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ABSTRACT Robust and accurate human activity recognition (HAR) systems are essential to many
human-centric services within active assisted living and healthcare facilities. Traditional HAR systems
mostly leverage a single sensing modality (e.g., either wearable, vision, or radio frequency sensing) combined
with machine learning techniques to recognize human activities. Such unimodal HAR systems do not
cope well with real-time changes in the environment. To overcome this limitation, new HAR systems that
incorporate multiple sensing modalities are needed. Multiple diverse sensors can provide more accurate
and complete information resulting in better recognition of the performed activities. This article presents
WiWeHAR—a multimodal HAR system that uses combined Wi-Fi and wearable sensing modalities to
simultaneously sense the performed activities. WiWeHAR makes use of standard Wi-Fi network interface
cards to collect the channel state information (CSI) and a wearable inertial measurement unit (IMU)
consisting of accelerometer, gyroscope, magnetometer sensors to collect the user’s local body movements.
We compute the time-variant mean Doppler shift (MDS) from the processed CSI data and magnitude
from the inertial data for each sensor of the IMU. Thereafter, we separately extract various time- and
frequency-domain features from the magnitude data and the MDS. We apply feature-level fusion to combine
the extracted features, and finally supervised learning techniques are used to recognize the performed
activities. We evaluate the performance of WiWeHAR by using a multimodal human activity data set, which
was obtained from 9 participants. Each participant carried out four activities, such as walking, falling, sitting,
and picking up an object from the floor. Our results indicate that the proposed multimodal WiWeHAR system
outperforms the unimodal CSI, accelerometer, gyroscope, and magnetometer HAR systems and achieves an
overall recognition accuracy of 99.6%—100%.

INDEX TERMS Activity recognition, Doppler effect, feature extraction, feature fusion, machine learning,

micro-Doppler signature, principal component analysis, radio frequency sensing, wearable sensing.

I. INTRODUCTION

Human activity recognition (HAR) commonly refers to
automatically identifying physical activities performed by
humans based on sensor data. HAR plays a crucial role
in numerous human-centric applications that need to keep
track of physical activities and behaviour of humans.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ting Wang

For instance, the aim of active assisted living (AAL) is to
assist elderly and physically or cognitively impaired people
to live independently in their homes by providing them with
technical assistance in carrying out their daily activities [1],
[2]. To provide such support, AAL systems proactively need
to know the behaviour and the activities of the person. The
information about the person’s behaviour and activities can be
obtained from a HAR system. Moreover, in geriatric clinical
practice, various functionality tests are performed, such as the
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timed up and go (TUG) [3] or more complete assessments
that involve the quantification of the fundamental physio-
logical, cognitive, and social parameters of comprehensive
geriatric assessment (CGA) [4]. The analysis of the evo-
lution of these parameters is used for the prescription of
medication and/or preventive actions, with a clear impact on
improving the quality of life of elderly. In general, the tests
and measures described are carried out in medical exami-
nations, but it would be very useful to automatically obtain
information correlated with the assessment of functionality,
i.e., by using systems that monitor daily life activities in a
ubiquitous way. Furthermore, fall detection and prevention
is essential for elderly healthcare and wellbeing. Because
falls are important causes of different levels of trauma with
fatal consequences in a high percentage; and psychological
effects, such as the fear of falling, which leads to less activity
implying a clear decline in functionality [5]. Therefore, health
monitoring systems would profit from incorporating human
activity trackers enabling to track activities of patients [6] and
to detect accidental falls [7]. Upon detecting a fall or other
needs of assistance, these healthcare systems can invoke a
nearby hospital or an emergency care provider for assistance.
Moreover, HAR systems are also used for indoor and outdoor
surveillance and for detecting suspicious behaviour and activ-
ities in public places, such as airports [8], public transport [9],
and correctional facilities [10].

Typically, the architecture of HAR systems consist of
the following modules: (1) a sensing module—to collect
the sensor data while a person is performing the activities;
(2) a data processing module—to process the raw sensor data
to eliminate noise from the data, and to normalize the data;
(3) a segmentation module—to identify and extract the seg-
ments of interest (e.g., the time period when the person is
performing an activity) from the processed data; (4) a feature
extraction module—to extract features from the segmented
data; and finally (5) a classification module that applies
machine learning or deep learning techniques to predict the
activities performed by the person. Moreover, HAR systems
are generally divided into device-based, device-free, and
multimodal HAR systems based on the underlying sensor
technology that is used for data collection.

A. DEVICE-BASED HAR SYSTEMS

Device-based

HAR systems, also known as wearable sensor-based HAR
systems, require the user to either wear or carry sensors,
such as accelerometers and gyroscopes. The data collected by
these sensors are used to recognize human activities. Smart-
phones [11]-[13], smartwatches [14], [15], and dedicated
inertial measurement units (IMUs) [16] are commonly used
wearable sensor platforms for device-based HAR systems,
gestures recognition systems, and health monitoring systems.
In recent years, smart clothes with integrated sensors have
been designed to monitor vital signs and human activities.
For instance, in [17], a textile-based wearable sensing plat-
form has been presented that consists of a sensing shirt,
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a sensing trouser, sensing gloves, and sensing shoes.
The sensing modules of this wearable sensing platform
are embedded with inertial sensors, textile electromyogra-
phy (EMG) electrodes, and piezoresistive sensors to col-
lect data that are used to monitor the physical activity
of stroke survivors and evaluate their recovery. Similarly,
Hexoskin [18] offers clinically validated and machine wash-
able smart garments, e.g., smart shirts for continuous moni-
toring of heart and breathing rate, and activity data that can
effectively be used to recognize human activities.

Although device-based HAR systems can recognize
human activities with great accuracy, they have several draw-
backs. For example, the wearable sensors must be worn all
the time for continuous activity recognition, which might
be invasive, less comfortable, and annoying for cognitively
impaired individuals and elderly. Moreover, the wearable sen-
sors must be placed on the human body correctly according
to the guidelines of the sensor providers. Otherwise, wrong
placement of the sensors may provide inaccurate measure-
ments that can lead to incorrect results or reduced recognition
accuracy [19]-[21].

B. DEVICE-FREE HAR SYSTEMS

In device-free HAR systems, vision and radio frequency (RF)
sensors are commonly leveraged to identify human activities.
Vision-based HAR systems are widely used for security and
surveillance applications. They use cameras to record videos
or capture still images of individuals while users perform
activities. Thereafter, computer vision techniques are applied
to classify the activities [22]. Vision-based HAR systems
are generally very accurate, and they can effectively track
multiple persons, but they suffer from various limitations. For
instance, they typically have a limited monitoring area; they
need a clear view of the monitoring area; their performance
highly depends on the lighting conditions; and the recorded
videos might raise concerns about user privacy.

RF-based device-free HAR systems rely on the phe-
nomenon that human bodies reflect RF signals, and move-
ments of different human body segments cause variations
in the frequencies of the RF signals due to the Doppler
effect. These RF signals, enriched with Doppler frequency
variations, are collected and used for human activity recog-
nition [23], [24], gesture recognition [25], and fall detection
[26], [27]. RF-based HAR systems are generally divided into
standard Wi-Fi-based [23], [24], [28] and radar-based [29],
[30] systems. Wi-Fi-based HAR systems are further divided
into two categories. The first category uses the received sig-
nal strength indicator (RSSI) attribute of Wi-Fi signals [24],
[31], which represents the variation of the received signal
strength during propagation. Whereas, the second category
exploits the channel state information (CSI) [23], [32], [33],
which represents the amplitude and phase information asso-
ciated with each orthogonal frequency-division multiplexing
(OFDM) subcarrier. Therefore, the CSI is considered finer
grained, and it has been shown that CSI-based HAR systems
perform better than RSSI-based HAR systems [23].
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Wi-Fi- and radar-based HAR systems have their own
advantages and disadvantages. For example, a Wi-Fi-based
HAR system can effectively make use of ubiquitous
Wi-Fi infrastructure or off-the-shelf Wi-Fi access points to
collect the CSI, which can be used to recognize human activ-
ities. Therefore, Wi-Fi-based HAR systems are highly cost-
effective. Radar-based systems offer better spatial resolution
compared to Wi-Fi-based system, but this advantage comes
with significantly higher costs. Consequently, radar-based
HAR systems have better recognition accuracy, but the high
costs limit their widespread use.

C. MULTIMODAL HAR SYSTEMS

Traditional HAR systems mostly employ a single sensing
modality, such as either an RF-based or a vision-based sens-
ing modality. However, a single sensing modality cannot
handle the changing conditions of the environment in real
time. For instance, vision- or RF-based HAR systems can
only recognize human activities within the monitoring area.
Therefore, multimodal HAR systems are used to overcome
the limitation of unimodal HAR systems. In multimodal HAR
systems, two or more sensing modalities are simultaneously
used to collect the data while a person is performing activi-
ties. For instance, wearable and RF sensing modalities offer
complementary information, because the mean Doppler shift
(MDS) computed from the Wi-Fi CSI provides a general
view of motion, whereas the wearable inertial sensor provides
information about the local body movements. By merging the
data of these two complementary sensor modalities, a robust
HAR system can be designed. The fusion of the collected data
can be performed either at the data level, the feature level,
or the decision level [34]. Data-level fusion aims to generate
new raw data by combining the raw data obtained from differ-
ent homogeneous sensing modalities, where the new raw data
are generally considered to be more informative compared
to the raw data obtained from a single sensor. Feature-level
fusion combines the features extracted from the processed
data of each sensing modality. Finally, decision-level fusion
generates a single decision by combining the decisions pro-
vided by the unimodal classifiers.

The literature on multimodal HAR techniques is quite
diverse due to a large number of available sensing modal-
ities. For instance, in [35], the decision-level fusion tech-
nique was used to combine the decisions of vision- and
Wi-Fi-based sensing modalities, aiming to improve the classi-
fication results of common human activities, such as walking,
sitting, and standing. In [36], an ensemble learning technique
was used to combine the results of individual deep learning
classifiers that were trained and evaluated using the data
collected with multiple wearable inertial sensors. The results
in [36] show that this multimodal wearable sensing approach
leads to improved recognition accuracy. In [37], Wi-Fi CSI
and accelerometer sensors were used to collect human motion
data while playing table tennis strokes, such as forehand lobe
and drive, backhand lob and twist, hop step, step, and squat.
First, for each sensing modality, they used a unimodal hidden
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Markov model (HMM) to recognize the table tennis motions.
Later, decision level fusion was used to combine the decisions
of both unimodal HMMs. The proposed approach in [37]
can recognize table tennis motions with an overall accuracy
of 97%. Sensing-Fi is a multimodal fall detection system that
incorporates Wi-Fi CSI and acceleration data recorded with a
ground-mounted accelerometer [38]. Sensing-Fi detects falls
with 95% accuracy by employing the decision-level fusion
that combines the decisions of individual sensing modalities.

This article presents WiWeHAR—a multimodal HAR sys-
tem that recognizes human activities by fusing the com-
plimentary Wi-Fi and wearable sensing modalities. The
Wi-Fi sensing modality captures the CSI using standard
Wi-Fi network interface cards (NICs), and the local body
movements are measured using a wearable IMU that consists
of an accelerometer, a gyroscope, and a magnetometer sen-
sor. We use the spectrogram method to estimate the MDS
from the CSI data, whereas for each sensor of the IMU,
the magnitude is computed from the corresponding sensor
data. The contributions of this work are as follow: (1) we
collect multimodal Wi-Fi CSI and inertial data from nine
participants while carrying out four different activities by
using standard NICs and an IMU in an indoor environment;
(2) we apply the feature-level fusion technique to combine
the features extracted from the magnitude data of each sensor
of the IMU and the MDS, which is novel in itself; (3) we
evaluate the performance of the proposed WiWeHAR system
by using a support vector machine (SVM); and (4) we com-
pare the performance of WiWeHAR with unimodal CSI- and
unimodal IMU-based HAR systems that are developed in this
work in terms of precision, recall, and overall accuracy.

The experimental design of this work is oriented towards
the identification of activities including walking, sitting,
falling, and picking up an object from the floor. The under-
lying idea is to demonstrate the reliability of the WiWeHAR
system for subsequent use in more precise studies and close
to clinical practice as may be the realization of the systematic
TUG test. In the TUG test, it is only necessary to identify
the time spent for sitting and getting up from a chair and
the time spent for walking 3 m and making a 360-degree
turn. The second target of WiWeHAR is the precise detec-
tion of falls with the possibility to link fall incidents to an
emergency system. With the proposed system and the results
obtained, the identification and use of daily life activities for
therapeutic purposes is increasingly close and coincides with
the recommendations of global public health agencies [39].
Moreover, the proposed WiWeHAR system systematically
demonstrates that the Wi-Fi CSI and wearable sensing modal-
ities are complementary to each other because their fusion
significantly improves the recognition of human activities.
Therefore, the proposed WiWeHAR system is suitable for
indoor applications requiring a high degree of reliability in
the accurate classification of human activities in indoor envi-
ronments.

The rest of the article is organized as follows. A succinct
overview of WiWeHAR is given in Section II, which is
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followed by a comprehensive review of RF channel mod-
elling for HAR systems in Section III. We explain the layout
of our experimental setup and discuss the data collection
process in Section IV. The steps involved in pre-processing
and segmenting the CSI and inertial data are presented in
Section V. The steps required to classify the data (i.e., fea-
ture extraction, feature fusion, performance metrics) and the
classification results are presented in Section VI. Finally,
in Section VII, we present the conclusion of this work and
give directions for future work.

Il. OVERVIEW OF THE WiWeHAR SYSTEM

The WiWeHAR system consists of multimodal sensing and
machine learning phases. In the sensing phase, WiWeHAR
uses RF and wearable sensing modalities to capture the CSI
and the inertial data simultaneously, while a user is perform-
ing different activities as shown in Fig. 1. To collect the
inertial data, we attach a wearable IMU at the lower back of
the user. The IMU consists of a tri-axis accelerometer, a tri-
axis gyroscope, and a tri-axis magnetometer sensor.

- IMU data

FChanneI state information (CSI)

TX @\ é Rx

Data
processing

Feature
extraction

FIGURE 1. Overview of the proposed multimodal Wi-Fi- and wearable
sensor-based HAR system.

To capture the CSI data, a Wi-Fi transmitter (7y) and a
Wi-Fi receiver (R, ) are deployed in the indoor environment.
The T, and R, are standard Wi-Fi NICs [40] that are config-
ured to operate in the 5 GHz Wi-Fi band. Wi-Fi in 5 GHz band
has 45 channels and to avoid interference to and from other
wireless networks in the vicinity, the WiWeHAR system can
be configured to use a channel that is not used for the com-
munication purpose. The T, emits electromagnetic waves
that propagate in the indoor environment. On their way from
the T, to the R,, these electromagnetic waves reflect off the
static objects (e.g., ceiling, furniture, and walls) and dynamic
objects (e.g., body segments of a moving person). Moreover,
the movements of the person in the indoor environment intro-
duce variations in the frequencies of ambient electromagnetic
waves. This phenomenon is called the Doppler effect. The
Doppler effect is movement dependent, i.e., different types
of activities performed by a person lead to distinct Doppler
shift patterns.
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First, we process the CSI and inertial data to reduce the
impact of noise. The processed CSI data are used to compute
the spectrogram that shows the time-variant Doppler char-
acteristics of the radio channel caused by moving scatterers
(e.g., moving person) and static (e.g., walls, furniture) scatter-
ers. The variation in the spectral components is merely due to
moving body segments in an otherwise static environment.
Hence, the performance of the WiWeHAR system will be
unaffected by the different placements of the static objects
in the environment. In the subsequent step, we use the spec-
trogram method to estimate the MDS whereas, the collected
inertial data is used to compute the magnitude for each sensor
of the IMU. In the machine learning phase, we extract various
time- and frequency-domain features from the MDS and
magnitude data of each sensor of the IMU. These features
are fused together and used to train a classifier to predict the
labels of the activities performed by a user.

Ill. CHANNEL MODELING BACKGROUND

As mentioned in Section II, a Wi-Fi T, and a Wi-Fi R, are
deployed in the indoor environment to collect the CSI. The T
and R, are configured to operate in the Wi-Fi injector-monitor
mode. The T, injects random data packets in the wireless
channel, and the R, estimates and reports the CSI along
30 OFDM subcarriers for each received data packet. The
collected CSI data are represented in the form of a matrix with
dimensions N7, x Ng, x K, where Nr,, Ng,, and K indicate
the number of antennas at the 7T, side, the number of antennas
at the receiver R, side, and the number of OFDM subcarriers,
respectively. In our case, we used a single transmit antenna
and two receive antennas, i.e., Ny, = 1 and Ng, = 2,
which implies that there exist two transmission links. Within
the scope of this work, a transmission link is defined as the
pair of a transmit and receive antenna. Therefore, our CSI
data matrix has the dimensions 1 x 2 x 30. The time-series
of the CSI values for a given transmission link and subcar-
rier is known as a CSI stream. A comprehensive discussion
about our experimental setup for CSI measurements is given
in Section IV.

The measured CSI can be regarded as the channel transfer
function (CTF)! H; (f/, 1) of a transmission link indicating
the link between the ith transmit antenna and the jth receive
antenna sampled at the kth subcarrier f;'. The expression of f;
is given as

fi =fo +kAf e))

where f;, k, and Af’ stand for the carrier frequency, the sub-
carrier index, and the subcarrier bandwidth, respectively.
The influence of human activities on the indoor wireless
channel can be explained with the help of a channel model,
which collectively captures the contributions of moving and

I'Within the context of this work, the terms CSI and CTF are used inter-
changeably.
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fixed scatterers to the CTF?> H (fk’ ,1). In our measurement
campaign, we have ensured that only a single person is mov-
ing, and all of the other objects are static inside the room.

Usually, there exist a variety of static objects (e.g., walls,
furniture, and ceiling) in a room. These static objects can
be modelled by N fixed scatterers S,f (n =1,2,...,N).
Although we have considered that a single person is moving
in the room, a single person in motion can be considered as a
cluster of different moving body segments (e.g., head, torso,
arms, and legs). Therefore, we model the moving person by
a cluster of M moving scatterers Sn/‘;’ m = 1,2,...,M).
We can present the CTF of our indoor wireless channel model
by summing the terms associated with N fixed and M moving
scatterers as [41]

N M
HUL 0 =Y caexp (i6k) + Y cmexp (jons(®) @)
m=1

n=1

where ¢, indicates the path gain of the nth fixed scatterer.
Similarly, the symbol ¢, represents the path gain associated
with the mth moving scatterer. The phase associated with
the nth fixed scatterer and the kth subcarrier is given by
On k. Similarly, 6,, x (¢) indicates the phase of the mth moving
scatterer and the kth subcarrier. Note that the phase 6,, x(¢)
associated with the moving scatterer is time variant, while the
phases 6, ; associated with the fixed scatterers are random
variables, which are modeled as independent identically dis-
tributed (i.i.d.) random variables, each of which is uniformly
distributed in the interval [0, 27).

As we know, only the moving scatterers cause the Doppler
shift in the RF signals, but not the fixed scatterers. We can
compute the Doppler shift associated with the mth moving
scatterer by using the following expression [41]

Fl®) = ~fonamax (0 { cos (B, ) [ cos (A1 (1)
cos (a,ﬁ(t) - ot;'n(t)>
+cos (ﬁ,ﬁ(z)) cos <a;1(t) - a,’f,(t)) ]
+ sin (BY, (1)) [sin (,3,5@)) + sin (ﬁ,ﬁ(;))] } 3)

where «,,(¢) and B, (t) denote the azimuth and elevation
angles of motion, respectively. The elevation angles of arrival
and departure are indicated by B (¢) and B! (1), respectively.
The azimuth angles of arrival and departure are represented
by aR (1), and (1), respectively. Moreover, f;, max(t) desig-
nates the maximum Doppler frequency, which is given as

Vi (1) ’

fm,max(t) = f}( (4)
(€]

where v,,(#) and cg indicate the time-variant speed of the
mth moving scatterer and the speed of light, respectively.

2In the remaining part of this subsection, we do not use the subscripts that
indicate the transmit and receive antenna indices (i.e., i and j) to simplify the
notations.
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We can represent the phase 6,, (¢) of the mth moving scat-
terer in terms of the Doppler frequency as [42]

t t
O (1) = 270 / Fnw)dit = Gy + 2 f fuwdu  (5)
—00 0

where the initial phase shift at time ¢ = 0 is indicated by 6, «,
which is modelled by a uniformly distributed random variable
in the interval [0, 277). As mentioned earlier in this section,
the CSI streams correspond to the CTF H (fk’ , 1) values asso-
ciated with a specific subchannel at subcarrier f;. Therefore,
we can argue that every CSI data stream can be described by
the above channel model presented in (2).

IV. EXPERIMENTAL SETUP AND DATA COLLECTION

We used two laptops and an IMU to simultaneously collect
the CSI and inertial data. To collect and parse the CSI data,
we installed the CSI tool [43] on both laptops. Each of the
laptops was equipped with an Intel 5300 Wi-Fi NIC, which
was configured to operate at 5.745 GHz central frequency in
single-input multiple-output (SIMO) transmission mode with
a bandwidth of 20 MHz. We used the injector-monitor Wi-Fi
mode where one laptop served as a Wi-Fi Ty and the other as
a Wi-Fi R,. As the internal wireless antennas of the laptops
have small antenna gains, we used external wireless antennas
that were attached to the laptops using 141-1IMSM+ RF
cables. On the T side, we used a single directional antenna,
whereas a directional and an omnidirectional antenna have
been used on the R, side. These antennas were mounted on
a table of 0.8 m height, as shown in Fig. 2. During the data
collection, the 7, was set to inject random data packets into
the wireless channel at a sampling rate of 1 kHz, and the R,
captured the injected packets. For each received data packet,
the CSI tool collected the CSI data of 30 OFDM subcarriers
per transmission link.

Tx Antenna Ry Antennas

FIGURE 2. Experimental setup for data collection.

To collect the inertial data, we attached an IMU to the
participants’ lower back (the lumbar portion of the spine) as
shown in Fig. 3. The IMU contains a tri-axis accelerometer,
a tri-axis gyroscope, and a tri-axis magnetometer. Each sensor
of the IMU was set to collect data at a sampling rate of 400 Hz.
The IMU locally stored the raw data of each sensor, which
were later transferred to the computer for further processing.
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FIGURE 3. Placement of the IMU.

The human activity data were collected from nine healthy
participants. These participants agreed to participate in the
study by signing an informed consent. The demographics
of the volunteers of this study are given in Table 1. Each
participant performed four activities: walking, sitting on a
chair, falling on a mattress, and picking up a small object from
the floor. As the Doppler shift is sensitive to movements in
the environment, we ensured that only a single person was
carrying out activities during the data collection.

TABLE 1. Age, gender, weight, and height of the participants of the study.

Participant Age Gender Weight  Height

(years)  (male/female) (kg) (cm)
1 22 m 76 180
2 25 m 77 178
3 63 m 73 170
4 39 f 66 166
5 42 m 90 190
6 40 f 535 165
7 23 m 78 180
8 22 m 76 180
9 25 m 77 178

The protocol of the experiment was as follows. The par-
ticipants were asked to remain still for one second before
starting and after completing an activity. Every participant
performed the walking activity 10 times by walking back and
forth from Point A to Point B (see Fig. 2), as they would
walk in their routine life. For the falling activity, a 200 cm
long, 90 cm wide, and 15 cm high mattress was placed at
Point B, and the participants were told to stand close to the
short side of the mattress and then fall onto the mattress. Each
participant carried out the falling activity 10 times, out of
which five times they fell on the mattress facing towards the
antennas and five times facing away from the antennas. For
the sitting activity, we placed a chair at Point B and asked
the participants to stand still next to the chair facing towards
the antennas and then sit on the chair as they would sit on an
chair in their daily life. Each participant carried out the sitting
activity five times. For the last activity, a small object was
placed on the floor at Point B. The participants were asked to
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stand close to the object and then pick up the object. Every
participant conducted the picking activity five times. Three
out of the four activities (sitting, falling, and picking up an
object) were carried out at a distance of 4 m from the T, and
R, antennas.

V. DATA PROCESSING

A. CSI DATA PROCESSING

The raw CSI data obtained from the Intel 5300 Wi-Fi NIC
was very noisy. Therefore, the raw CSI data cannot directly
be used to estimate the MDS caused by the moving person.
As we know from (2), the CSI data consist of amplitude
and phase information. The amplitude of the CSI data is
affected by the burst noise and high amplitude impulse that
are caused by the adaptive change in the transmission power
and transmission rate [23], [44], [45]. On the other hand,
the phase of the CSI data is distorted by errors such as carrier
frequency offset (CFO) and sampling frequency offset (SFO)
[44], [46]. These errors mainly occur due to asynchronous
clocks of the T, and R, [44]-[46].

1) PHASE CORRECTION

The first step towards estimating the MDS requires the elimi-
nation of the CSI phase distortions. There are several methods
that can be employed to eliminate phase distortions. For
example, the phase sanitization method [25], [47], the phase
calibration method [46], [48], and the CSI ratio method [49].
In the phase sanitization method, a linear transformation
is applied to determine the true phases from the measured
distorted phases of 30 OFDM subcarriers. Although the trans-
formed phases show some patterns compared to the mea-
sured phases, another study [48] reported that the transformed
phases still do not accurately disclose the Doppler character-
istics of the measured CSI data.

The second phase correction approach is called the back-
to-back phase calibration method. This method requires addi-
tional hardware in the form of a two-way splitter to establish a
back-to-back channel connection [46]. One of the RF antenna
ports of the Wi-Fi NIC of the 7 is connected to the input of
the splitter. One of the two outputs of the splitter is connected
to the T, antenna, whereas the other output is connected to
one of the RF antenna ports of the Wi-Fi NIC at the R,. The
splitter splits the transmitted RF signal into two identical sig-
nals, where one output signal is transmitted via the 7, antenna
and the other output signal is transmitted via the back-to-
back channel. Since the data received over the back-to-back
channel do not suffer from phase distortions, they can be used
to correct the phase of the data received by the R, antenna.

In this work, we employed the CSI ratio method [49]
to reduce phase distortions. In contrast to the back-to-back
phase calibration technique, the CSI ratio method does
not require additional hardware. In the CSI ratio method,
two receiving antennas are connected to the same receiver
for simultaneous collection of the CSI data Hi i(f/, 1)
and H 1,2(fk/ , t). Thereafter, the CSI ratio is computed by
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dividing the CSI data obtained from the first and the second
R, antenna, i.e.,

Hy(f, 1)
Hio(f. 1)

It has been shown that this element-wise division operation
removes most of the noise from the amplitude and phase
information [49]. In our experiments, we also observed that
the spectrogram obtained after applying the CSI ratio method
shows clear micro-Doppler signatures of the performed activ-
ity, compared to the spectrogram obtained from the CSI data
of any of the individual transmission links. A comparison of
the spectrograms that are estimated with and without using
the CSI ratio method is given in Fig. 4. Note that, we used the
data of the same activity trial carried out by the same partici-
pant to compute these spectrograms. Moreover, all remain-
ing data processing steps explained in Subsections V-A2
and V-A3 were left unchanged.

R(f, 1) = (6)
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FIGURE 4. A comparison of spectrograms of the falling activity obtained
(a) without and (b) with applying the CSI ratio method.

2) DIMENSIONALITY AND NOISE REDUCTION

As mentioned in Section IV, the CSI tool collects a total
of 30 CSI data streams for each transmission link. Therefore,
after computing the CSI ratio, we obtain 30 CSI ratio streams
R(f{, 1). Previous work has shown that the variations of RF
signals caused by human body movements are correlated
across different CSI streams [23]. Therefore, the principal
component analysis (PCA) [50] was used to remove the
correlated information from the CSI ratio streams.

The PCA is usually applied to real-valued data sets. In our
case, however, the CSI ratio streams R(fk/ , 1) are complex-
valued. Therefore, we used the adaptation of the PCA in [51]
for the complex-valued data, which directly extends the orig-
inal PCA to the complex domain in a straightforward way.
To apply the complex PCA, we first arrange the CSI ratio
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streams in the form of a matrix. To do so, we consider the
samples of R(f/,t) att = t, = nT forn = 1,2,...,N,
where N denotes the number of samples in the time domain,
and T is the sampling interval. This leads to Ry, = R(fk’ L ),
which allows us to define the CSI ratio matrix

Rii Riz2 -+ Ry
Ryy Ry -+ Ron

R=| . ; ) o | e CEXN, 7
Rk1 Rk2 -+ Rgn

In the next step, the CSI ratio matrix R is centered by
subtracting the sample mean value my, defined as my; =
Zilvzl Rin /N, from each CSI ratio stream, i.e.,

Riy—my Rpp—my Riy —my
Ry —my Ry —mp Rony —mo

R .= . . , . e CFxN,
Rg1 —mg Rgs —mg -+ Rgy —mg

®)

The centered CSI ratio matrix is used to compute the covari-
ance matrix C according to

C= ! pgH 9)
CN-1 °F
where RE.{ indicates the Hermitian (or conjugate transpose) of
the centered CSI ratio matrix R.. Thereafter, the covariance
matrix C is factorized into eigenvectors and eigenvalues.

As the covariance matrix C is a Hermitian matrix of dimen-
sion K x K, its eigendecomposition can result in at most K
real-valued eigenvalues and K complex-valued eigenvectors.
Let Z be the matrix consisting of K eigenvectors, which are
arranged such that the first eigenvector corresponds to the
highest eigenvalue, and the second eigenvector corresponds
to the second highest eigenvalue, etc. These eigenvectors are
called the principal axes. To obtain the principal components,
we project the centered CSI ratio matrix R, onto these prin-
cipal axes according to

Y=R]Z (10)

where (.)T denotes the transpose operator. The first principal
component in Y has the highest possible variance and cap-
tures the maximum information, whereas the last principal
component in Y has the lowest possible variance and captures
the minimum information of the original data. The amplitude
plots of the first six principal components obtained from the
CSI ratio data of the falling activity are shown in Fig. 5.
In Fig. 5, the first two principal components (Fig. 5(a) and
Fig. 5(b)) show the variation caused by the human move-
ment, where the first principal component is least affected by
noise. The next four principal components (Figs. 5(c) — 5(f))
show mainly the random noise present in the data. Moreover,
we can observe that each succeeding principal component is
noisier than its preceding one. Therefore, we used only the
first principal component for the subsequent steps.
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FIGURE 5. The amplitude plots of the first six principal components of the falling activity.

The advantage of the PCA is threefold. Firstly, by using the
first principal component, the 30 CSI ratio data streams are
reduced to a single data stream, which significantly reduces
the overall computational load of our approach. Secondly,
it significantly reduces the residual noise present in the mea-
surement data. Thirdly, the effect of the fixed scatterers is
also greatly reduced without applying a high pass filter as we
can see in the spectrograms shown in Fig. 6. Furthermore,
a low pass filter is used to further minimize the impact of
high frequency components (that are not caused by human
activities) from the selected principal component data. We
set the cutoff frequency of the low pass filter to 150 Hz as
the maximum Doppler shift can reach up to 110 Hz for the
falling activity (see Fig. 6(a)). For the other three activities,
the maximum Doppler shift is less than 110 Hz (see Fig. 6(c),
Fig. 6(e), and Fig. 6(g)).

3) ESTIMATING THE SPECTROGRAM AND THE MDS

We apply the spectrogram technique to estimate the
time-variant Doppler power spectrum of the filtered principal
component. First, we multiply the filtered data with a sliding
Gaussian window

Y

g = e

1
oW/
which is positive, even, and has unit energy. In (11), o,
indicates the spread of the Gaussian window. As the window
slides over the filtered data with respect to time, we compute
the short-time Fourier transform (STFT) of the windowed
filtered data according to

oo

Xy, (f, 1) = / Yi(f, t)g(t — t)e 2 ar’

—00

12)

where Y{(f,t") denotes the first principal component; and
symbols ¢’ and 7 indicate the running time and the local time,
respectively. In the next step, the spectrogram is computed by

squaring the magnitude of the STFT, i.e., [52]
Sy (f 1) = Xy, (F, DI, (13)
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Finally, we estimate the time-variant MDS B(yll)(t) from the
spectrogram by using

f fSYl(fv [)df
DY

[ Sv(f, ndf

()
By, (14)

The spectrograms and the corresponding MDSs of the four
activities are shown in Fig. 6.

B. IMU DATA PROCESSING

Unlike CSI data processing, fewer steps are required to
process the inertial data. The IMU used for data collection
consists of a tri-axis accelerometer, a tri-axis gyroscope,
and a tri-axis magnetometer. Thus, the inertial data include
three-dimensional accelerometer data, three-dimensional
gyroscope data, and three-dimensional magnetometer data.
Recall that during the data collection process, the IMU was
attached to the lower back of each participant. As a result,
the orientation of the IMU might have slightly changed while
the participant was performing different activities. Therefore,
to mitigate the effect of the changes in the orientation of
the IMU, we compute the magnitude mag(¢) for each sensor
type in the IMU using its three-dimensional data, which is
defined as

mag(t) = \[x2(0) +2(0) + 2(1)

where x(7), y(t), and z(¢) indicate the raw sensor data recorded
along x, y, and z direction. To further minimize the impact
of noise from the magnitude of each sensor, we apply the

locally estimated scatterplot smoothing (LOESS) filter with
a window size of 125 ms.

15)

C. ACTIVE SEGMENT EXTRACTION

Recall that the CSI and inertial data were recorded simultane-
ously. As the participants were asked to remain inactive for
at least one second before starting and after completing an
activity. Therefore, we do not observe significant variations
in the magnitude and MDS at the beginning and the end of
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FIGURE 6. The spectrograms and their corresponding MDSs of the four activities: falling, walking, sitting, and picking up an object from the floor.

each activity, as shown in Fig. 6. We apply the variance-
based thresholding method (VTM) [53] to automatically
determine the beginning and end of the active segments from
the estimated MDS and the magnitude data of accelerometer,
gyroscope, and magnetometer. Within the context of this
work, an active segment indicates the time interval of the
MDS or the magnitude within which the person is active. To
extract an active segment from the MDS, the variance of the
MDS is monitored over a rectangular sliding time window of
size 0.1 s. As the window slides over time, we compute the
variance of the windowed-MDS and compare it to a certain
threshold value, where a crossing of the variance above or
below the predefined threshold value indicates the start or the
end of an active MDS segment, respectively. Once the start
and end of all the active MDS segments are marked, we pick
a segment that is longer than 1.5 s. This is done to discard the
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insignificant changes in the MDS that might have occurred
due to slight movements of body segments when the subject
is not performing the activity. Fig. 7 shows the start and end
of the active MDS segment determined by using the VTM.

30 i &
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~ - 8 -Segment stop |

? 10 - :
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FIGURE 7. Extracting an active MDS segment from the estimated MDS.
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Similarly, we extract an active magnitude segments from the
magnitude data of each sensor of the IMU by adapting the
appropriate window size and variance threshold.

VI. CLASSIFYING HUMAN ACTIVITIES

A. FEATURE EXTRACTION AND FEATURE FUSION

In machine learning parlance, feature extraction is a pre-
liminary step to building an effective classifier. Usually,
the features are selected directly from raw or processed data,
or they are derived from raw or processed data. Generally,
these features are uncorrelated variables that are fed to the
classifier. The main reasons for feature extraction are twofold.
First, reducing the number of variables of the data because
classifiers trained with a large number of variables do not
generalize well, and consequently, their performance in eval-
uating against unseen data is significantly reduced. Second,
reducing the resources required to build the classifiers in
terms of computational power, memory, and time consump-
tion. As mentioned in Section IV, the participants performed
four different activities, where each activity was repeated
several times. Within the scope of this work, each repetition
of an activity is called the activity sample. Although we
recorded the CSI and inertial data simultaneously, these data
were processed separately. First, for each activity sample,
we extracted an active MDS segment from the CSI data and
active magnitude segments from the magnitude data of each
sensor of the IMU. Then, these active segments were labelled
according to the type of activity.

Thereafter, we extracted a CSI-only, an accelerometer-
only, a gyroscope-only, and a magnetometer-only feature
vector from the active MDS segment, the active accel-
eration magnitude segment, the active gyroscope mag-
nitude segment, and the active magnetometer magnitude
segment, respectively. The CSI-only, accelerometer-only,
and the gyroscope-only feature vectors consist of the
same 23 time- and frequency-domain features, whereas
the magnetometer-only feature vector consists of the first
22 time- and frequency-domain features described in the
Appendix. The CSI-only feature vectors extracted from all
activity samples were combined to form a CSl-only fea-
ture set. Analogously, we prepared the accelerometer-only,
gyroscope-only, and magnetometer-only features sets. Within
the scope of this work, these feature sets are called unimodal
feature sets, as they are separately extracted for each sensor
from its data.

Thereafter, we used the min-max normalization tech-
nique [54] to normalize each feature set according to

, x — min(x)

R (16)
max(x) — min(x)

where x, x’, min(x), and max(x) indicate the original feature
set, the normalized feature set, the minimum value of the
feature set and the maximum value of the feature set, respec-
tively. The min-max normalization in (16) does not affect the
distribution of the features set. However, each feature of the
above described feature sets is re-scaled to the same range
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from O to 1. Furthermore, we used these normalized unimodal
feature sets to generate new multimodal feature sets, by using
a feature-level fusion technique—a technique which serially
concatenates feature vectors of the normalized feature sets
that belong to the same activity sample.

B. CLASSIFICATION USING THE SVM

The SVM [55], [56] is an efficient supervised learning
algorithm. The SVM is a binary classification algorithm
that classifies the linearly separable data by determining an
optimal hyperplane that best separates the labelled train-
ing examples (i.e., feature vectors) according to their class
labels. In the terminology of the SVM, an optimal hyper-
plane is one that maximizes the margin between the closest
training examples of both classes. The readers are referred
to [55], [56] and the references therein for a succinct overview
of SVM classification and regression. In situations, where the
data are not linearly separable, the idea of ‘“‘kernel induced
feature space’, also known as “‘the kernel trick”’, is used [56].
The kernel trick simply maps linearly inseparable data to
a higher-dimensional space, where the data are more easily
separable.

Furthermore, the SVM is only applicable to binary class
problems. To overcome this limitation, there exist two
approaches that enable binary classifiers to handle the multi-
class problems, where the number of classes is more than two,
namely one-versus-all (OvA) and one-versus-one (OvO).

In the OvA approach, we need to train a total of C number
of binary classifiers for C number of classes (i.e., one classi-
fier per class), where the data of the Cth class are labelled
as the positive class and the data belonging to the rest of
the classes are labelled as the negative class. In the testing
phase, a test example is evaluated against all C classifiers
and a confidence score is obtained per classifier. The class of
the test example is determined by the corresponding classifier
that has the highest confidence score.

In the OvO approach, first, an SVM classifier is trained for
each pair of classes. This implies that for C number of classes,
we must train C(C — 1)/2 classifiers. In the testing phase,
a test example is evaluated against all trained classifiers,
where each classifier predicts the class of the test example.
The class that is predicted by a majority of classifiers is said
to be the final predicted class of the test example.

C. TRAINING AND TESTING THE SVYM

In supervised classification, first, labelled training data is
used to train an SVM classifier/model. In the training phase,
the classifier learns the parameters that map the feature vec-
tors to their corresponding labels. Here, the aim is to train the
model so well that later it can be used to predict the labels of
new data that were not used in estimating the model. There-
fore, after training a model, it is crucial to analyze its ability of
the classifier to predict the labels of features vectors extracted
from the unseen data. In this work, we used the K-fold
cross-validation techniques [57] to estimate the performance
of different models. In the K-fold cross-validation technique,
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the feature vectors of a feature set (e.g., the CSI feature set)
are randomly partitioned into K equal subsets. The features
vectors of K — 1 subsets are used to train the model, and
the features vectors of the remaining subset are used to test
the performance of the trained model. The training process is
repeated until each subset is used exactly once as validation
data. The K results are then averaged to get an estimate about
the model performance on future unseen data. Furthermore,
we used the leave-one-subject-out (LOSO) cross-validation
technique to access the participant-wise generalizability of
the model. In the LOSO cross-validation technique, the fea-
ture vectors of one subject are used for testing the model,
whereas the feature vectors of the remaining participants are
used to train the model. We estimate the performance of the
SVM classifier in terms of precision, recall, and accuracy
metrics, which are defined as follows:

T,
Precision = — - x 100% (17)
Tp+Fp
Tp
Recall = —— x 100% (18)
Tp + Fy
T T
Accuracy = p+ Ty x 100% (19)

Tp+Fp+ Ty + Fy

where Tp, Ty, Fp, and Fy indicate true positive, true nega-
tive, false positive, and false negative, respectively.

True positive represents the number of the correctly clas-
sified examples of the positive class, whereas true negative
represents the number of correctly classified examples of the
negative class. False positive represents the number of exam-
ples that actually belong to the negative class, but they are
misclassified as the positive class. False negative represents
the number of examples that belong to the positive class in
reality, but are misclassified as the negative class.

D. RESULTS AND DISCUSSION

Remember that there are four unimodal feature sets: the CSI-
only, the accelerometer-only, the gyroscope-only, and the
magnetometer-only feature set. From these four unimodal
feature sets, we obtained six bimodal, four trimodal, and
one quadmodal feature set. Within the scope of this work,
the terms bi-, tri-, and quadmodal indicate that a feature set
is obtained by combining two, three, and four different uni-
modal features sets, respectively. A complete list of different
multimodal features sets that can be obtained by fusing the
four unimodal features sets is presented in Table 2.

We used each unimodal and multimodal feature set to
train and evaluate an SVM model. For simplicity and con-
sistency, the names of the SVM models are derived from the
names of the feature sets that are used to train and evaluate
them. For instance, the SVM model trained and evaluated
using the CSl-only feature set is called the unimodal CSI
classifier. Similarly, the SVM model trained and evaluated
using the accelerometer-only feature set is called the uni-
modal accelerometer classifier and so on. Each SVM clas-
sifier was trained using the OvO training strategy, and the
10-fold cross-validation technique was used to test the ability
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FIGURE 8. The confusion matrices of the unimodal classifiers.

TABLE 2. List of multimodal feature sets obtained by combining different
unimodal feature sets. For simplicity, the names of the SVM models
trained and evaluated using these feature sets are kept same as the
names of the feature sets.

Feature set CSI  Accelero- Gyro- Magneto-
meter scope meter

Bimodal CA X X

Bimodal CG X X

Bimodal CM X X

Bimodal AG X X

Bimodal AM X X

Bimodal GM X X

Trimodal CAG X X X

Trimodal CAM X X X

Trimodal CGM X X X

Trimodal AGM X X X

Quadmodal CAGM X X X X

of the model to predict the unseen data. We employed the
grid search algorithm to tune the hyper-parameters of each
classifier. With the grid search algorithm, we found that each
classifier reported the best validation results if the classifier
is trained using the third-degree polynomial kernel.

We used the confusion matrices to describe the perfor-
mance of each classifier. These confusion matrices are orga-
nized such that the rows and columns of each confusion
matrix indicate the actual class and the predicted class,
respectively. The diagonal green cells and the off-diagonal
red cells present the number of correctly and incorrectly
classified examples, respectively. The overall accuracy of the
classifier is given in the blue cell of the confusion matrix. The
far-right column and the last row of the confusion matrices
present the precision and recall, respectively.
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FIGURE 9. The confusion matrices of the bimodal classifiers.

1) RESULTS OF THE UNIMODAL CLASSIFIERS

The confusion matrices of the four unimodal SVM classifiers
are presented in Fig. 8. The overall accuracy of the unimodal
accelerometer classifier is 98.1% (see Fig. 8(b)), which is
better than the overall recognition accuracy of the other
three unimodal classifiers (see Figs. 8(a) 8(c), and 8(d). The
unimodal CSI classifier (see Fig. 8 (a)) achieves an overall
accuracy of 96.2%, which is better than the unimodal gyro-
scope classifier (see Fig. 8 (¢)) and the unimodal magnetome-
ter classifier (see Fig. 8(d)). The unimodal accelerometer
classifier recognizes the walking and falling activities with
100% precision and recall. However, it mixes up the sitting
and picking up an object activities. The unimodal CSI clas-
sifier recognizes the walking activity with 100% precision
and 98.8% recall. For the falling, picking up an object, and
sitting activities, the unimodal CSI classifier achieves 98.7%,
100%, and 82.7% precision score, respectively. The recall
or the sensitivity score of falling, picking up an object, and
sitting activities is 92.9%, 95.5%, and 97.7%, respectively.
Moreover, we can observe that the unimodal gyroscope and
magnetometer classifiers mixes up all four activities, and they
have an overall recognition accuracy of 94.2% and 91.5%,
respectively.

2) RESULTS OF THE BIMODAL CLASSIFIERS
The results of the bimodal classifiers are presented in Fig. 9.
The bimodal classifiers are trained and evaluated using the
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bimodal feature sets obtained by combining two different
unimodal feature sets.

We can observe that the bimodal CA classifier outperforms
all other bimodal classifiers presented in Figs. 9(b)-9(f) with
an overall accuracy of 99.6%. This indicates that the bimodal
CA classifier performs better the unimodal CSI-only and the
unimodal accelerometer-only classifiers. The bimodal CA
classifier only makes a single prediction error by wrongly
predicting the label of an activity sample of the picking up
an object activity as the sitting activity. Thus, the recall score
of the picking activity is 97.7%, whereas the recall score of
the other three activities is 100%.

Moreover, the bimodal CA classifier recognizes the three
activities: walking, falling, and picking up an object with
100% precision and the sitting activity with 97.8% precision.
The performance of the bimodal AG classifier (see Fig. 9(d))
is better than the unimodal accelerometer-only and the uni-
modal gyroscope-only classifiers. Similarly, the bimodal CG,
CM, and GM classifiers follow the same trend.

The results of the bimodal classifiers provide the following
three significant insights: (1) the fusion of the CSI-based
feature set with any of the accelerometer-, gyroscope- or the
magnetometer-based feature set significantly improves the
overall recognition accuracy compared to the correspond-
ing individual feature-set-based classification results, (2) the
fusion of the accelerometer- and gyroscope-based feature
set slightly improves the recognition accuracy, similarly the
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FIGURE 10. The confusion matrices of the trimodal and quadmodal classifiers.

fusion of the gyroscope- and magnetometer-based feature sets
also improves the overall recognition accuracy; and (3) as
reported in the previous work [58], our results of the bimodal
AM classifier also indicate that the fusion of the accelerome-
ter and the magnetometer-based features sets do not improve
recognition accuracy.

3) RESULTS OF THE TRIMODAL AND QUADMODAL
CLASSIFIERS

The results of the trimodal classifiers are presented in Fig. 10.
The trimodal classifiers are trained and evaluated using the
trimodal feature sets obtained by combining three different
unimodal feature sets.

We can observe in Fig. 10(b) that the trimodal CAG clas-
sifier outperforms the other three trimodal classifiers pre-
sented in Fig. 10. The trimodal CAG classifier recognizes
each activity with 100% precision and recall, thus its overall
recognition accuracy is 100%. The trimodal CAM classi-
fier (see Fig. 10(d)) that uses the features set obtained by
combining the unimodal CSI-only, accelerometer-only, and
magnetometer-only feature sets, achieves an overall recog-
nition accuracy of the 99.2%, which is slightly lower than
the bimodal CA classifier (see Fig. 9(a)). The results of the
trimodal classifiers further confirms the conclusion drawn
based on the results of the bimodal classifiers. For instance,
the trimodal AGM classifier achieves an overall recognition
accuracy of 98.5%, which is similar to the overall recognition
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accuracy of the bimodal AG classifier. Similarly, the per-
formance of the trimodal CAM classifier is not better than
the bimodal CA classifier. Moreover, we also notice the
same trend as the performance of the quadmodal CAGM
classifier is slightly lower than the performance of the tri-
modal CAG classifier. This advocates that combining the
magnetometer-based feature set either with the stand-alone
accelerometer-based feature set or with a feature set that
already contains an accelerometer-based feature set does not
improve the classification accuracy.

E. SUBJECT-WISE GENERALIZABILITY

We used the LOSO cross-validation technique to assess
the subject-wise generalizability of the proposed multi-
modal WiWeHAR. For this purpose, we used the best
performing feature set, i.e., the trimodal CAG feature set
which is obtained by fusing the CSI-, accelerometer-, and
gyroscope-based feature sets. The feature vectors of the tri-
modal CAG feature set that correspond to one subject are used
for testing the SVM classifier, which was trained by using
the remaining feature vectors of the trimodal CAG feature
set. We repeated this process until the feature vectors of each
subject are exactly once used as the testing data. The results of
the LOSO cross-validation technique are presented in Fig. 11.
We can observe that the activities performed by five out of
the nine subjects can be recognized with 100% accuracy,
whereas the overall recognition accuracy for subjects 1, 2, 3,
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FIGURE 11. Subject-wise recognition accuracy of the best performing
trimodal CAG classifier.

and 515 96.43%, 96.67%, 96.55%, and 90.32%, respectively.
A possible reason of low recognition accuracy of Subject 5
is that each participant has her/his own way of performing
the same activity. Therefore, it is possible that a classifier
trained using the data associated with other persons might not
incorporate some user specific variations and thus results in
low recognition results. This issue can easily be solved either
by collecting data from more subjects or by retraining the
classifiers for subjects with low recognition results by using
their data in the training phase.

VII. CONCLUSION AND FUTURE WORK

In this article, we proposed WiWeHAR- an activity recogni-
tion system that consists of multimodal sensing and machine
learning phases. In the sensing phase, WiWeHAR uses stan-
dard Wi-Fi T and R, devices, and an IMU to simultaneously
collect the Wi-Fi CSI and the inertial data, respectively. The
IMU consists of an accelerometer, a gyroscope, and a magne-
tometer sensor. The multimodal data were collected from nine
participants while performing four different activities. These
activities involved walking, falling on a mattress, picking up
an object from the floor, and sitting on a chair. The collected
CSI and inertial data were processed to reduce the impact of
noise. Thereafter, we extracted time- and frequency-domain
features individually from the MDS, accelerometer magni-
tude, gyroscope magnitude, magnetometer magnitude data.
Moreover, we generated bi-, tri-, and quadmodal features
set by fusing the unimodal feature sets extracted from
the MDS accelerometer magnitude, gyroscope magnitude,
and magnetometer magnitude data. Thereafter, we trained
and evaluated multiple SVM classifiers by using the uni-
, bi-, tri-, and quadmodal feature sets. Our results show
that the multimodal approach achieved an overall accuracy
of 99.6%—-100%, whereas the unimodal CSI, accelerome-
ter, gyroscope, and magnetometer approach achieved overall
accuracies of 96.2%, 98.1%, 94.2%, and 91.5%, respectively.
Furthermore, the multimodal approach also outperforms the
other four unimodal approaches in terms of precision and
recall. Based on these experimental results, we can con-
clude that a highly accurate and robust HAR system can
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be designed by incorporating Wi-Fi and wearable sensing
modalities. In the future, we will extend multimodal fusion
by incorporating more sensing modalities, such as acoustic
sensors. We will use a massive MIMO system combined with
multimodal approach to recognize complex human activities
in more complex scenarios. Moreover, we will also study
the influence of antenna quality on the the performance of
CSI system.

APPENDIX

In this section, we present a brief overview of the 23 time- and
frequency-domain features that are extracted from the active
MDS and active magnitude segments. The first four features
are simple statistical measures, such as mean, variance, stan-
dard deviation, and skewness whereas, a brief description
and mathematical definitions of the remaining 19 features are
given below.

1) MEAN ABSOLUTE VALUE (MAV)

MAV computes the average absolute value of the active seg-
ment as

N
1
MAV = = ; %] (20)

2) WAVEFORM LENGTH [59], [60]
The waveform length is the cumulative length of the active
segment waveform and is expressed as

N-1
WL = ur1 — . 21)
n=1

3) ENHANCED MEAN ABSOLUTE VALUE (EMAV) [61]
It is an extended version of the MAV and defined by

N
1
EMAV = — Zl |Gen)”.
n=

0.75, if0.2N <n <0.8N
where o = o BREN == (22)
0.5, otherwise.

4) ENHANCED WAVEFORM LENGTH [61]
It is an extended version of the waveform length defined by
N—1
EWL = (onr1 — %),
n=1
0.75, if0.2N <n <0.8N

where o = . (23)
0.5, otherwise.

5) WEIGHTED MEAN ABSOLUTE VALUE | (WMAVI) [59], [60]
The WMAVI is an extension of the mean absolute value,
where a weighted window function is introduced to the equa-
tion of the MAV according to

N
1
MMAVI = — X}W,,|xn|,
n—=
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1.0, if0.25N <n <0.75N
where w, = ! T "= 24)
0.5, otherwise.

6) WEIGHTED MEAN ABSOLUTE VALUE II (WMAVII) [59],
[60]

Similar to the WMAVI, the WMAVII is another extension
of the MAV. In contrast to WMAVI, the window function
in WMAVII is continuous. Mathematically, the WMAVII is
defined as

N
1
MMAVIL = — ;wnlxnl,

1.0, if0.25N <n <0.75N
where w, = { ¥, if n < 0.25N (25)

‘w , otherwise.

7) MAXIMUM FRACTAL LENGTH (MFL) [60]
The MFL measures the small changes in the complexity of
the active segment.

N—-1
MFL = log Z(x,,+ | = x0)2. (26)

n=1

8) MEAN AMPLITUDE CHANGE (MAC) [60]
The MAC indicates the mean cumulative length of the wave-
form of the active segment, which is given by
=
AAC = = 3 Tnst =l 27)

n=1

9) ROOT MEAN SQUARE (RMS)
The RMS feature indicates the average magnitude of the
active segment. Mathematically, the RMS is expressed as

(28)

10) DIFFERENCE ABSOLUTE STANDARD DEVIATION
(DASDV) [60]

The DASDV computes the standard deviation of the wave-
length according to

DASDV = | —— > g1 — ). (29)

11) SIMPLE SQUARED INTEGRAL [61]
It indicates the energy index of the active segment. Mathe-
matically, this feature is given by

N
SSI=) "x. (30)
i=1
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12) WILLISON AMPLITUDE (WAMP) [60], [61]

The WAMP counts the number of times the absolute differ-
ence between two consecutive values of the active segment is
higher than a certain threshold value. This feature is defined
as

N
WAMP = > f (|41 — Xa),

n=1
1, if x > threshold

h - = 31
where  f(u1 = %)) {0’ i GD

13) ZERO CROSSING [59], [60]

This feature shows how often the waveform of the active
segment has changed its sign. The mathematical definition
of zero crossing is given by

{xXn+1 <0Ax, >0}V {xyr1 > 0A X, <0}
AlXp+1 — x,| > threshold.  (32)

14) SLOPE SIGN CHANGE (SSC) [59], [60]

This feature counts the number of times the sign of the slope
of the waveform of the active segment is changed. Given the
three consecutive samples of an active segment, the change
in sign of the slope occurs if

[{xn > Xn+1 N\ Xp > Xn—1} V{x, < Xpl N Xp < Xn—1}1 A
|X, — Xp41| > threshold V |x, — x,—1| > threshold.

15) MAX OF THE ABSOLUTE VALUE
For a given active segment, we compute its absolute value |x|,
and then determine the largest value of |x]|.

16) SLOPE

For a given active segment, we first determine the index i; at
which x reaches its maximum absolute value |x| max. Then
we select an interval [ifo, ir1] located right before i; and
determine the slope of x within the interval [if, ir1]. To this
end, we fit the values of x for i € [ifg, ir1] with a linear
function and then compute the slope of this line. For a fall
activity the slope is large compared to the slope of walking.

17) PEAKS OF THE AUTOCORRELATION
For a given active segment, we compute its autocorrelation
function (ACF) R, (m), defined as

N

Z Xy Xntm (33)

n=—

Ry (m)

TN+ 1

where N is the length of the active segment. From the ACF
R, (m), we determine the locations and values of the first and
the second peaks.

18) SPECTRAL PEAKS
The power spectral density (PSD) S, (f) of an active segment
can be computing by taking the Fourier transform of the ACF
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R, (m) as

Se(f) =F{Re(m)} = Y Reme > T5dr,  (34)

m=—0Q0

where 1/Tys is the sampling rate of the active segment. From
the PSD S, (f), we extract the values and locations associated
with the 10 main peaks. This feature enables identifying the
main harmonics embedded in x, which captures a quantitative
information on the time variation of x.

19) SPECTRAL ENERGY

This feature captures the energy in different frequency bands
of the active segment. To extract this feature, we first compute
the PSD S, (f). Then we divide the spectrum of S, (f) into ten
frequency bands and evaluate the energy contained in each
frequency band.
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