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ABSTRACT Most of the Y chromosome (Ychr) region (approximately 95%) passes unchanged from father
to son, except by the gradual accumulation of single-nucleotide polymorphism (SNP) mutations. This results
in mutations being inherited together, where all males in the direct family will have an identical pattern
of variations. These mutation patterns serve as markers and can be mapped into clusters known as Y
DNA haplogroups. Besides lineage tracing, haplogroups have been associated with male infertility, semen
parameters, and, more recently, disease progression in several populations. Thus, haplogroup prediction
research is gaining importance because of the increasing interest in personalized medicine. Of note, there
are two approaches to predicting haplogroups, where the difference lies in the genetic markers: short tandem
repeats (STRs) or SNPs are inputs to the haplogroup prediction tools. STRs are not without limitations,
as similar STR haplotypes exist between haplogroups, and this reduces the effectiveness of STR-based
haplogroup prediction tools. By contrast, current SNP-based haplogroup prediction tools are computationally
expensive. There have been no studies to date that leverage traditional machine learning and deep learning
algorithms to identify mutation patterns using SNPs only, and this paper proposes a novel SNP-based
deep neural networks (DNNs) model. However, DNNs suffer the curse of dimensionality and become
computationally expensive with large datasets. Thus, this paper overcomes the limitation of the network
by proposing a novel feature extraction method based on prime numbers that computes features in either
the forward or reverse direction of the SNPs data. Our experimental results show that the model achieves a
categorical cross-entropy loss value as low as 0.001 on the training dataset and as low as 0.039 on the test
dataset.

INDEX TERMS Bioinformatics, feature extraction, multi-layer neural networks, deep learning.

I. INTRODUCTION
The Ychr is well-known for encoding sex-determining genes
and a few other male-specific genes through translocation and
transposition. Ychr is known to undergo genetic degradation:
over the last 300 million years, the ancestral autosome that
evolved to the human Ychr lost all (∼1500 genes) except for
∼78 of its genes. Thus, the Ychr was commonly regarded as a
genetic wasteland. Jacobs et al. [10] first described a frequent
loss of Ychr (LOY) in hematopoietic cells of aging men
in 1963. For many years, researchers accepted the genetic
wasteland view, and LOY was believed to be phenotypically
neutral and an age-related phenomena [11], [12]. However,
a recent study [13] seems to suggest the opposite; LOY
may be involved with disease progression in various organs.
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These studies [14]–[17] show that the frequency of the LOY
in the cancer genomes ranges between 15-80% in different
types of cancer disease.

An interesting attribute of Ychr is that the male-specific
region is a nonrecombining region, and constitutes approxi-
mately 95% of the chromosome [18]. This region is passed
down from father to son unchanged, except by the gradual
accumulation of SNP mutations [19]. As a result, any muta-
tions that occur on a Ychr will always be inherited together.
These mutations trace the lineage on the Ychr, where all
males in the direct family will have an identical pattern of
variations. Thus, Ychr is used exclusively in surname testing
and forensic identification of male offenders or victims via
lineage tracing [20].

Correct interpretation of the mutation patterns can fur-
ther improve our understanding of population and migra-
tion history. These mutations serve as markers and can be
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mapped into clusters known as Y DNA haplogroups (some-
times known as haplogroups or Y haplogroups) [19]. A hap-
logroup represents a group of people who have inherited
common genetic markers from the samemost recent common
ancestor. Such information is useful not only to trace the
paternal ancestry of an individual but also population events
(e.g., migrations and bottlenecks) [21]–[23]. Moreover, var-
ious subgroups indicate different geographic signatures. For
example, the following subgroups of haplogroup R represent
particular geographic subregions: R2a for South Asia, R1b1c
for Africa/Middle East, R1a1a1g for (Eastern) Europe and
R1a1a1f for West Asia [24].

Besides lineage tracing, Y DNA haplogroups have been
associated with male infertility [25]–[28], semen parame-
ters [29], and, more recently, disease progression such as
cardiovascular risk [30], [31], coronary artery disease [32],
blood pressure [33] and prostate cancer [34], [35] in several
populations. Thus, haplogroup prediction research is gaining
importance because of the increasing interest in personalized
medicine.

There are two approaches to predicting Y DNA hap-
logroups, where the difference lies in the genetic markers,
STRs or SNPs, are inputs to the haplogroup prediction
tools. Table 1 summarizes a few well-known STR-based
and SNP-based prediction tools, including their advantages
and limitations. STRs are not without limitations, as pointed
out in more recent studies [2], [19], [36]–[38]. One major
limitation is the existence of similar STR haplotypes between
haplogroups [36], [39]. The study in [36] reported similar
haplotypes between the haplogroups: B and I2, C1 and
E1b1b1, C2 and E1b1a1, H1 and J, L and O3a2c1, O1a
and N, O3a1c and O3a2b, and M1 and O3a2. As expected,
such similarities reduce the accuracy of STR-based prediction
tools. This conclusion is supported in separate studies [37],
[38], [40], which suggest SNP analysis as a second validation
step if accurate predictions are required. Thus, the most
recent studies use a combination of STR and SNP as genetic
markers [41], [42] for haplogroup predictions. The
researchers in [41] used a phylogenetic tree of SNPs to
represent haplogroups of samples from a known dataset. The
tree was then used as a ground truth to facilitate variant
findings in STR haplotypes.

However, with regard to phylogenetic trees, yHaplo,
as indicated in Table 1, is the current state-of-the-art of
the SNP-based haplogroup prediction tools but suffers from
computational complexity. Moreover, the SNP alleles need
to be on the correct strand as DNA is double-stranded.
The definition of strand has been controversial [43]–[45].
The most intuitive definition of a strand uses the human
genome reference as the forward strand; however, this has
not been standard practice. Thus, the SNPs for Ychr need
to be validated with the International Society of Genetic
Genealogy (ISOGG) database [46] or other resources [47] to
ensure correct reference and alternate allele labeling.

There is no doubt that the ISOGG database and the strand
information are crucial for the ground truth labeling of

TABLE 1. Y DNA haplogroup prediction tools and their advantages and
limitations. Note that we have left out the STR-based predictor tools
developed by Schlecht et al. [1], Felix Immanuel [2] and Vadim Urasin [3],
as the links to their software are no longer available.

haplogroups and subgroups of samples even in a machine
learning model. However, upon labeling, a machine learn-
ing model can learn the distinctive mutation patterns of the
training datasets in either direction (forward or reverse) of the
sequence data and infer the new sample’s haplogroup from
the training set. This is possible because a machine learn-
ing model derives its power from its ability to differentiate
patterns from the data itself. To the best of our knowledge,
there have been no studies that leverage traditional machine
learning and deep learning algorithms to identify those pat-
terns using SNPs only, and this paper proposes to use deep
learning. By contrast, the most recent work on haplogroup
prediction uses a combination of STRs and SNPs with tradi-
tional machine-learning algorithms [42].

Deep learning is the emerging generation of artificial
intelligence techniques and has grown immensely in appli-
cations in fields [48] ranging from computer vision to
speech to signal processing to sequence and text predic-
tion, and more recently, to bioinformatics and computational
biology [49]–[54]. The basic models in deep learning are
derived from artificial neural networks (ANNs), and deep
neural networks (DNNs) is one such example. The contribu-
tions of this paper are summarized below:

VOLUME 8, 2020 169097



J. Dhaliwal et al.: Novel DNNs Model Based on Prime Numbers for Y DNA Haplogroup Prediction

• Proposes a novel SNP-based DNNs model to learn the
patterns between haplogroups and subgroups.

• Proposes a novel feature extraction method based on
prime numbers to select SNPs as features. This is
because DNNs suffer from the curse of dimensionality
and become computationally expensive when used for a
large number of SNPs and samples.

• Provides a comprehensive analysis of the experimental
results. We show that patterns learned in either direction
(forward or reverse) of the SNPs data can be used to infer
the haplogroup of a new sample.

The rest of this paper is organized as follows. Section II
provides an overview of Ychr. This overview can be skimmed
by readers already familiar with this field but may serve
as a useful tutorial for those new to the problem. Next,
Section III describes our DNNs model for the problem
domain, including the selection of hyperparameters and the
intuition behind them. Section IV presents our methodology,
describes the experiments, and discusses the obtained results.
Finally, we draw some conclusions in Section V.

II. OVERVIEW OF Y CHROMOSOME
In this section, we provide a brief overview of the cytoge-
netic structure of Ychr, the definition of mutation and the
Y DNA haplogroups.

A. CYTOGENIC STRUCTURE
Ychr is the smallest chromosome in humans (∼60 MB) [55]
and is acrocentric. It has a short arm (Yp) and a long arm (Yq)
that is separated by a centromeric region that is important for
chromosome segregation during male meiosis [19]. There are
three major regions in Ychr: pseudoautosomal, euchromatin
and heterochromatin. Only pseudoautosomal regions, indi-
cated by PARs in Figure 1, are involved in meiosis.

FIGURE 1. Cytogenic structure of Y chromosome. SRY refers to
sex-determining region of the Y.

In theory, a chromosome’s whole-genome sequence data
allow us to construct reliable phylogeny where the length of
the branch is proportional to the number of SNPs, which is
then mapped to build a maximum parsimony tree to infer
the phylogeny of the sequences [19]. However, in practice,
the structure of Ychr is very different than those of other chro-
mosomes, where even with the most advanced technology
only certain regions of the Ychr can be mapped unambigu-
ously. These regions are scattered across the chromosome and
add up to a length of 9.9 Mb. This ∼10 Mb is known as the

callable region of Ychr [56]. Hereafter, we refer to SNPs in
this region as callable SNPs.

B. MUTATION
Mutation (sometimes known as polymorphism) is the ulti-
mate source of all genetic diversity and is any change in the
DNA sequence. This can range from the substitution of a
single base in the genome to small insertions and deletions
of a few bases. A mutation only exists when at least two dif-
ferent alleles are present in a population, and both are present
at ≥ 1% frequency [57].

An SNP is the most common genetic variation among
individuals and involves a single base difference in a single
DNA building block that is commonly known as a nucleotide.
For example, an SNP may replace the nucleotide adenine (A)
with the nucleotide guanine (G). On the other hand, STRs
are repeated units of 1-7 base pairs in length, and those
with a useful degree of polymorphism have a frequency
of 10-30 [57]. The mutation rate refers to the frequency
of mutations in a single gene, chromosome or even in an
individual over time.

C. Y DNA HAPLOGROUPS
A haplotype is a combination of allele states of polymor-
phisms on the same chromosome, whereas a haplogroup is
a group of similar haplotypes that share a common ancestor
with an SNP mutation [57]. In theory, if an individual has
a different SNP than another, they can be said to be in
different haplogroups. However, in practice, this requires
keeping track of millions of groups. Therefore, the Y Chro-
mosome Consortium (YCC) [58] was formed in 2002 to
collate all phylogenetically informative SNPs and assign uni-
versal nomenclatures to each recognized haplogroup. YCC
defined a single capital letter to indicate major haplogroups,
where letters A to T have been used. For the subgroups, two
nomenclature systems were proposed: lineage-based, where
names are alphanumeric (e.g., E1b1b1b1a); and mutation-
based, where terminal SNP mutation is used to define them
(e.g., E-M81). Both examples refer to the same subgroup of
major haplogroup E. To date, 20 major haplogroups have
been identified with numerous subgroups [59]. Figure 2
shows the phylogeny tree of the Ychr’s SNP data of the
1000 Genomes Project [60], where the tips of the branches
represent the major haplogroups.

III. DEEP NEURAL NETWORKS
This section describes a novel DNNs model and the hyperpa-
rameters used in this study. To ensure that both the network
and hyperparameters are independent of the datasets used
in the same problem domain since overfitting is a serious
problem in neural networks, we used the preprocessed SNPs
of 39 individuals of the CEU population [61] of the Inter-
national HapMap Project [62] for the initial exploration of
various deep learning models.

We selected the DNNs as the deep learning model of
interest. Furthermore, recent research has shown than ANNs
can handle small datasets [63], and this characteristic of the
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FIGURE 2. Tips of branches depict major haplogroups of populations
from 1000 Genomes project. Y-Chromosomal Adam refers to most recent
common ancestor on paternal line of all living males and is shown here
for completeness.

neural network fits our problem domain as it is challenging
to obtain large datasets when compared to other big data
domains. Upon selecting the DNNs as the model, we used the
Myanmar dataset [61] (see Section IV for details) to search
for the optimal hyperparameters.

Hyperparameter optimization is an area of research itself
and several approaches ranging from grid search to genetic
algorithms (GAs) [64] have been used. In this paper,
we implemented a GA to search some of the optimized
hyperparameters, while others are chosen intuitively by using
a trial-and-error approach. This approach has been used in
different problem domain studies [65]–[72]. However, in a
new problem domain, it is unknown which hyperparameters
are important and what values produce good performance.
Thus, we also discuss the most important hyperparameters
that we chose for our problem domain and the intuition
behind these choices.

A. MODEL
The DNNs model of this paper is presented in Figure 3. The
leftmost layer is known as the input layer, while the rightmost
layer is known as the output layer. The input layer consists of
input neurons that represent the number of SNP-based fea-
tures. Meanwhile, the output neurons represent the number
of unique classes based on either haplogroups or subgroups.
By contrast, the hidden neurons in the two hidden layers form
the network’s bottleneck.

B. HIDDEN NEURONS
There is a trade-off between the number of hidden neurons
with the training error rate, where using too few results

FIGURE 3. DNNs model for haplogroup and subgroup classification. There
are 312 neurons with Tanh activation used on hidden layer 1 and
314 neurons with ELU activation used on hidden layer 2. Output layer
used Softmax activation. Dropout rate of 20% is used for input neurons
and of 50% for hidden neurons. See in text for details.

in underfitting and too many results in overfitting [72].
There has been no census on the exact number; many stud-
ies have proposed several heuristics using a trial-and-error
approach [69]–[71].

Sheela and Deepa [72] reviewed methods for fixing the
number of hidden neurons in neural networks for the past
20 years and showed that their approach gave the lowest
training error rate when measured using the Mean Squared
Error (MSE) metric on weather datasets. We compared
the network’s MSE values using the number of hidden
neurons obtained using the GA with their approach, and
the comparison results are given in Table 2. The lower
the MSE value, lower the error rate and the better the
estimator.

TABLE 2. Number of hidden neurons and MSE values when compared to
approach of Sheela and Deepa [72].

Moreover, to prevent the saturation of hidden neurons,
we explored z-score and min-max normalizations, found the
latter giving better results. This paper uses the min-max
normalization. Similarly, Aksu et al. [73] reviewed the effect
of various normalization methods on educational sciences
datasets with ANNs and found the min-max normalization
yielding the best results.
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C. ACTIVATION FUNCTION
The activation function provides nonlinear modeling capa-
bilities for networks, and only by adding activation func-
tions, DNNs possess hierarchical nonlinear mapping learning
ability. Recently, Nwankpa et al. [68] reviewed the majority
of activation functions in deep learning research, including
their practical applications in deep learning models. The
researchers proposed the use of Softmax activation on the
output layer for the multiclass classification problem; this
approach is also used in this paper.

By contrast, the activation functions for the two hidden
layers are obtained using the GA, where the hyperbolic tan-
gent (Tanh) is the activation function for hidden layer 1, and
the exponential linear unit (ELU) is the activation function for
hidden layer 2. The study in [74] showed that ‘‘Tanh-Tanh’’
combination of activation functions for both hidden and out-
put neurons gave better training performance in multilayered
perceptron architectures of neural networks [74]. By contrast,
ELU has been used to speed up the training of deep neural
networks [75] on computer vision datasets. Instead, this paper
proposes ‘‘Tanh-ELU-Softmax’’ combination of activation
function for both the hidden and output neurons.

To normalize the above activations in the intermediate
layers of the network, a batch normalization layer was pro-
posed by [76] and is used only with the first hidden layer,
as indicated in Figure 3 as this network has only two hidden
layers.

D. GRADIENT PROCESSING
A stochastic gradient with minibatches is used as the con-
vergence depends on the updates and richness of the training
distribution and not the size of the training dataset [65].
This characteristic fits our problem domain due to the small
sample size issue described earlier.

Table 3 shows hyperparameters tuned for gradient pro-
cessing as well as the recommended values. Bengio [65]
researched gradient-based training for deep architectures
and recommended values for the initial learning rate and
batch size. Moreover, the study in [67] showed that small
batch sizes improve the generalization performance of DNNs.
By contrast, Goodfellow, Bengio and Courville recom-
mended momentum ranges in their deep learning book [66].

TABLE 3. Recommended values of [65] and [66], and values used in the
paper.

The epoch is a hyperparameter related to the batch size.
The epoch’s value was 177, which was obtained using the
GA. There are no recommended values for this parameter
except through trial-and-error.

E. DROPOUT
Dropout is a technique proposed by [77] to prevent the
network from coadapting too much by literally dropping
neurons. The recommended dropout rate for the input neurons
is 20%, and the rate for hidden neurons is 50%. These values
are also used in this paper.

F. GENETIC ALGORITHM
We now describe the GA that we implemented for hyperpa-
rameters tuning. GA begins by creating an initial population
of DNNs with random values assigned for epoch, hidden
neurons, and activation functions. Then, the algorithm selects
the top two networks based on a fitness criterion defined
by machine learning metrics, described in Section IV-B4,
to become parents while discarding the remaining networks.
The parent networks are used for breeding children through
the cross over and mutation steps. The pseudocode GA of the
algorithm is presented as Algorithm 1.

Algorithm 1 Genetic Algorithm for Finding
Hyperparameters

1 pseudocode GA (Data, p, g);
Input : Data, population size p and number of

generations g.
Output: Optimized hyperparameter values for epoch

(e), hidden neurons (h1, h2) and activation
functions (a1, a2).

2 Create an initial p-sized population of DNNs.
3 Evaluate the population using fitness criteria defined by
the machine learning metrics.

4 Select the top two networks with the highest fitness
scores to become parents, P.

5 while current population size < p do
6 Create child C via cross over of P.
7 Mutate C based on some randomness.
8 Add C to new population.
9 end
10 repeat steps 3 - 9 until the gth generation.

Many variations of cross over and mutation steps exist.
Of note, we present the pseudocode CO of the cross over step,
that we implemented as Algorithm 2. We chose ratio values
of between 0 and 1, particularly values 0.75 and 0.25, as they
yielded good results while experimenting with various ratios
on the training dataset.

Similarly, we present the pseudocode Mut of the mutation
step that we implemented as Algorithm 3, where a child is
selected randomly. We chose a ratio of 0.50 as it worked
sufficiently well on the training dataset.

IV. EXPERIMENTAL RESULTS
This section describes the steps taken in the experiments of
this study as well as the justification given for each decision
made for each method used, and then provides a comprehen-
sive analysis of the results.
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Algorithm 2 Cross Over Algorithm for Creating a Child
C With Some Properties From Parents P

1 pseudocode CO(P);
Input : Parents P.
Output: Child C with values for epoch (e), hidden

neurons (h1, h2) and activation functions (a1,
a2).

2 Randomly assign father and mother from P to F and M ,
respectively.

3 C[e] = F[e] ∗ 0.25+M [e] ∗ 0.75
4 C[h1] = F[h1] ∗ 0.75+M [h1] ∗ 0.25
5 C[h2] = F[h2] ∗ 0.25+M [h2] ∗ 0.75
6 C[a1] = F[a1]
7 C[a2] = M [a2]

Algorithm 3Mutate Algorithm for Mutating Some of the
Properties of the Child

1 pseudocode Mut(C);
Input : Child C .
Output: Mutated child C with updated values for

epoch (e) and hidden neurons (h1, h2).
2 C[e] = C[e]+ (C[e] ∗ 0.50)
3 C[h1] = C[h1]+ (C[h1] ∗ 0.50)
4 C[h2] = C[h2]+ (C[h2] ∗ 0.50)

A. DATA
Apart from the full Ychr sequences, which is the high-
est level of phylogenetic resolution, there are Ychr SNP
datasets with low and medium resolutions as a different
set of SNPs might have been sequenced depending on the
objective of their study. Moreover, unlike other big data
problem domains, it is not easy to acquire large sample sizes
to obtain a good representative of the haplogroups and their
subgroups.

Thus, to represent our problem domain accurately, we used
the Myanmar (Myan) [61] data consisting of 106 samples
(i.e., individuals) as the training dataset. Phase 3 of the
1000 Genomes project (1000 Genomes) [60] data, consisting
of 1,233 samples, was used as the test dataset. Both these
datasets use the hg19 build. We have separated the training
and test datasets so that the test set is invisible to the network’s
training to confirm the network’s actual predictive power.

B. METHODOLOGY
In this section, we present our experimental framework of
preprocessing, feature extraction methods, classification and
evaluation metrics.

1) PREPROCESSING
For theMyan data, we used a Python script to preprocess the
genotype data to a sequence of 0s and 1s as the files were in
PLINK format. A ‘‘0’’ indicates that the SNP is similar to the

reference allele, whereas a ‘‘1’’ indicates that a mutation has
occurred at that position. However, such preprocessing was
not required for the 1000 Genomes data, as it was already in a
sequence of 0s and 1s. Thus, we used BCFtools to extract the
required fields from the VCF file before using a Python script
for further processing. Moreover, if a sample has a missing
value at a particular position, the said position is removed
from all of the samples. Therefore, 1000 Genomes data con-
tains 58,732 SNPs, and Myan data contains 2,041 SNPs.
Hereafter, we refer to the above preprocessed SNPs (in the
form of 0s and 1s) as simply SNPs.

As we are using stratified 3-fold cross-validation,
we ensure each haplogroup or subgroup has at least four sam-
ples. Of note, the stratified K-fold is a commonly accepted
cross-validation technique. Stratification is a process that
ensures each fold is a good representative of each class, which
is dependent on the number of samples. This technique splits
the dataset into groups known as folds and, in our case, three
folds, where two folds are used for training the model while
the remaining fold is used for testing the model.

This resulted in 1,216 samples and 27 classes of hap-
logroups, and 985 samples and 76 classes of subgroups, for
1000 Genomes data. For the Myan data, there were 76 sam-
ples and 4 classes of subgroups. The samples were labeled
based on the ground truth information of their datasets.

2) PRIME-NUMBER-BASED FEATURE EXTRACTION METHOD
DNNs suffer the curse of dimensionality. Thus, if we take
each SNP as a feature, it becomes computationally expensive
and encourages overfitting. This inspired us to use mutation
information, i.e., the number of mutations in a particular
range, as a feature instead. To do so, we divided the SNPs
into fixed partitions and calculated the number of mutations,
i.e., the mutation rate per partition. However, our exploration
results show it is computationally expensive if we search
for the optimal partition size, where we fall back to the
same computational complexity problem that we are trying
to overcome.

While exploring other approaches, we found that using
number theory sequences, particularly prime number
sequences as partition sizes, works sufficiently well. Thus,
each prime number indicates the mutation rate per partition
and is used as a feature. Mutation rates are computed in
forward and reverse directions of the SNPs data, as shown
in Figure 4. This results in two prime-number-based feature
sets: forward and reverse. For example, the first feature in the
reverse feature set has a mutation rate of ‘‘2’’ as there are two
mutations in the first partition. On the other hand, the first
feature in the forward feature set has a mutation rate of ‘‘0’’,
as there are no mutations in the first partition.

The pseudocode CPF of the algorithm that computes the
forward feature set is presented as Algorithm 4. CPF begins
by making a left-to-right scan over the SNPs data to calculate
the cumulative sum. A cumulative sum is a sequence of
partial sums of a given sequence, and in our case, the sum of
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FIGURE 4. Forward and reverse feature sets of prime-number-based
features.

mutations of the SNPs data. This aids in efficient processing
as positions closer to the current partition are used to obtain
the mutation rate instead of having to recompute them every
time we need to partition the data. A sequence of prime
numbers forms the boundaries of the partitions, where each
subsequent pair denotes the lower and upper boundary of the
partition, respectively. By contrast, the reverse feature set is
computed by modifying pseudocode CPF to make a right-to-
left scan at step 2.

Algorithm 4 Compute Forward Feature Set of
Prime-Number-Based Features
1 pseudocode CPF(SNPs,u);
Input : SNPs data and upper limit of prime numbers u.
Output: Forward feature set of prime-number-based

features, F .
2 Make a left-to-right scan over SNPs to compute the
cumulative sum and store it in C .

3 Compute a list of prime numbers based on u and store it
in P.

4 while not end of list P do
5 Scan C for the positions indicated by the first

subsequent pair of prime numbers.
6 Compute the mutation rate by taking the difference

of the number of mutations between those two
positions.

7 Store the mutation rate in F .
8 Repeat steps 5-7 for the next subsequent pair of

prime numbers.
9 end

3) CLASSIFICATION
For the first experiment, we used forward and reverse prime-
number-based feature sets on the DNNs classifier described
in Section III. The purpose of this experiment was twofold.
First, it assessed if our model can accurately classify hap-
logroups and subgroups using prime-number-based features,

and which feature set gave the best results. Second, it elu-
cidated the complexity of the model with the new feature
sets. Thus, for baseline comparisons, we used each SNP as
a feature on the same DNNs classifier. Hereafter, we refer to
this feature set as baseline.

To further gauge the performance of the prime-number-
based feature set, and whether our model can classify accu-
rately using fewer SNPs than the callable SNPs, variations in
the number of features were also assessed.

4) EVALUATION METRICS
We evaluated the described experiments using four machine
learning evaluation metrics: categorical cross-entropy loss
indicated as loss, accuracy, prediction and recall. All values
were between 0 and 1, and the standard deviations are shown
in brackets. Cross-entropy loss increases as the predicted
labels continue to differ from the predicted labels. By con-
trast, accuracy is a metric tied to precision and recall. High
precision and recall scores show that the classifier is giving
accurate results (high precision), and the majority of the
results are positive (recall).

C. RESULTS AND DISCUSSION
For the training dataset (consisting of 4 classes), both
the forward and reverse feature sets (311 prime-number-
based features each) used about the same running time
(∼6.4 seconds in contrast to the 2,041 baseline features,
which used ∼8.6 seconds). However, the forward feature set
achieved the lowest loss value (cf. 0.001 with 0.093 on the
reverse feature set and 0.007 on the baseline feature set).

Table 4 summarizes the results on the test dataset consist-
ing of 27 classes when all of the 5,943 prime-number-based
features are used in contrast to the 58,732 baseline features.
Once again, both the forward and reverse feature sets use
about the same running time (∼ 200 seconds in contrast to
the baseline, which used ∼ 32 minutes). The forward feature
set achieved the lowest loss value (cf. 0.039 with 0.072 on
the reverse feature set and 0.056 on the baseline feature
set). On the other hand, Tables 5 and 6 show the variation
in results for the forward and reverse feature sets. We can
conclude that the reverse feature set gave better prediction
results. This is because when 512 features were used in both
feature sets, the reverse feature set gave the lowest loss value
(cf. 0.038 with 0.092 on the forward feature set). Of note,
we ran the model on the same settings for the subgroups

TABLE 4. Comparison between baseline feature set and
prime-number-based feature sets on test dataset
(27 classes). Standard deviation given in brackets.
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TABLE 5. Effect of variation in number of features on forward feature set
of test dataset (27 classes). Standard deviation given in brackets.

TABLE 6. Effect of variation in number of features on reverse feature set
of test dataset (27 classes). Standard deviation given in brackets.

TABLE 7. Comparison between baseline feature set and
prime-number-based feature set on test dataset
(76 classes). Standard deviation given in brackets.

TABLE 8. Effect of variation in number of features on forward feature set
of test dataset (76 classes). Standard deviation given in brackets.

consisting of 76 classes but obtained high cross-entropy loss
due to the small sample size in some of the subgroups. The
results are presented in Tables 7, 8 and 9 in Appendix.

V. CONCLUDING REMARKS
We conclude from the above results that our novel DNNs
model can be used to predict haplogroups accurately, and
that our novel feature extraction method reduced the model’s
running time without degrading the prediction performance.

TABLE 9. Effect of variation in number of features on reverse feature set
of test dataset (76 classes). Standard deviation given in brackets.

Second, the prime-number-based feature sets can be used to
achieve practical performance results where the results are
similar. This is because the forward feature set gave better
results for the training dataset, and the reverse feature set
gave better results for the test dataset. We believe this can
be attributed to the position of SNPs that indicate whether a
mutation has occurred. As a result, if the same positions were
chosen, a mutation pattern might not be seen as the SNPs
are currently being represented as a sequence of 0s and 1s.
Third, we showed that the accuracy improves asmore features
are used. This further indicates that fewer SNPs than the
callable SNPs described in [56] may be used to differentiate
haplogroups.

In this paper, we have 1) proposed a novel SNP-based
DNNs model that learns patterns between haplogroups and
subgroups; 2) proposed a novel feature extraction method
based on prime numbers that reduces the computational com-
plexity of DNNs; and 3) provided a comprehensive analysis
of the experimental results that show patterns learned in either
direction (forward or reverse) of the SNPs data can be used
for haplogroup and sub-groups predictions.

APPENDIX
EXPERIMENTAL RESULTS ON THE 76 SUBGROUPS
OF THE 1000 GENOMES DATA
See Table 7–9.
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