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ABSTRACT The vital characteristic of randomness is unpredictability. Thus any regularity will compromise
the application of random numbers. Quantum random number generators (QRNGs) can provide intrinsic
unpredictable randomness based on the nature of quantum physics, while pseudo-random number generator
can not due to the origination of deterministic algorithms or physical processes. However, commonly used
traditional test suits are rigorously to test the statistical properties, and the unpredictability of random
numbers is still difficult to test. To verify which sources of random numbers are truly unpredictable, in this
paper, we propose a new randomness testing method with the artificial neural network (ANN). Random
number sequences generated by four different kinds of sources are tested, which are the natural number π ,
the linear congruence generator (LCG) pseudo-random algorithm, the Mersenne Twister (MT) pseudo-
random algorithm and the QRNG based on vacuum noise, respectively. The testing results indicate that the
random sequences from natural numberπ and LCG fail to pass our randomness test, while the other two kinds
of sequences pass the test successfully due to the relatively simple structure of our ANN. As the complexity
of the ANN and the amount of computing power involved increasing, this test method has potential to predict
the MT random numbers, and it is also expected that the quantum random numbers can not pass the test with
unpredictability no matter how complex the ANN is.

INDEX TERMS Randomness, test, quantum random number generator, pseudo-random, artificial neural
network.

I. INTRODUCTION
Random numbers play an irreplaceable role in many fields,
such as biology [1], [2], economics [3], [4], and computer
science [5]. Even in the fields like cryptography [6], [7],
unpredictable random sequences are an indispensable part
to ensure the security of the entire crypto system [8], [9].
In the broadest sense, random numbers are generated in
two ways. One is complex algorithms based on the com-
puter, which aims at utilizing pseudo-random algorithms
to extend short randomness seed. However, this method
faces theoretical predictability due to the determinacy in the
algorithms. The other is based on the physical processes
in which the uncertainty is attempted to be discovered and
used for generating random numbers and is usually called
physical random number generator (PRNG). Furthermore,
according to the intrinsic properties of physical processes,
PRNG can be divided into two categories: classical-physics-
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based methods and quantum-physics-based methods [10].
Classical-physics-based random number generators, such
as [11]–[14], are always based on complex classical physical
processes, which are in principle predictable if we know
all details of the system and thereby are also determinis-
tic. On the contrary, quantum-physics-based random number
generators, which are also called Quantum random num-
ber generators (QRNGs) [15], [16], are based on quantum
physics processes, such as position and momentum of single
photon [17]–[19], laser phase noise [20]–[23], and vacuum
shot noise [24]–[27], which are the genuine unpredictable
processes to our knowledge. Therefore, it is believed that
this kind of random number generator can provide true
randomness.

Besides the generation of randomness, randomness tests
are also significantly important to verify the quality of the
random numbers. However, due to the fact that there is no
rigorous definition of randomness at present, the randomness
tests employed by people are still constituted by deterministic
algorithms, such as DIEHARD [28], and NIST-STS [29].
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They can be very effective to assess the randomness from
algorithms, while the purpose of which is to estimate whether
the randomness generated by the pseudo-random algorithm
satisfies a certain statistical distribution and application.
So, conventional testing methods are not enough to objec-
tively understanding the ideal randomness and optimizing
the generation of random sequences, especially for the ran-
dom sequences generated based on the principles of quan-
tum mechanics. Even if the device independent (DI) method
can quantify ‘‘quantumness’’, there is still no valid way to
distinguish random numbers generated by quantum physical
processes and other processes.

With the development of computer science and infor-
mation theory, people have proposed artificial neural net-
work (ANN) as a powerful computing tool [30]–[33]. From
the viewpoint of information processing, ANN establishes
a simple model based on the human brain neural network
and forms different networks according to different connec-
tion methods aiming to solve discrete classification prob-
lems. It plays an important role in the fields of computer
science [34] and biology [35]–[37] as a powerful comput-
ing tool. It is also used for data processing of quantum
information [38], [39]. Furthermore, based on the universal
approximation theorem [40], the pseudo-random sequence
can be recognized theoretically by training ANN to simulate
the characteristics of pseudo-random sequence algorithms.
Thus, we try to employ ANN to approximate pseudo-
random algorithms to realize the prediction of pseudo-
random sequences.

In this article, we use a four layers ANN based on
the Levenberg-Marquart back propagation algorithm to test
four different kinds of random sequences. Statistical fluc-
tuations calculated from the predicted success rate are
employed as the reference indicators and limits in the
testing [41], [42]. The experimental results illustrate that
ANN can approximate some algorithms after it is trained
using corresponding random sequences generated by the
algorithm. However, for some complex pseudo-random algo-
rithms, ANN also needs complex construction to be effective.
In addition, it is proved that there is no fixed pattern and
commonality in quantum random numbers based on ANN
testing.

II. WHY USING ARTIFICIAL NEURAL NETWORKS
According to the universal approximation theorem, the stan-
dard multilayer feed-forward networks with a single hidden
layer which contains finite hidden neurons and arbitrary
activation function are universal approximators for C (Rm).
Theorem universal approximation theorem can be expressed
in mathematical form:

Let ϕ be an arbitrary activation function and X ⊆ Rm and X
is compact. The space of continuous function on X is denoted
by C (X). Then ∀f ∈ C (X),∀ε > 0 : ∃n ∈ N , aij, bi,wi ∈

R, i ∈ {1 . . . n} , j ∈ {1 . . .m} :

(Anf ) (x1, x2, . . . , xm) =
n∑
i=1

wiϕ

 m∑
j=1

aijxj + bi

. (1)

An approximation of the function f means:

‖f − Anf ‖ < ε. (2)

In the notation Anf , n represents the number of hidden
neurons.

The theorem implies when the network is sufficiently com-
plex (i.e. contains enough hidden neurons), it can approx-
imate any algorithm based on finite continuous function
with arbitrary precision, which means that we can use ANN
to reach the limit of an algorithm, theoretically. Therefore,
we tend to utilize ANN to approximate pseudo-random algo-
rithms and distinguish the random sequences generated by
pseudo-random algorithms and quantum physical processes
and even realize the prediction of random sequences gener-
ated by pseudo-random algorithms.

In addition, when we tend to predict the random numbers
generated by the pseudo-random algorithms, we actually per-
form the inverse operation of the algorithm and solve some
challenging mathematical problems. Such reverse problem
is not only difficult to find the answer, but also requires
significant computing resources. However, based on ANN,
the pseudo-random algorithm is actually approached in the
forward direction. The difficulty of the problem depends
on the complexity of the pseudo-random algorithm and the
computing power of the ANN. Currently, ANN is one of
the most powerful computing tools. By adjusting the num-
ber of layers, the number and weight of nodes, the transfer
functions, a large amount of computation and complexity
can be associated with ANN. Therefore, using ANN to test
random sequences can theoretically detect random sequences
generated by different complexity algorithms.

Finally, one of the major properties of the random
sequences is unpredictability, which means that the prior
probability should be equal to the posterior probability. For
a binary sequence, the prior probability is 0.5. If the pos-
terior probability exceeds the confidence interval of 0.5,
the unpredictability condition could not be established and
the random number is not safe. In this paper, the prediction
of random sequences generated by quantum physics process
is implemented based on the principle and verifying the prior
probabilities and posterior probabilities of the prediction are
both 0.5 with ANN, which indicates the unpredictability of
the sequence. Furthermore, as one of the foremost methods of
supervising the learning process in machine learning, ANN
provides the right and wrong indication in the process of
machine learning. The ANN continuously reduces the error
between the inferred data and the real data and simulate
the precise function or algorithm to achieve the purpose of
prediction or classification. Therefore, the ANN can judge if
the prior probability and the posterior probability of the test
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sequence are consistent with the ideal sequence and realize
the test for the random sequence.

Consequently, a four-layer ANN is established to test
the randomness. On the one hand, based on the universal
approximation theorem, we hope the ANN can be used to
approximate the pseudo-random algorithm to recognize the
difference between the random sequence generated byQRNG
and the pseudo-random algorithms and even realize the
prediction of the random sequence generated by the pseudo-
random algorithm. On the other hand, with formidable com-
puting power and analytical ability of ANN, we expect that
it can single out the random sequence generated by quantum
physics and verify their ideal randomness.

III. RANDOM NUMBER GENERATORS
The experiment is carried out using four kinds of random
sequences generated by nature number π , linear congru-
ence generator (LCG) pseudo-random algorithm, Mersenne
Twister (MT) pseudo-random algorithm and vacuum shot
noise, respectively. LCG and MT are both famous and wildly
used pseudo-random algorithms.

A. PSEUDO-RANDOM NUMBER GENERATOR
Random numbers generated from two of the most repre-
sentative pseudo-random number algorithms LCG and MT
are utilized to test the method. In the experiment, The C
programming language is actually used to generate random
sequences based on the LCG pseudo-random algorithm and
MATLAB is used to generate random sequences based on the
MT pseudo-random algorithm.

Based on the factorization problem, the LCG algorithm
represents a class of random number generators based on
linear congruence algorithm, which is mainly used in various
programming languages such as C language, C++, and java
to produce random seeds. The basic principle of LCG is the
formula:

Xn+1 = (aXn + c) mod m, (3)

where X = {X1,X2, . . . ,Xn} are the random sequence.
X0 (0 ≤ X0 < m) is the random seed of LCG. m (0 < m) is
called the modulus. a (0 < a < m) is called the multiplier.
And c (0 < c < m) is called increment. If c = 0, the random
number generator is also called a multiplicative congruential
generator. If c 6= 0, it is also called a mixed congruential
generator. LCG is extremely sensitive to the selection of
parameters a and m. There are generally 3 types of parameter
selection: (1) m is prime, (2) m is power of 2 and c = 0,
(3) c 6= 0. Here we employed the C programming lan-
guage to generate random numbers and its parameters showed
in Table. 1.

MT is based on the twisted generalised feedback shift
register, which is widely used in MATLAB, MATHMATIC,
EXCEL and PYTHON, representing a class of algorithms
based on linear feedback shift. It is the pseudo-random algo-
rithm widely used in experiments in various scientific fields.
Its name derives from the fact that its period length is chosen

TABLE 1. Parameters employed by LCG and MT to generate random
sequences.

to be the Mersenne prime and the most commonly used
version of the Mersenne Twister algorithm is based on the
Mersenne prime 219937 − 1. The standard implementation of
that called MT19937. In a 32-bit system, each random num-
ber generated by it is 32-bit stored and is calledMT19937-32.
In a 64-bit system, each number of a random sequence is
64-bit stored and is called MT19937-64.

The algorithm forMT is based onmatrix linear recursion in
a binary finite field F2. The basic idea is to define a series {xi}
through a simple recurrence relation and then output numbers
xiT , where T is an invertible F2 matrix called a tempering
matrix.

The first step is to define {xi}. MT implements a random
sequence of length n which is input by a simple recur-
sive algorithm. Here we could assume each number in the
sequence is stored in w-bits and it is necessary to give an
ideal random number x0 in advance as a seed. Furthermore,
we can get the following numbers {xi; i = 1, 2, . . . , n− 1} as
our input according to the recursive formula.

xi = f × (xi−1 ⊕ (xi−1→ (w− 2)))+ i, (4)

where constant f is a parameter for MT generator.→ denotes
the bits of randomnumber is shifted to the right and⊕ denotes
the XOR operation.

The second step is calculating the matrix T . MT produces
an output of the twisted generalized feedback shift register
(twisted GFSR, or TGFSR). For a number of w-bit, the MT
will produce a random number in the range

[
0, 2w−1

]
. The

series x is defined as a series of w-bit quantities with the
recurrence relation.

xk+n := xk+m ⊕
((
xk u||xk+1l

)
A
)

k = 0, 1, . . . , (5)

where n is degree of recurrence. m (1 ≤ m < n) is called
middle word and is an offset used in the recurrence relation
defining the series. || denotes concatenation of bit vectors
(with upper bits on the left). ⊕ denotes XOR. xk u means the
upperw−r bits of xk and xk+1l means the lower r bits of xk+1.
The twist transformation A is defined in rational normal form
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as:

A =
(

0 Iω−1
aω−1 (aω−2, . . . , a0)

)
, (6)

where {ai; i = 0, 1, . . . , ω} are coefficients of the rational
normal form twist matrix and In−1 is a (n− 1) × (n− 1)
identity matrix.

The tempering is defined in the case of Mersenne
Twister as:

y := x ⊕ ((x → u)&d), (7a)

y := y⊕ ((x ← s)&b), (7b)

y := y⊕ ((y← t)&c), (7c)

z := y⊕ (y→ l), (7d)

where x is the next value from the series. y is a temporary
intermediate value. z is the value returned from the algorithm
with ← and → denotes the bitwise left and right shifts. &
denotes the bitwise AND. b and c is called tempering bit-
masks. b and d is called tempering bit shifts. (u, d, l) is called
additional Mersenne Twister tempering bit shifts or masks.
For the property of TGFSR, s + t ≥

[
ω
2

]
− 1 is required to

reach the upper bound of uniform distribution for the upper
bits.

Our experiment employ a random sequence gener-
ated by 64-bit MATLAB under a 64-bit system, namely
MT19937-64. Its parameters are shown in Table. 1.

B. QUANTUM RANDOM NUMBER GENERATOR
Vacuum shot noise comes from vacuum fluctuations is an
quantum phenomenon. The vacuum state can be represent in
the quadrature:

|0〉 =
∫
∞

−∞

ψ (x) |x〉 dx, (8)

where |x〉 are the amplitude quadrature eigenstates(〈
x
∣∣ x ′〉 = δ (x − x ′)) and ψ (x) is the ground-state wave-

function, which is a Gaussian function centred around x = 0.
The measurement of the amplitude quadrature collapses the
wavefunction into quadrature eigenstates, and the associated
outcomes being unpredictable but biased according to the
Gaussian probability function |ψ (x)|2. Then we can use
the measurement to produce random numbers by dividing
the Gaussian distribution as equal parts [24].

Since the vacuum shot noise is small, it is generally mea-
sured by a balanced homodyne detector which can amplify
the quadrature of a state and its structure is shown in Fig. 1.
The CWbeams emitted by the laser diode enter one input port
of the 50:50 BS. The other input port of the BS is blocked
to provide the vacuum state. And a following measurement
operation is realized by a homodyne detector and an ADC.
The measurement result is finally processed by a randomness
extractor to extract the final random bits.

Homodyne detector is the core of the system. Taking the
annihilation operator â as an example, the variation process
of components in homodyne detection can be calculated.

FIGURE 1. Experimental illustration of real-time optical QRNG based on
vacuum fluctuation. A 1550-nm fiber-coupled laser (The model is NKT
Basic E15 and linewidth is 100 Hz) serves as the local oscillation (LO) and
is connected to one input port of the 50:50 beam splitter, while the other
input port is blocked to provide the vacuum state. Two output ports of
the beam splitter are optically coupled to two input ports of a balanced
homodyne detector (The model is Thorlabs PDB480C and measurement
bandwidth are limited to 1GHz with low-pass filter). The measurement
results of the balanced homodyne detector are finally sampled by a 12-bit
ADC (The model is ADS5400 and sampling frequency is 1 GHz and input
voltage range is 1.5 VPP ) to acquire the raw data in real-time. A following
randomness extractor based on the optimized algorithm is used to
perform extraction simultaneously with raw data acquiring.

Assuming that the annihilation operator of the vacuum state
is â, the annihilation operator of the intrinsic light is âLO.
After the beam splitter, the two annihilation operators are
respectively:

â1 = â− âLO, (9a)

â2 = â+ âLO. (9b)

And the operators
(
â, â†

)
can be expressed as mechanical

quantity operators
(
x̂, p̂

)
:

x̂ =

(
â+ â†

)
√
2

, (10a)

p̂ =
−i
(
â− â†

)
√
2

. (10b)

After the detection, the difference between the two signals
reflects the difference in the number of photons:

1n̂ = n̂2 − n̂2 = â†2â2 − â
†
1â1. (11)

Note that the number of photons is proportional to the pho-
tocurrent. Then bring (9) and (10) into (11), we can get:

j ∝ 1n̂ =
|aLO|
√
2

(
x̂ cos θ + p̂ sin θ

)
. (12)

Note that calculations about creation operator are similar.
Therefore, a signal positively correlated with the vacuum
fluctuation can be obtained by Homodyne detection, and the
random sequence can be obtained.

The random sequence we used in the experiment can
pass the NIST-STS test packet, but the test packet is mainly
for random sequences generated based on pseudo-random
algorithms to assess whether the randomness is acceptable.
We also employed other three kinds of random numbers
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to implement the test which constructed by ANN to ver-
ify whether it can cognize the difference between random
sequences generated based on quantum physical processes
and pseudo-random algorithms, include these can pass the
NIST-STS test.

IV. EXPERIMENT SCHEME
In this article, an ANN is employed to predict four different
kinds of random sequences and we utilize statistical fluctu-
ations about prediction success rate to be the test standard.
Four kinds of random sequences come from the earliest
randomness source natural number π , two kinds of pseudo-
random number generator which are most widely known
but based on different principles, i.e, LCG which is realized
by C++ language and MT which is realized by software
MATLAB, and the quantum random number generator based
on vacuum fluctuation noise.

The ANN we employ here is a four layers Levenberg-
Marquart back propagation algorithm network with the con-
figuration of 6-30-20-2 based on Pytorch. We use ReLU as
the activation function, calculate the error by CrossEntropy-
Loss, use Adam as the optimizer, construct a classification
problem by using the first six of the sequence as input, and
use the Softmax function to process the output result to obtain
the probability distribution determination result. The length
of the test sequence is chosen to be seven, which covers the
different signal segments resulted from the sampling of ADC
of QRNG. Through tests and adjustment, the learning rate is
set to 0.001 ensuring that the network will not be unstable due
to the high learning rate and will not converge because the
learning rate is too small. The number of training repetitions
is 40, which also ensures the stability of the network.

We intend to predict the seventh number from its precedent
consecutive six numbers by setting the input as the precedent
consecutive six numbers and the output as the prediction
value. The ANN actually outputs the scores about 0 and 1 that
can be translate to the probability by formula p (1) = ea

ea+eb

and p (0) = eb

ea+eb . If we assume the number 1 gets a score
and number 0 gets b score, the one with the highest score
(predicted probability) would be chosen as the final output.

A. PRELIMINARY EXPERIMENT FOR RANDOM NUMBER
GENERATED FROM π
For the natural number π , which is actually one of the first
randomness sources utilized by people, each decimal is bina-
rized with a threshold of 5 to obtain a binary sequence P,
which is shown in Fig. 2. Seven digits are one training or test
instance. In order to ensure parameters of the network are
proper, we conduct a preliminary test of the sequence P.
The 1st to 40006th digits of P are used as the

40,000 instances for network training, and then 100,001th to
1,000,006th digits of P are used as 900,000 instances as Test
1 data set, in which each 100,000 cases are a test subset. The
999,001th to 9,999,006th digits of P are 900,000 instances
for Test 2 data set, where each 1,000,000 instances are a test
subset. The prediction success rate is the number of successes

FIGURE 2. The method obtaining the training and test instances and the
structure of ANN. Each training and test instance contains seven random
numbers, which are intercepted from the original random sequence
without overlapping. Among them, six digits are used as the input of the
network and the last digit is used as the real output of the network,
which is compared with the predicted output of the network to obtain the
prediction success rate of the network.

divided by the total number of trials. In order to ensure the
stability of the network and the reliability of the results,
the experiment is repeated ten times, and the results are shown
in Fig. 4.

For the test results, we can use 3σ and 5σ bound to verdict

them. A random variable Y =

n∑
k=1

Xk

n can be defined in the
test, where the random variable Xk = 1 when the prediction
is correct, and otherwise Xk = 0. Ideally, the probability
of success for each prediction is 50% and is not related to
each other. So, the mean of Y can be derived from following
formula:

E(Y ) =
n∑
i=0

C i
n

(
1
2

)n ( i
n

)

=

n∑
i=1

(n− 1)!
(n− i)!(i− 1)!2n

=

n−1∑
i=0

Cn−1i− 1
2n

=
1
2
, (13)

and its variance is:

E
(
Y 2
)
=

n∑
i=0

(
i
n

)2 Cn
2n

=

n∑
i=1

i(n− 1)!
2nn(i− 1)!(n− i)!

=

n∑
i=1

(n− 1)!
2nn(i− 1)!(n− i)!

+

n∑
i=2

(n− 1)(n− 2)!
2nn(i− 2)!(n− i)!

=
1
n

n∑
i=1

Cn−1i− 1
2n

+
n− 1
n

n∑
i=2

Cn−2i− 2
2n

=
1
4n
+

1
4
. (14)
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FIGURE 3. Preliminary test results for the sequence P generated by random source natural number π . (a) Test results for the TEST 1. The abscissa is the
repeated number of experiments and the ordinate is the success rate. The red lines are 3σ and 5σ bound respectively. Each experiment contains nine
test subsets, which is comprised of 100,000 cases and one case includes 7 digits. Each set of experiments is repeated 10 times to ensure the stability of
the network prediction results. The prediction success rate is obtained by dividing the number of successful predictions by the total number of
experiments. (b) Test results for the TEST 2. It includes nine test subsets, which consist of 1,000,000 cases. It can be seen that with the increase of test
data, the prediction success rate gradually exceeds the 3σ and 5σ bound, which also means that the randomness of the random sequence is deficient.

According to the central limit theorem, the probability of
success after n predictions should follow the Gaussian distri-
bution

(
0.5, 1

2
√
n

)
. Above 3σ bound indicates the prediction

success rate exceeds 0.5 + 3σ , which is a small probability
event and means we have a 99.73% confidence that the ANN
learned something from the training set. The sequence is
considered to be non-random and can be predicted.

It is not difficult to figure out from the above results that
most of the subsets of the P sequence TEST 1 exceed 3σ ,
some exceed 5σ , and most of the subsets of TEST2
exceed 5σ . Therefore, it can be reasonably considered that the
ANN is valid for the sequenceP and 1,000,000 is a reasonable
test set sample size.

B. EXPERIMENT FOR PRNG AND QRNG
After that, we perform the similar test on the random
numbers generated by LCG, MT and QRNG. The first
1,000,000 instances are used as the training set and after
50,000,000 bits, every 1,000,000 instances are used as one
test set. Ten test sets are selected consecutively. The experi-
ment is repeated ten times. The results are shown in Fig. 4.

The prediction success rate of LCG test sets greatly
exceeds 3σ and 5σ bounds. LCG is a well-known and widely
used pseudo-random number generator and mathematical
problems involved in its inverse solution is difficult to resolve.
However, its generation algorithm is not complex. Thus,
we use the ANN to approximate its algorithm and finally get
a fairly high prediction success rate, which is much greater
than the ideal random sequence.

Only one MT test data set exceeds the 3σ bound indicating
that it contains enough randomness to satisfy the test. The
current ANN can not effectively ‘‘learn’’ something from the
data generated by MT and simulate the MT pseudo-random
algorithm. This may result from the ANN we employed is
not complicated enough and the network transfer function is
not efficient enough and the amount of computation power
involved is also not enough to cover the complexity of the
algorithm which can break the MT pseudo-random number

FIGURE 4. Test results for LCG, MT, and QRNG. (a) Test results for LCG. The
abscissa is the repeated number of experiments and the ordinate is the
success rate. Each experiment contains nine test subsets, which is
comprised of 1,000,000 cases and each case includes 7 digits. The
experiment is repeated 10 times. The red lines are 3σ and 5σ bound
respectively. It can be the prediction success rate for the LCG is all above
the 5σ bound, which means that the randomness generated by the
algorithm is the worst among the four kinds of random sequence. (b) Test
results for MT. One set of data has a prediction success rate of more than
5σ bound, and another set of data have a prediction success rate of more
than 3σ bound. (c) Test results for QRNG. Only one set of data had a
prediction success rate greater than 5σ bound.

generator, so there are no major fluctuations about the pre-
diction success rate.
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Similarly, for the quantum random numbers, only one
group of testing data exceeds 3σ bound, which also indicates
that it contains randomness of high quantity. There are no
significant common features and modes between the training
data sets and the testing data sets in the random sequence.
This may be due to the fact that there is no significant cor-
relation between the sequences of quantum random numbers
and no algorithm can simulate the generation process of its
random sequences. Even with more complex networks and
stronger computations, it may be still impossible to find the
connection between random numbers and effectively pre-
dict it. We may figure out a valid way to verify the ran-
dom sequences generated by quantum physics with ANN.
Furthermore, we may also take a deeper insight about the
uncertainties in quantum mechanics using machine learning
methods.

V. CONCLUSION
In this paper, we propose a new randomness test method
based on ANN and utilize it to assess randomness of four

different kinds of random numbers. In the experiment, the test
can discern the pseudo-random algorithm to some extent and
the ANNwe employed in this paper can single out the random
sequences generated by the natural number π and LCG,
while it can not distinguish the random numbers generated
by MT and QRNG because of the simple construction of the
ANN. With the increase of the complexity of the pseudo-
random algorithm, for example, for the random sequence gen-
erated by pseudo random generator MT, it may also require
a large amount of computing resources to design the ANN
to distinguish the randomness of its output and approach its
generation algorithm. Furthermore, the test proves that the
random sequences generated by vacuum fluctuation noise
contain randomness of high quantity. We expect to utilize
more complex ANN which could involve more computing
resources to effectively approximate more complex pseudo-
random algorithms and single out the random sequences
generated by quantum physics processes. We believe the test
based on the ANN has the potential to detect random numbers
generated by chaotic processes.

FIGURE 5. DIEHARD and NIST-STS test results. (a) DIEHARD test results of four kinds of random numbers. The x-coordinate is the tests contained in
the DIEHARD test package and the y-coordinate is the test value for the random numbers. The red dotted line is the bound. When the test value
exceeds the bound, it means that the set of random numbers does not pass the test. After passing all 20 tests, the set of random numbers is
considered to pass the DIEHARD test package. (b) NIST-STS test results of MT random numbers and quantum random numbers. The x-coordinate is
the tests contained in the NIST-STS test package and the y-coordinate is the test value for the random numbers. The red dotted line is the bound.
NIST-STS test package includes 15 tests. If the random numbers pass all 15 tests, it can be considered to pass the NIST-STS test package.
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In the development process of human history, people’s
recognition of randomness is also constantly improved.
However, there has been no clear definition of randomness so
far, which also makes testing randomness difficult. Although
this paper only proposes a newmethod of randomness testing,
what it really wants to illustrate is that, compared with the
pseudo-random number generated by the algorithm, the quan-
tum random number generated by the quantum physical pro-
cess cannot be described by the fixed process, which means
that it should not be calculated. So, the question is that
can the sequence be considered truly random, if it cannot
be computed using infinite computational forces. As the
most powerful computing tool available to human beings at
present, ANN can adapt to different problems by adjusting
its own parameters, which is guaranteed by the universal
approximation theorem. It may be an appropriate tool for us to
calculate randomness. Combining randomness with ANN is a
very interesting study. On the one hand, it may be possible to
make a new definition of randomness by calculating, which
needs further research. On the other hand, different degree
of randomness may also become the standard to measure the
effectiveness of ANN.

Based on ANN, which is one of the most powerful compu-
tational tools, and according to the universal approximation
theorem, we intend to approximate the pseudo-random algo-
rithms and pick out random sequences generated by quantum
physical processes by calculating the statistical fluctuations
of the prior probability and posterior probability of ran-
dom sequences. In order to reach this goal, we test 4 kinds
of random sequences generated by the natural number π ,
pseudo-random algorithm LCG, pseudo-random algorithm
MT and vacuum noise, respectively. The test results show that
the randomness from the original random source π and the
pseudo-random algorithm LCG can be distinguished by the
ANN. However, randomness from the widely used pseudo-
random algorithm MT and quantum physics process vacuum
fluctuation can not be effectively distinguished. We expect
to complete the test method with more powerful computing
resources and more sophisticated ANN networks and algo-
rithms. On the one hand, if the MT algorithm can eventually
be excluded from the true random sequence, most of the
existed pseudo-random algorithms would lose their security
and it would also help us further understand the randomness
of quantum random sequences and uncertainty of quantum
mechanics. On the other hand, if the true random sequence
can be excluded, it indicates that the device we use to gen-
erate the true random number is not reliable, which helps to
improve our research and understanding of the performance
of the quantum randomnumber generator, and also shows that
it is better to verify randomness from a random source rather
than its random sequence results.

APPENDIX
DIEHARD AND NIST-STS TEST RESULTS
In the Appendix, we add DIEHARD and NIST-STS test
results of four kinds of random numbers, which are shown in

the Fig. 5. By comparing the test results of different random
numbers, we can roughly infer howmuch randomness is con-
tained in the four kinds of random numbers. However, these
tests are originally constructed for pseudo-random numbers
produced by the algorithm. They are tested primarily on the
basis of statistical distribution rather than the fundamental
property of randomness, which is unpredictability.

Due to insufficient data, we test four kinds of random
numbers with DIEHARD and two kinds of random numbers
with NIST-STS. From the Fig. 5, we can see that MT random
numbers and true random numbers have basically passed
the DIEHARD and NIST-STS tests, which indicates that
these two kinds of random numbers have good randomness.
However, the random number generated by π and LCG algo-
rithm contains less randomness.
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