logical
step is to understand how these trajectories are modified.
Towards this aim, Fig. 6 reports, for the top-4 airports, the 100
most and less efficient trajectories - i.e. the ones with the
smallest (blue, top panels) and largest (red, bottom panels)
landing times. This is complemented by Fig. 7, reporting,
for the same 100 + 100 trajectories, the distribution of the

distance between the first available location below 10, 000
feet and the touchdown point. In both cases, these flights
correspond to the first week of June 2019.

Two different situations can be observed. Firstly, one may
consider the cases of Amsterdam Airport Schiphol (EHAM)
or of Heathrow Airport (EGLL). Fig. 7 indicates that the
best and worst flights are crossing the 10, 000 feet altitude
at around the same distance - note that the medians (red
horizontal lines) are qualitatively the same.1 This is also
confirmed by Fig. 6, as the initial points of all trajectories
seem to be the same. The main difference then resides in the
distance traveled below 10, 000 feet. Specifically, in the case
of Heathrow, most flights are forced into holding patterns;
while, for Schipol, many flights arriving from the north have
to approach the runway from the south. A second scenario can
be clearly observed for Charles de Gaulle Airport (LFPG):
trajectories are similar, but aircraft get below 10, 000 feet
farther away from the airport - see the large difference in
medians in Fig. 7. This seems to be due to different approach
patterns, requiring different altitudes. To illustrate, let us
consider the case of an aircraft landing at runway 26L -
i.e. the bottom runway, and landing from the east (right to
left). Two main options are available. Firstly, the approach
BANOX 6Y, in which aircraft get below 10, 000 feet at approx.
48.9 latitude and 2.5 longitude, thus very close to the air-
port. Secondly, the approach OKIPA 6Y, in which aircraft
have to get below that altitude at the OKIPA IAF, at approx.
48.6 latitude and 3.8 longitude. In the first case, the aircraft
has to fly 18.9 NM till intercepting the ILS,2 compared to
36.3 NM in the second case, i.e. almost the double. The
higher efficiency of the first approach is probably due to the
presence of the airport of Le Bourget (LFPB) in the south,
forcing aircraft to fly higher. This analysis supports the idea
that inefficiencies come from two different sources. On one
hand, higher volumes of traffic may force the use of holding
patterns; on the other hand, some traffic flows are associated
to less efficient approach procedures. Thus, while the first is
conjunctural, the second is systemic and could be solved - e.g.
by letting aircraft fly higher until closer to the airport.

A different way of visualising this same information is
provided in Fig. 8. The top panels depict the evolution of the
altitude of flights as a function of time for the four largest
airports - where t = 0 is the moment at which the aircraft
crossed the 10.000 feet altitude. In an ideal scenario, all
aircraft would follow a continuous descent approach, i.e. the
more efficient in terms of fuel usage, which would show
as a constant-slope diagonal line. On the contrary, Fig. 8
presents several horizontal lines, corresponding to segments
where several flights were kept at the same low altitude -
in some cases, even during 10 minutes. On the other hand,
the bottom panels of Fig. 8 report the cumulative probability
distribution of the extra landing time for the same airports,

1A Mood’s median test yields a p-value of respectively 4.07 · 10−4 and
0.066 for EHAM and EGLL, thus very close to statistical significance.

2Instrumental Landing System, i.e. the final part of the landing procedure,
and common to all flights.
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FIGURE 6. Trajectories of the 100 flights with smallest (top panels, blue) and largest (bottom panels, red) landing time, for the four biggest airports
here considered.

FIGURE 7. Distribution of the distance between the first available
location below 10,000 feet and the touchdown point. The two bands of
each airport correspond to the most (left bar) and least efficient (right
bar) trajectories, as depicted in Fig. 6. Grey bands indicate the 15th-85th
percentiles range; black and red horizontal lines respectively the average
and median.

i.e. the additional time that each flight is flying below
10, 000 feet when comparedwith the fastest one. To illustrate,
the cumulative probability for EDDF at 600 seconds is 0.097;
this indicates that 9.7% of flights had to fly an additional
10 minutes or more below 10, 000 feet before landing, when
compared to the most direct flight. Therefore, the smaller the
area under these curves, the more efficient (and consistent)

are the landing procedures. The value of this distribution at a
given threshold, as depicted by horizontal dashed lines in the
bottom panels of Fig. 8, can readily be used as an efficiency
measure; for the data here available, LFPG and EGLL are
respectively the most and least efficient airports.

The next logical question is how much the difference
between two approaches, as the ones previously analysed
for Charles de Gaulle Airport, implies in economic and
environmental terms. For that, we here use the Open Air-
craft Performance Model (OpenAP) model in Python [38]
to model the fuel consumption of a standard aircraft, i.e.
an Airbus A320 with CFM56-5B4 engines [39]. We compare
two scenarios: the OKIPA 6Y approach, with 36.3 NM flown
at 7, 000 feet; and the BANOX 6Y approach, with 18.9 NM
flown at 7, 000, plus 17.4 NM at 13, 000 feet (to keep the
total distance constant). Average velocities of 230 (above
10, 000 feet) and 200 knots (below 10, 000 feet) are used,
in accordance with published speed restrictions. The first case
yields a consumption of 144.16 Kg of fuel, while the second
136.56 Kg. The difference, i.e. approx. 7.6 Kg, yields an
increased emission of 23.94 Kg of CO2, using the equiv-
alence of 3.15 grams of CO2 per gram of fuel [1]. While
this number seems small, it is equivalent to the CO2 emis-
sion of 15 minutes of an average flight, or one tenth of the
emissions of a 2.5 hours flight. Avoiding these emissions,
e.g. by allowing the aircraft to keep a higher altitude, or by
allowing a continuous descent approach, would thus have a
significant positive environmental impact. Note that, while
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FIGURE 8. Vertical trajectories and efficiency of flights landing at the four largest airports here considered. Top panels represent the vertical profile
of flights landing at each airport, i.e. their altitude as a function of the time passed since crossing 10,000 feet. The bottom panels depict the
cumulative probability distribution of the extra landing time, i.e. the additional time from crossing 10,000 feet to landing compared to the fastest
flight. The horizontal dashed lines indicate the fraction of flights taking 10 extra minutes (600 seconds) or more to land.

these two scenarios have been chosen for being easily identi-
fiable both in Figs. 6 and 8, similar analyses can be performed
on any pair of approach procedures, and especially on those
with near entry waypoints.

V. DISCUSSION AND CONCLUSION
The last minutes of a flight have a non-negligible impact in
the overall efficiency of the same, both in terms of the total
travel time (and hence its cost) and of pollutant emissions.
Still, this last phase has mostly been neglected by research
efforts trying to optimise air transport. This may be due,
firstly, to the relative low impact of the approach, when com-
pared for instance to the departure in terms of fuel burnt; and
secondly, to the difficulty inherent securing precise trajectory
data.

This contribution illustrates how a large-scale data set of
ADS-B messages can be used to characterise the last minutes
of flights arriving at one airport, and consequently the effi-
ciency and consistency of its arrival procedures. Specifically
we have focused on the trajectories of aircraft arriving at
16 large European airports, starting from the moment they
crossed the 10, 000 feet altitude; and studied the relationships
between the time to land and factors like traffic volume, time
of the day and approach direction. This time between crossing
10, 000 feet and landing is of major relevance, as aircraft
burn comparatively more fuel at low altitudes and low speeds.
This time can then be used as a proxy of the efficiency of
the landing procedure, as smaller times imply not just higher
efficiency in terms of costs, but also in terms of a more
reduced environmental impact.

Results indicate that airport efficiency is highly hetero-
geneous, both between airports (e.g. between EGLL and
LEMD, see Fig. 1, and between EGLL and LFGP, see Fig. 8),
and within the same airport. Aircraft experience less effi-
ciency with high volumes of traffic, as it may be expected,
especially when analysed intra-daily (Fig. 3); but most air-
ports also experience an increase in efficiency during summer
(Fig. 4), i.e. when higher volumes of traffic are expected.
The reason behind such inefficiencies varies from airport to
airport: it can be related to the need of using holding patterns,
or to the way approach trajectories interact with those of other
airports (Fig. 7). In all cases, inefficiencies have a significant
environmental impact, an aspect that cannot be neglected in
our times [40].

From an operational point of view, the methodology here
described can be used to evaluate and compare different
approach procedures. As shown in Figs. 7 and 8, the distance
and time flown below 10, 000 feet can be used as a proxy
of the efficiency of the approach procedure. One can then
identify abnormal flights, as e.g. those deviating more from
a continuos descent; and further go back to analyse the exact
dynamics of those flights, for instance by considering their
trajectories as done in Fig. 6. Additionally, a simple perfor-
mance indicator, or KPI, could be constructed, as illustrated
by the horizontal lines in Fig. 8.

Such analyses can help improving the system at three
different levels. First of all, one can consider a strategic
time frame; a large number of historical operations (e.g.
corresponding to one year or more) can be analysed in order
to detect systemic inefficiencies arising from sub-optimal
procedures, and propose changes accordingly. On a more
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tactical time scale, trajectories could be reviewed daily or
weekly, to detect abnormal situations (e.g. specific adverse
weather patterns) and eventually discuss solutions with the
air traffic controllers. Finally, it would be feasible to develop
a real-time trajectory analyser, monitoring the behaviour of
incoming and departing aircraft and alerting when aircraft
deviate from what expected - e.g. when the total distance
flown below 10, 000 feet exceeds a threshold. These three
approaches would be feasible thanks to the reduced com-
putational cost and high understandability of the results.
Additionally, the analyses here reported are easily generalis-
able to any airport, provided its idiosyncrasies are taken into
account - as e.g. restrictions in allowed trajectories due to
interactions with nearby airports.

When inefficiencies suggest the need for a change in the
arrival procedures, two aspects have to be taken into account.
The first is safety, as a complementary analysis will be
required - a topic not discussed in this work. Also, changes
in arrival procedures may affect delays and their propagation
- a more efficient approach will reduce arrival delays, and
potentially also secondary delays [41]–[44].

As a final point, it is worth noting that the approach
here proposed can be applied beyond the landing phase. For
instance, high resolution trajectory data could be used to
analyse the efficiency of individual sectors or regions of the
air space, to detect when aircraft have to deviate from an ideal,
straight course [23], [45], [46].

As discussed in Section II, one important limitation of the
present study is the use of an open-source data set of ADS-B
messages.While ADS-B is amature technology, its reliability
is not complete. We here do not consider topics like security
and malicious attacks [47]–[49], or bad position reports [50],
which are outside the scope of this study. Still, the main
limitation is that coverage is not complete, as public ADS-B
networks rely on the contribution of volunteers; consequently,
data for parts of approach trajectories, or even for full airports,
may not be available. This has here been tackle in two ways:
by deleting those flights for which a complete trajectory was
not available; and by not considering airports for which a
too small number of flights were available. Note that this
last rule was not enforced in the case of four clearly marked
airports (LEBL, LIRF, EGKK and LGAV), which indeed
seem to yield biased results - see for instance Fig. 2. Such data
incompleteness is nevertheless not a major problem for the
study here presented. Even if some flights may be missing for
each airport, the main conclusions still hold, as for instance
the types of approaches discussed in Figs. 6 and 8.

To conclude, this contribution is an example of how
large-scale collections of public data can be used to anal-
yse air transport operations, above and beyond what can be
obtained by classical approaches. While micro-scale models
allow simulating the behaviour of aircraft under some given
conditions, the definition of the latter ones is a non-trivial
(and often subjective) process. Data analysis then constitutes
a clear alternative, allowing characterising what the system
actually did, as opposed to what it was supposed to do.
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