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ABSTRACT In recent years, a significant boost in data availability for persistent data streams has been
observed. These data streams are continually evolving, with the clusters frequently forming arbitrary shapes
instead of regular shapes in the data space. This characteristic leads to an exponential increase in the
processing time of traditional clustering algorithms for data streams. In this study, we propose a new online
method, which is a density grid-based method for data stream clustering. The primary objectives of the
density grid-based method are to reduce the number of distant function calls and to improve the cluster
quality. The method is conducted entirely online and consists of two main phases. The first phase generates
the Core Micro-Clusters (CMCs), and the second phase combines the CMCs into macro clusters. The
grid-based method was utilized as an outlier buffer in order to handle multi-density data and noises. The
method was tested on real and synthetic data streams employing different quality metrics and was compared
with the popular method of clustering evolving data streams into arbitrary shapes. The proposed method
was demonstrated to be an effective solution for reducing the number of calls to the distance function and
improving the cluster quality.

INDEX TERMS Clustering, data stream, evolving, grid-based method, core-micro-cluster, online.

I. INTRODUCTION
A prime application of big data is the Internet of Things (IoT)
and its emergence is primarily due to the increase in the
number of devices connected to the Internet. All these devices
are typically outfitted with various sensors that can accu-
mulate large amounts of data in real-time or several times
per minute [1]–[6]. The IoT creates enormous possibilities in
several industries, such as health, resource consumption and
transportation [2], [7]–[11]. In the realm of IoT, data streams
are common in many applications, such as for comprehensive
web searching, the real-time detection of anomalies within
network traffic, social networks, environmental monitoring,
cyber-physical systems and sensor networks. In these appli-
cations, data evolve significantly over time and continuously
arrive [12]–[16].

In fact, large data are produced continually as data streams
from many applications [17]–[19]. The considerable amount
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of data generated by healthcare, social media, devices, sen-
sors and software applications have three forms, namely,
structured, unstructured and semi-structured data [20], [21].
The diagnostics necessary for these forms of applications
are frequently real-time; therefore, the procedures employed
must be equipped with the capacity to impart real-time
results [22], [23]. Moreover, data-mining procedures are
exceptionally functional for this type of diagnostic [24]–[26].

Data streammining is a comparatively innovative approach
in the domain of data mining [27]–[32]. The monitoring
of environmental sensors, investigations of social network
issues and the real-time identification of irregularities in com-
puter network transmissions and web searches are among the
many areas where this procedure is used [12], [33], [34].

Evolving clustering is an essential data analysis topic for
a wide range of applications, such as the following: evolv-
ing clusters can be generated in forecasting weather con-
ditions [4], [35]–[37], in earthquake forecasting software
based on the analysis of different sources of data from the
Earth [38], [39], in intelligent transportation systems for
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traffic congestion prediction in smart cities [40], in chemistry
for forecasting the results of molecular interactions [41],
in network intrusion detections (NIDS) [15], [42], [43],
in various software performs, and in predicting stock
increases or decreases based on their relations with different
time series factors [44].

Clustering plays a significant role in the data-stream min-
ing process [42], [45]–[51]. In recent years, many researchers
have proposed density-based data stream clustering algo-
rithms. However, several issues related to these cluster-
ing algorithms must be considered [13], [52]–[59], such as
most are not entirely online methods, are unable to han-
dle evolving data streams, are unable to manage the noisy
characteristics of data streams, or suffer from high memory
requirements, low processing rates, or the ‘‘curse of
dimensionality’’ [45], [60]–[63]. Moreover, the existing
density-based clustering algorithms have high computational
times and low cluster quality for clustering data streams.
As such, these algorithms require a large number of distance
function calls in order to calculate the distance between data
points and micro-clusters.

In this study, our proposed scheme consists of two fun-
damental steps. In the initial step, the density grid-based
procedure is adopted to generate CMCs, upon the occurrence
of new data points, in data spaces that are unclustered. The
present radius r0 of the CMCs must be suitably sized to
support operational objectives. In this method, a simple linear
aging process is used to minimize the life of the CMCs and
allows unused CMCs to be removed altogether. Each time
new data are received, the CMCs life is usually renewed.
In the absence of incoming data, the CMCs will lose a quan-
tity of energy and eventually vanish. If no data are received
for a period of time, the CMCs energy will reach zero and be
discarded.

The subsequent step entails the integration of any overlap-
ping CMCs into global clusters. CMCs consist of a kernel
region and a shell region. The edge CMCs can be discerned
by linking the CMCs whose shell regions overlap the kernel
regions of other CMCs. CMCs that do not have at least the
local density specified by the user (the minimum number of
samples within a radius) remain as separate outlier micro-
clusters. Eachmacro cluster consists of the graph of intersect-
ing CMCs where the adjacency relations for each CMC are
stored as a property of that CMC. For convenience, we call the
CMCs in adjacency relations (i.e., intersecting CMCs) edges.
Using this graph structure reduces the calculations needed to
separate clusters if a cluster dies and breaks a chain graph,
resulting in two groups of CMCs being no longer connected.

Motivated by this observation, in this paper, we pro-
pose the ‘Clustering of Evolving Data streams via a density
Grid-based Method’ (CEDGM). To the best of our knowl-
edge, this is the first article that has presented a clustering
approach for the evolving nature of clusters incorporating
grid granularity as a data reduction stage to simplify the
calculation and eliminate the effect of fine data occurring
that does not play any role in the clustering result. Different

from [47], our approach performs the clustering operations on
the grid-based mapping of the data with adjustable granular-
ity, which allows more efficient operations and avoids outlier
effects. Additionally, dissimilar from [48], our approach uses
CMC generation in an online model, which means that there
is no need to store any data before generating the structure
of the CMCs, also in the same iteration of updating CMCs
the cluster creation is called. We rely on various sample
speeds and times to analyze the efficiency of the CEDGM.
The results have demonstrated that the proposed algorithm
significantly improves the clustering results compared to
Clustering of Evolving Date-streams into Arbitrary Shape
(CEDAS) [47] and Cauchy [64]. Our algorithm also has better
clustering quality, scalability, and efficiency than existing
methods.

The remainder of this paper is organized as follows.
Section 2 presents a review of the previous studies.
Section 3 defines the principles and the methodology associ-
ated with the CEDGM. Section 4 describes the use of datasets
for evaluating the efficiency of the recommended algorithm,
and Section 5 provides the conclusions drawn from this study.

II. LITERATURE REVIEW
Online or data stream clustering has attracted the attention
of numerous researchers and analysts. In clustering data
streams, an important issue is how to process this infinite data
that are evolving over time or how tomaintain the vast amount
of data for later processing [24], [47], [48], [65], [66]. The
literature has provided numerous methods that include data
stream clustering.

In the field of density-based data stream clustering,
DBSCAN [67] is considered a primitive algorithm that gen-
erates arbitrarily shaped clusters incrementally and is unsuit-
able for high-dimensional datasets due to it suffering from the
curse ofdimensionality [68]. Two density-based clustering
algorithms, namely, DenStream [69] and CluStream [6], are
other density-based clustering algorithms that summarize the
data stream information by storing the temporal locality of
data in what is called a micro-cluster. Both algorithms are
actively applied to evolving data streams. However, Den-
Stream suffers from increased time consumption due to prun-
ing the outlier micro-cluster, whereas CluStream is limited to
generating spherical clusters only.

C_DenStream [70], rDenStream [71], SDStream [72],
HDDStream [73], and VDStream [74] are all DenStream
improvements and are capable of generating arbitrarily
shaped clusters. C_DenStream is a semisupervised algo-
rithm in which an expert in the application defines the con-
straints, although it is unable to handle limited memory issues
and cannot handle high-dimensional data streams. rDen-
Stream is appropriate for applications where many outlier
micro-clusters are produced and it improves the clustering
accuracy; however, it has high memory requirements and
a high processing time due to processing and saving the
historical outlier buffer through a relearning step. A sliding
window-based SDStream algorithm can handle evolving data
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streams and noisy data appropriately. However, the maximum
number of micro-clusters is predefined, and SDStream is
incapable of handling a high-dimensional data stream set due
to it suffering from the curse of dimensionality in its offline
stage, which is comparable to DBSCAN.

Another clustering algorithm, HDDStream, can gener-
ate high-quality clusters and handle high-dimensional data
streams. HDDStream’s efficiency is further enhanced by
adapting the fading function [69] in PreDeConStream [73]
to detect the evolving data streams. However, PreDeCon-
Stream suffers from consuming too much time, even though
VDStream’s clustering accuracy is high. As such, searching
for density-reachable micro-clusters requires high processing
time. In contrast, SOStream [75] is another density-based
clustering algorithm that has gained popularity. This algo-
rithm works by accepting the threshold for density-based
clustering to sense the structure associated with the evolu-
tion of data streams. Moreover, its online phase allows it to
dynamically create, remove and merge clusters. SOStream
adopts self-organizing maps, which are a competitive learn-
ing technology, and it achieves high-quality clustering while
occupying less memory. However, this algorithm suffers from
a major drawback, i.e., increased time consumption, thereby
making this method unfit for data stream clustering.

D-Stream, which is a density-based clustering framework,
has been applied to cluster data streams in real-time and was
first proposed by [76]. Offline and online phases are involved
in D-Stream, in which a new data point is read in the online
phase, which is then mapped into a grid. Subsequently, the
grid’s characteristic vector is updated. Moreover, the clusters
are adjusted in the offline phase for each of the time interval
gaps. D-Stream also has the ability to cluster data streams in
real-time based on the density and the grid. Likewise, han-
dling the outliers in D-Stream is the key motivation for grid
density, which regards the outliers as sporadic grids. A sparse
grid is a sporadic grid that possesses few data and cannot
be transformed into a dense grid. However, high-dimensional
data cannot be handled by D-Stream since it considers most
of the grids to be empty when a high-dimensional situation
occurs. Other current clustering methods, such as the active
grid density stream (AGD-Stream) [77], and CLIQUE [78]
use density grid decaying technology that identifies active
grids, thereby creating clusters through active grids. Here,
the data space of the AGD-Stream algorithm is segmented
into small cube grids, after which the data object is mapped to
this structure. AGD-Stream is time efficient and improves as
the stream length increases while achieves high-quality clus-
tering. However, high computational times and large amounts
of memory are required for AGD-Stream.

For IoT streams, a density-based clustering algorithm
that can be used is hybrid density-based clustering for
data streams (HDC-Stream) [17]. This algorithm achieves
a quicker processing time compared with its predecessors,
thus making it appropriate for a real-time application related
to IoT devices. The benefits of micro-clustering and density
grid-based methods are incorporated into this method, which

can handle outliers and detect arbitrary-shaped clusters. Stud-
ies have shown that high-quality clustering results, along with
a low processing time, are achieved when working with a data
stream. However, the clustering of multi-density data is not
feasible and is associated with low memory efficiency [17].
Recently, HDC-Stream was improved by a multi-density
data stream (MuDi-Stream) method, which was introduced
by [48] in order to resolve the issue of the dramatic decrease
in clustering quality when dense data exist. This method is
regarded as an online-offline algorithm that incorporates four
main components. In the online phase, an information sum-
mary of the evolving multi-density data stream is stored in the
form of core mini-clusters. The final clusters are generated
via the offline phase by applying an adapted density-based
clustering algorithm. A hybrid method that integrates the
micro-clustering and grid is then applied to store information
on the data points. A grid-based method is used to map
outliers and form new mini-clusters with various radii.

Four key components are included inMuDi-Stream, which
are the components for forming the core mini-clusters, prun-
ing the grids and core mini-clusters, merging or mapping, and
forming the final clusters. In the online phase, the first three
components are applied, and the last component is associated
with the offline phase. M-DBSCAN is another density-based
clustering algorithm, which was also suggested for the offline
phase, and it forms final clusters with different densities for
synopsis data. MuDi-Stream achieves high-quality clustering
and occupies less memory. However, the abovementioned
streams are inappropriate for high-dimensional data because
the number of empty grids will increase and thus will result
in a slow processing time.

The algorithms, as mentioned earlier, are either hybrid
online/offline or incremental clustering processes. Baruah
and Angelov developed two online evolving clustering algo-
rithms for data streams called ELM [79] and DEC [4]. These
algorithms require low processing time and provide high
cluster purity, but they cannot generate arbitrarily shaped
clusters. However, the problem associated with the ELM
clustering algorithm lies in its inability to identify a sample’s
neighborhood given the previously discarded samples. Even
though DEC can form hyper ellipsoidal cluster shapes, this
technique cannot be adapted to data streams but it can be
applied to selecting the optimal radius.

A novel framework for clustering the evolving data stream
is known as Cauchy [64]. It is an online learning algorithm
that can adapt to the classifier online. In addition, the authors
present the idea of designing methodologies for the creation
of a cyber-attack detection system. To solve the expensive
and time-consuming problems of traditional/offline methods,
the method was tested on a 1999 KDD intrusion detection
database. The results showed a reduction in the cost of label-
ing the learning data. Since this approach is online, it is much
easier and simpler to include definitions for new attacks than
with batch learning algorithms. However, similar to other
density-based clustering algorithms, the Cauchy method suf-
fers from a major drawback, i.e., it does not implement the
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cluster mergingmechanism that could decrease the number of
created clusters and it is inappropriate for high-dimensional
data.

The previous approaches have their strengths and weak-
nesses; this is true for almost any clustering approach. Hence,
the concept of ensemble clustering emerged such as with
RCESCC [80], WOCCE [81], RCEIFBC [82]. The ensem-
ble clustering approach calls for using more than one
clustering approach at the same time and it fuses or aggre-
gates their results in order to achieve more robust perfor-
mance [80]–[82]. Such a category of approaches can combine
our evolving algorithmwith other clustering algorithms as the
aggregated approach.

Another online clustering algorithm called clustering
online data streams into arbitrary shapes (CODAS) [18]
was proposed to allow the formation of arbitrary-shaped
clusters via the online clustering of data streams. CODAS
is a data-driven algorithm that generates micro-clusters in
order to summarize data points and creates a high qual-
ity cluster that can be scaled to multidimensional data
streams. However, in CODAS, the generated clusters do not
evolve. Recently, CODAS was improved by CEDAS [47]
by introducing a simple linear aging process to handle
the characteristics of evolving data streams. This algorithm
is the first fully online clustering algorithm for evolving
data streams. CEDAS includes two mean stages. In the
first stage, micro-clusters are produced, or data are added
to the current micro-clusters, which is followed by infor-
mation adjustment. The second stage includes intersecting
micro-clusters, in which the micro-clusters are grouped into
kernel and shell regions. In this technique, each macro-
cluster includes a graph that demonstrates intersecting micro-
clusters for each micro-cluster. The storing of the adjacency
relations is performed as a characteristic of that micro-cluster.
CEDAS immediately provides high-quality clustering results
and can also handle the properties of an evolving data stream
and noise. However, similar to other density-based cluster-
ing algorithms, CEDAS consumes considerable computa-
tional time. In the next section, we present our developed
methodology.

III. METHODOLOGY
In this study, the CEDGM algorithm is proposed to pro-
vide high-quality clusters, detect noise, and determine the
characteristics of the data point in an evolving data stream.
The proposed algorithm uses the data point information to
formulate the CMC. Moreover, this clustering algorithm is
entirely online and it uses a density grid-based method to
reduce the means of calling the distance function.

The present study conducts clustering based on the density
grid. This mechanism forms grids by splitting the data space
into small segments. Illustrative neighbor research is then
performed on the grids to group them into cluster grids. The
density grids and data distribution are displayed in Fig. 1.
After a comparison with other clustering algorithms, ‘cluster-
ing based on a grid’ provides a fast processing time since it

FIGURE 1. Illustration of data record distribution and density grids.

does not rely on the number of data objects, but rather it relies
on the number of cells in each dimension. This method is very
successful for high density datasets and is robust against noise
with almost linear time complexity and distinct arbitrarily
shaped clusters.

In the CEDGM, each CMC among radii r0/2 contains a
shell region r0 and a kernel region r <= r0/2. Macro-clusters
are formed by intersecting the shell region of CMCs and the
kernel regions of other CMCs. The CMCs with a density that
exceeds the minimum threshold but with no intersections are
also considered macro-clusters. From the data stream, a new
data point will fall into three regions. First, if the data point
falls in the empty space of a grid granularity, it will then
create a new outlier. Second, if the data point falls in the
shell region of a CMC, then it can be assigned to the cluster,
and the CMC center and cluster count will be recursively
updated. Third, the data point allocated to the CMC and
the cluster count is updated when the data point falls in a
kernel region. The created or modified CMC is examined to
determine if the cluster density is greater than the minimum
threshold. This CMC is then examined for new intersections
with other CMCs. When new intersections are created, these
CMCs are linked and assigned to the same macro-cluster.
All connected CMCs must have the same macro-cluster and
create an arbitrarily shaped cluster in an online manner.

A. PROBLEM FORMULATION
We assume that we have time-series data (xt, yt), where t =
1, 2, . . . , t , xt = (x t1, x

t
2, . . . , x

t
m) ∈ R

m, yt ∈ {1, 2, . . . ,Nct }
and Nct denotes the number of clusters at moment t . The
clusters Ci are defined as Ci = {C t

i }, which means that the
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cluster is defined based on the points that belong to it at each
time unit, or in other words, the shape of the cluster changes
concerning time. The problem seeks to partition the data
into its corresponding clusters to obtain the least difference
between the predicted clusters and the actual ones. That is,
it seeks to find the predicted ypt for each xt such that ypt =
yt for most samples. The difference between the classical
clustering problem and the evolving one is dynamic, which is
considered in the result of the evolving problem. The cluster
in classical clustering is not dependent on time Ci, while in
the evolving problem, it is dependent on time Ci = {C t

i }.

B. PRELIMINARIE
In this section, we introduce the CEDGM. The following
terminologies are used in the CEDGM algorithm.

1) GRAPH OF CLUSTERS
This structure illustrates the building of the macro-clusters
by intersecting CMCs. An edge will collectively record the
intersection of each CMC with the suitable CMC assignment
in ‘Macro’. Two CMCs are considered edged if the kernel
region of a CMC intersects with the shell region of another
CMC. Mathematically, two CMCs with radii R1 and R2 are
considered intersected if the (d) distance between the centers
is less than or equal to the intersecting distance (R1 + R2/2).
An example of the relationship between the graph structure
and CMCs is illustrated in Fig. 2(a).

2) CORE MICRO-CLUSTERS (CMCS)
They are defined as the primary entities that construct the
cluster. It is a data structure that includes two properties: the
center and density. All CMCs have the same radius according
to the minimum allowable density. At time t , a CMC is
described as a set of close data points X1, X2, X3, . . . ,XNt
in a high-density area wherein the local density Nt is equal to
or exceeds the threshold (Nt ≥ Thdensity). An example of the
data points and CMCs is depicted in Fig. 2(b).

3) OUTLIERS
They are defined as the group of one or more data points X1,
X2,X3, . . . ,XNt in a low-density area at time t , where the local
densityNt is less than a predefined threshold (Nt < Thdensity).

4) SAMPLE
It is a streaming data point within d dimension.

5) GRID DIMENSION
It is how many sub-segments are considered in a cer-
tain dimension to define the coordinates of this dimension.
Assume that in dimension d , the minimum value is Vmin, and
the maximum value is Vmax . Then, the resolution is defined
as follows:

Resolution =
[Vmax − Vmin]
GridGranularity

(1)

FIGURE 2. Graph structure of the CEDGM algorithm and the core
micro-clusters. The graph structure with subgraph nodes is demonstrated
in Fig. 1(a). The data with core micro-clusters are exhibited in Fig. 1(b).

The resolution is already calculated by the equation pro-
vided in Eq. 1. To elaborate more, we have to first set the
value of the grid granularity, which is selected based on a
tuning process. A smaller grid granularity implies more cal-
culations and sensitivity to low-frequency noise while a high
grid granularity implies less sensitivity in the data changes
before clustering. Hence, we set a suitable value depending
on the data. In the experiment, we selected a grid granularity
of 30.

C. DESCRIPTION OF THE PROPOSED CEDGM ALGORITHM
Before the implementation of the proposed CEDGM algo-
rithm, a few application-dependent parameters are described
based on the expertise of the application comparable to other
density-based clustering algorithms, such as CluStream, Den-
Stream, Cauchy, CODAS, DEC, MuDi Stream and CEDAS.
The CEDGM algorithm requires several parameters to be
performed.
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The parametric values depend on the applications as
follows:
1. Decay: This parameter denotes howmany last samples we

consider for processing at the current time t . If the decay is
set toN and we are at moment t , then we consider samples
t , t − 1, t − 2, . . . , t − N + 1.

2. Fade: It indicates the time in which a CMC has to be
removed if no new point or sample was added to it within
this time. It is calculated as the inverse of the decay,
as shown in Eq. (2):

FD =
1
DC

(2)

where FD denotes the fade, and DC denotes the decay.
3. Radius: This parameter is the minimum allowable dis-

tance for a sample to be from the center of a CMC to still
belong to it. Otherwise, it belongs to either an outlier, or it
creates a new outlier.

4. Minimum Threshold: This parameter is the minimum
number of data points that are required to form a CMC
or convert an existing outlier to a CMC.

5. Grid Granularity: It is an important parameter for the
computational time of the CEDGM algorithm, and it rep-
resents the difference in the counting structure nodes used
for grids.
The CEDGM is a new algorithm for discovering the clus-

ters of evolving data streams in multi-density environments.
This algorithmmaintains a summary of information on evolv-
ing data streams in the form of CMCs. A grid-based method
is used as an outlier buffer to handle noises and multi-
density data and reduce the number of distance function
calls. After setting the application parameters, the proposed
CEDGM algorithm is executed on the data stream {X1, X2,
X3, . . . ,Xm} using the following steps:
• Assign the core micro-clusters,
• Kill the weak core micro-clusters, and
• Update the cluster graph.
The characterization of each step is provided next. For

each data sample, the algorithm executes the three steps
sequentially.

1) ASSIGN THE CORE MICRO-CLUSTERS
This part of the algorithm uses a density grid-based method in
which the data space is partitioned into small segments called
grids. The segments and intersection points in the standard
grid are called cells and nodes, respectively. Each data point
Xi in the datastreams are mapped into a grid, and the grids
are clustered based on their density. When a new data point
arrives, the algorithm determines the CMCs and outliers in
the grid and its neighbors. Step 1 shows a process for assign
core-micro clusters.

Next, the algorithm checks the incoming data points that
belong to any existing CMCs or outliers. If the distance (d)

between the point and the nearest outlier or CMC is less than
the radius, it is expressed as given in Eq. 3. Then, the CMC
or outlier is updated and the grid coordinates are determined;

Step 1: Assign the Core Micro-Clusters
Input: x, radius, counter, grid
Granularity, grid Dimensions, min Threshold
Output: CMCs, outliers, clusters Relations, number of
Clusters
Start:
Determine the grid coordinates (grid Granularity, x, grid
Dimensions)
Compute the distance between data point x and the near
CMCs and outliers’ centers
If (the distance > radius) then
Create a new outlier

End
If (the data point x is nearer to a CMC) then

Update the CMC and determine the grid coordinates
Determine the life of CMC % go to step 2

Else If (the data point x is nearer to an outlier) then
Update the outlier and determine the grid
coordinates

If (density(outlier) > min Threshold) then
Update the Outlier to be a new CMC
CMC = CMC + 1
Determine the life of CMC % go to step 2

End
End
If (new CMC was arrived) then
Update cluster graph % go to step 3
Edges = determine Edges (CMC)

End

otherwise, a new outlier is created. Further verification is
conducted to determine if the update unit is an outlier and
if the count is larger than the minimum threshold. Then,
the algorithm will promote the outlier to a CMC. The new
CMC must be assigned to the cluster of the nearest CMC in
the shell by determining the edges. Fig. 3 shows the flowchart
for assign the core micro-clusters.

d (Xi,C) < R (3)

2) KILL THE WEAK CORE MICRO-CLUSTERS
This part of the algorithm minimizes the life of CMCs and
removes themwhen their life is below zero. The life of CMCs
is reduced using the fade. When a CMC is removed, all edges
that refer to it will also be removed, and the total number
of CMCs will be decreased. Step 2 shows a process for kill
core-micro clusters. Fig. 4 shows the flowchart for kill the
core micro-clusters.

3) UPDATE THE CLUSTER GRAPH
Like other density-based algorithms, such as CEDAS and
CODAS, a clustering graph is maintained in order to create an
online macro-cluster. The clustering graph makes a change if
either of the following occurs.
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Step 2: Kill the Core Micro-Clusters
Input: CMCs, Fade
Decrease the life of CMCs using the Fade
If (CMC. life <= 0) then

Remove the dead CMCs and all references
Remove all edges containing the CMCs
Reduce the number of CMCs

End

FIGURE 3. Flowchart for assign the core micro-clusters.

• A new link has been created when a new CMC arrives
or when old CMCs move. For each new link connecting
two CMCs from different clusters, the link ID is added
to the cluster table.

• An old link has been removed (when a CMC is removed
or moved).

FIGURE 4. Flowchart for kill the core micro-clusters.

Step 3: Update the Cluster Graph
Input: CMCs
Output: Clusters
Start:
If (new CMC was created) then
Calculate the distances between new CMC centers and
all others
If (distances <1.5∗radius) then

List the CMCs that are edges
End

End
If (CMC edge list has changed) then
Set a new macro-cluster number throughout the graph

End

Step 3 shows a process for update the cluster graph. The
changes are made to any CMC that has been modified when
either its center location is moved or by being in a CMC
that has newly reached the threshold. In this case, the graph
edgesmay have changed. If the edge list has changed, then the
new graph has its macro-cluster number set to a new value.
Fig. 5 shows the flowchart for update the cluster graph.

D. COMPUTATIONAL COMPLEXITY
Computational time mainly involve two sub-processes i.e.,
cluster assignment and CMC update. Cluster assignment is
performed based on the Euclidean distance between the arriv-
ing data point and the current CMC centre. Time complexity
is O (ND) , where N is the total number of data points clus-
tered and D is the number of dimensions.

This algorithm checks the arriving data point that belongs
to any existing CMC or outlier. Otherwise, the data point
will be mapped to the grid and a new outlier will b created.
In the CEDGM algorithm, the grid is implemented as a tree
that allows fast lookup, update, and deletion. The key feature
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FIGURE 5. Flowchart for update the cluster graph.

of the tree is determining the grid coordinates. Meanwhile,
the associated data for each grid entry is the grid’s synopsis.
Therefore, we show that the size of the grid in our algorithm
is O(logD), where D is the number of dimensions. The time
complexity for update and search in the tree is O(log logD);
which is very small.

In the CMC update, the intersection of the modified CMC
with other CMCs is performed with the time complexity
of O(N ). The three complexities, (O(ND) + O(log logD) +
O(N )), are combined. The resulting time complexity of the
proposed CEDGM algorithm is therefore O(ND).

IV. RESULTS AND DISCUSSION
This section analyses and compares the performance of
the CEDGM algorithm with those of the CEDAS [47],
Cauchy [64], MR-Stream [60], WOCCE [81] RCESCC [80],
RCEIFBC [82], DBSCAN [67], and CLIQUE [78]. These
algorithms are implemented in MATLAB R17a, and their
performances are evaluated on a PCwith an Intel Core i5 pro-
cessor @ 2.66 GHz and 16.0 GB of RAM. The parameters
of the proposed and other algorithms are Decay = 1000,
Minimum Threshold = 4 data points, Radius = 0.05, and
Grid Granularity = 30. This experiment aims to verify the
average number of distance function calls, average purity and
average accuracy across sample speeds and times. For logical
samples of numbers, the decay is set to ensure appropriately
sized macro-clusters for demonstrating the efficiency of the
technique. The minimum threshold of CMCs is set to 4.
The radius is constantly set small to ensure multiple CMCs.
The grid granularity is set to 30, higher grid granularity causes
a higher number of children for each node in the tree, which

leads to better results. We introduce datasets that are used
to determine the efficiency of the suggested algorithm in
handling evolving data streams. Real/synthetic datasets are
used to assess the proposed algorithm.

A network intrusion detection dataset (KDDCUP’99) is a
real dataset for testing the performance of evolving clustering
algorithms and contains TCP connection logs from 2 weeks
of LAN traffic. The dataset comes from the 1998 DARPA
Intrusion Detection dataset. It includes training data consist-
ing of 7 weeks of network-based intrusions inserted in the
normal data and 2 weeks of network-based intrusions and
normal data for 4,999,000 connection records described by
42 characteristics. Each record corresponds to either a normal
connection or an attack. All 34 continuous attributes of the
KDD CUP ’99 are used, as in [46]–[48], [69], [75], [83]. A
conversion of the dataset into data streams is conducted by
taking the data input order as a streaming order. In addition,
three datasets were used from the UCI machine learning
repository [84] i.e., Half-Ring has 373 data points, Iris has
150 data points, and Galaxy has 323 data points.

Fig. 6 plots the synthetic datasets used called DS1 and
Spiral. DS1 has 9,199 data points [85]–[87], and Spiral has
6,012 data points.

FIGURE 6. Plots of the datasets used for testing the CEDGM.

The class labels are known for all the datasets used in
our experiments. Therefore, the quality of the clustering
obtained is assessed by considering outstanding external cri-
teria, namely, the average number of distance function calls,
the average purity and the average accuracy.
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1. Purity: For each cluster, purity is the class most fre-
quently divided by the number of data points in that clus-
ter [47], [88], [89]. Purity may be used for the clustering
analysis of data streams in various studies and is defined
as:

Purity =

∑N
i=1 n

d
i

ni
× 100% (4)

where ndi is the dominant class sample, ni is the number
of samples that a cluster contains, and N is the number of
clusters.

2. Accuracy: To evaluate the data stream-clustering,
the accuracy is used and can be defined as the number
of samples in a cluster that belong to that cluster and do
not belong to any other cluster [47], [88], [89].

Accuracy =

∑N
i=1 n

d
i∑N

i=1 ni
× 100% (5)

where ndi is the dominant class sample, ni is the number
of samples that a cluster contains, and N is the number of
clusters.

3. NormalizedMutual Information (NMI): NMI is derived
from entropy in information theory. For a discrete ran-
dom variable P∗, which measures the mutual dependence
between P∗ and L t [80]–[82], the NMI is defined as
follows:

NMI
(
P∗,L t

)
=

c∑
i=1

c∑
j=1

nij log2

(
nnij
n∗i n

t
j

)
√

c∑
i=1

n∗i log2
(
n∗i
n

)
×

c∑
i=1
ntj log2

(
ntj
n

) ∗100%
(6)

where P∗ is the consensus partition, L t is the ground-truth
of the dataset, n is the total number of data points in the
given dataset X , nij is the number of data points in the
intersection of the ith cluster of P∗ and the jth cluster of L t ,
n∗i and n

t
j are the number of data points in the ith cluster in

P∗ and the number of data points in the jth cluster in L t ,
respectively.

A. NETWORK INTRUSION DETECTION
The comparisons between the CEDGM, CEDAS, Cauchy,
andMR-Stream algorithms on the data stream set for network
interruption detection are displayed in Fig. 7. The outcomes
are calculated at different sample speeds and times, where the
parameters of the proposed and other algorithms areDecay =
1, 000 samples,Radius = 0.05,MinimumThreshold = 4 and
Grid Granularity = 30. The result of the average number of
distance function calls is compared at different sample speeds
and times on the high dimensional KDDCUP’99 dataset,
which is precisely the same test dataset used in [47].When the
sample speed varies from 5 pits per second (PPS) to 25 PPS,
the average number of distance function calls increases,
as illustrated in Fig. 7(a). The CEDGM algorithm consis-
tently has a lower average number of distance function calls

compared to the CEDAS algorithm. When the sample speeds
are 15 and 25 PPS, the CEDGM exhibits average numbers
of distance function calls of 1,030 and 1,472 compared with
the CEDAS algorithm, which has values of 1,201 and 1,665,
respectively.

However, when the time varies from 100 s to 500 s,
the average number of distance function calls increases,
as illustrated in Fig. 7(d). The average number of distance
function calls of the CEDGM exceeds that of the CEDAS.
For example, with times of 100 s and 500 s, the average
numbers of distance function calls for the CEDGM are
6,396 and 13,448 compared with the averages of 8,444 and
17,108 for the CEDAS algorithm, respectively. The CEDAS
algorithm can detect outliers and arbitrarily shaped clus-
ters; however, when analyzing the membership of arriving
data points regarding any current CMCs, CEDAS calculates
the distance for the new data point with all other visibility
agents. Many Euclidean distance calculations are therefore
required. By contrast, the CEDGM algorithm has a lower
average number of distance function calls because when
using grid-based density algorithms, not only can outliers and
arbitrarily shaped clusters be located but also fast processing
times can be achieved. In other words, they do not depend on
the number of data objects but on the number of cells in the
quantized space in each dimension.

The comparison between the CEDGM, CEDAS and
Cauchy algorithms in terms of the average clustering purity
is depicted in Fig. 7(b). The average purity, as defined in
Eq. (4), is determined by the sample speed. Our proposed
algorithm has a higher purity than those of the CEDAS
and Cauchy algorithms. For example, one cluster appears in
one window at speeds of 5 and 25 PPS, and the CEDGM
algorithm achieves average purity values of 99.88% and
99.83%, respectively. This result indicates that nearly all
samples are adequately empowered to be the predominant
clusters. The average purity values of the CEDAS algorithm
at sample speeds of 5 and 25 PPS are 99.63% and 99.47%,
respectively, and those of Cauchy are 98.97% and 99.05%,
respectively, considering the few misallocated samples in
clusters with few numbers. Fig. 7(e) demonstrates the results
of the mean purity analysis for the time of 25 s. We use
this estimation that is favored by Hyde and observe that
the average purity of the CEDGM surpasses those of the
CEDAS, MR-Stream and Cauchy. The two periods of 50 s
and 150 s are used. We determined that the average purity
values of the CEDGM are 100% and 99.29% compared with
the values of the CEDAS of 98.29% and 96%, respectively;
the values of MR-Stream of 90% and 82.05%, respectively;
and the values of Cauchy of 98.66% and 98.75%, respec-
tively. We then examine the results at periods of 475 s
and 500 s and find that the average purity of the CEDGM
is 100%.

The following reasons contribute to the improved perfor-
mance of the CEDGM algorithm.
1. A newCMC that can capture the characteristics of a mixed

data object and is accurately distributed is introduced. This
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FIGURE 7. CEDGM, CEDAS, Cauchy, and MR-stream performance comparison with sample speed and time using high dimensional KDDCUP’99.

feature makes the cluster purity of the CEDGM algorithm
increasingly more accurate.

2. The CMCmaintenance mechanism of the online CEDGM
algorithm can remove the outliers in time and cluster the
potential CMCs, thereby enhancing the clustering purity.
The experimental results of the average clustering accu-

racy of the CEDGM and CEDAS algorithms are exhibited

in Fig. 7(c). The average clustering accuracy of the proposed
algorithm outperforms that of the CEDAS and Cauchy.When
the sample speed varies from 5 to 25 PPS, the average
accuracy of the CEDGM is constantly higher than 91%,
whereas those of the CEDAS and Cauchy algorithms are less
than 89%. When the sample speed is 25 PPS, the average
accuracy of the CEDGM algorithm is 92.02%, whereas that
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TABLE 1. Performances of different state-of-the-art methods compared with the performance of the proposed method, i.e., CEDGM, in terms of the
sample speed using high dimensional KDDCU’99 as validated by the paired t-test.

TABLE 2. Performances of different state-of-the-art methods compared with the performance of the proposed method, i.e., CEDGM, in terms of the time
using high dimensional KDDCU’99 as validated by the paired t-test.

of the CEDAS algorithm is 86.34% and Cauchy is 73.08%.
The results of the 25 s period, as displayed in Fig. 7(f), are
also used as a reference. For the period of 25 s to 125 s,
the average accuracy of the CEDGM algorithm is 100%
compared with those of CEDAS and Cauchy that are less than
78%. The CEDGM algorithm is based on the density grid of
the enhanced clustering. When calculating the density of grid
cells, the impact of the boundary data points on the grid is

calculated rationally by calculating the impact coefficient of
the added data points on the adjacent grid cells. Thus, the data
points cannot be treated as noise points, and this character-
istic improves the clustering accuracy. Table 1 includes the
performances of different state-of-the-art methods compared
with the proposed method in terms of the sample speed using
the ‘‘KDD CUP’99’’ dataset as validated by the paired t-test.
Meanwhile, Table 2 includes the performances of different

166482 VOLUME 8, 2020



M. Tareq et al.: Online Clustering of Evolving Data Streams Using a Density Grid-Based Method

FIGURE 8. CEDGM, CEDAS and Cauchy performance comparisons with the sample speed and time using the spiral dataset.

state-of-the-art methods compared with the proposed method
in terms of time using the ‘‘KDD CUP’99’’ dataset as vali-
dated by the paired t-test.

B. SPIRAL DAT
The comparisons between the CEDGM, CEDAS and Cauchy
algorithms in terms of the spiral data stream set results

are plotted in Fig. 8. The outcomes are calculated at dif-
ferent sample speeds and times, where the parameters of
the proposed and other algorithms are Decay = 500 sam-
ples, Radius = 0.05, Minimum Threshold = 4 and Grid
Granularity = 30. The average numbers of distance function
calls are compared at different sample speeds and times on
the ‘spiral data’ evolving data stream.When the sample speed
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TABLE 3. Performances of different state-of-the-art methods compared with performance of the proposed method, i.e., CEDGM, in terms of the sample
speed using the spiral dataset as validated by the paired t-test.

varies from 15 to 100 PPS, as presented in Fig. 8(a), and the
25 s period is used, as illustrated in Fig. 8(d), the CEDGM
algorithm outperforms the CEDAS algorithm regarding the
mean number of distance function calls. At sample speeds
of 15 PPS and 100 PPS, the average numbers of distance func-
tion calls of the proposed algorithm are 306.06 and 315.13,
respectively, compared with those of CEDAS of 377.39 and
370.22, respectively. At a period of 175 s, the CEDGM
reaches 389.72, whereas the CEDAS reaches 503.18.We con-
clude that the CEDGM algorithm can yield a lower average
number of distance function calls than the CEDAS algorithm
due to the same reason of improving the average of distance
function calls (Section 4.1).

The experimental results of the CEDGM, CEDAS and
Cauchy algorithms in terms of the average clustering purity
are depicted in Figs. 8(b) and (e). We test them on the same
‘spiral’ evolving data stream. The average purity, as defined
in Eq. (1), is determined by sample speed and time. Our
proposed algorithm has a higher purity than the CEDAS and
Cauchy algorithms. At a speed of 15 PPS, the CEDGM algo-
rithm achieves an average purity of 83.47%, whereas CEDAS
reaches 71.89% and Cauchy reaches 75.05%. Regarding the
average purity at periods from 25 s to 225 s, both algorithms
achieve 100% from 25 s to 100 s; meanwhile, at a period
of 225 s, the CEDGM reaches 61.15%, whereas the CEDAS
reaches 50.02% and Cauchy reaches 59.52%. Thus, nearly
every sample is appropriately allocated to the predominant
clusters. We conclude that the CEDGM algorithm can obtain
better average clustering purity than the CEDAS and Cauchy
algorithms due to the same reason of improving the average
clustering purity (Section 4.1).

Figs. 8(c) and (f) depict the average accuracy results of
the CEDGM, CEDAS and Cauchy algorithms on the ‘spiral’
evolving data stream. The average accuracy, as defined in
Eq. (2), is determined by the sample speed and time. When
the sample speed varies from 15 to 100 PPS, as demonstrated
in Fig. 8(c), our proposed algorithm exceeds the CEDAS and
Cauchy algorithms in terms of the average accuracy. At a
sample speed of 15 PPS, the average accuracy of the CEDGM
algorithm is 77.58%, whereas that of CEDAS is 71.87%
and that of Cauchy 72.73%. At a sample speed of 50 PPS,

the clustering accuracy of the CEDGM is 79.26%, whereas
that of the CEDAS is 74.99% and that of Cauchy 68.75%.
The results of the 25 s period, as exhibited in Fig. 8(f), are
also adopted. At a period ranging from 25 s to 225 s, both
algorithms achieve 100% from 25 s to 100 s; meanwhile, for
the period of 225 s, the CEDGM reaches 52.48%, whereas
the CEDAS reaches 49.99% and Cauchy reaches 50.33%.
This result confirms that the CEDGM algorithm has better
average clustering accuracy than the CEDAS and Cauchy
algorithms due to the same reason of improving the aver-
age clustering accuracy (Section 4.1). Table 3 includes the
performances of different state-of-the-art methods compared
with the proposed method in terms of sample speed using
the ‘‘Spiral’’ dataset as validated by paired t-test. In addition,
Table 4 includes the performances of different state-of-the-art
methods comparedwith the proposedmethod in terms of time
using the ‘‘Spiral’’ dataset as validated by the paired t-test.

C. DENSITY DATASET (DS)
A comparison between the CEDGM, CEDAS and Cauchy
algorithms on the DS is displayed in Fig. 9. The outcomes
are calculated at different sample speeds and times, where the
parameters of the proposed and other algorithms areDecay =
500 samples, Radius = 0.05, Minimum Threshold = 4
and Grid Granularity = 30. The CEDGM has a lower
average number of distance function calls on this dataset. For
example, when the sample speed varies from 5 to 25 PPS,
as presented in Fig. 9(a), the average number of distance
function calls of the CEDGM is less than 63, whereas that
of the CEDAS exceeds 63. When the time varies from 25 s to
125 s, as illustrated in Fig. 9(d), the average number of dis-
tance function calls is constantly less for the CEDGM algo-
rithm than for the CEDAS algorithm. Therefore, the CEDGM
algorithm performs better in terms of the average number of
distance function calls because when using the density grid-
based method, the average number of distance function calls
is lower comparedwith the CEDAS algorithm due to the same
reason of improving the average number of distance function
calls (Section 4.1).

Figs. 9(b) and (e) depict the average purity results of the
CEDGM, CEDAS and Cauchy algorithms on the same DS.
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FIGURE 9. CEDGM, CEDAS and Cauchy performance comparisons with the sample speed and time using the DS.

The average purity, as defined in Eq. (1), is determined the
sample speed and time. When the sample speed varies from
5 to 25 PPS, the average purity of the CEDGM is higher than
98%. When the time varies from 25 s to 150 s, the average

purity of the CEDGM is higher than 99%. The CEDAS
achieves 100% for the time from 25 s to 50 s but it is less
than 93% when the time ranges from 75 s to 150 s and that
of Cauchy is below 83%. We conclude that the CEDGM

VOLUME 8, 2020 166485



M. Tareq et al.: Online Clustering of Evolving Data Streams Using a Density Grid-Based Method

TABLE 4. Performances of different state-of-the-art methods compared with performance of the proposed method, i.e., CEDGM, in terms of time using
the spiral dataset as validated by the paired t-test.

TABLE 5. Performances of different state-of-the-art methods compared with performance of the proposed method, i.e., CEDGM, in terms of the sample
speed using DS as validated by the paired t-test.

algorithm outperforms the CEDAS and Cauchy algorithms
regarding average purity due to the same reason of improving
the average purity (Section 4.1).

The experimental results for the average clustering accu-
racy of the CEDGM, CEDAS and Cauchy algorithms are
demonstrated in Figs. 9(c) and (f). Here, we test them on
the same ‘DS.’ The average accuracy, as defined in Eq. (2),
is determined by the sample speed and time. The average
clustering accuracy of the CEDGM is better than those of
the CEDAS and Cauchy when the sample speed varies from
5 to 25 PPS. When the sample speeds are 5 and 10 PPS,
the average accuracy of the CEDGMalgorithm is 92.16% and
92.91, respectively, whereas those of the CEDAS algorithm
are 87.03% and 82.82%, respectively, and those of Cauchy
are 82.71% and 81.40%, respectively. When the sample
speed is 25 PPS, the CEDGM achieves 90.92%, whereas the
CEDAS yields 81.33% and Cauchy yields 83.28%. When the
time varies from 25 s to 150 s, with the mean over 25 s,
the average accuracy of both algorithms is 100% at 25 s.
At a time of 150 s, the CEDGM achieves 95.32%, whereas
the CEDAS achieves 90.86% and Cauchy achieves 84.55%.

The CEDGM algorithm is based on the density grid of the
enhanced clustering algorithm. When calculating the density
of grid cells, the impact of the boundary data points on the
grid is calculated rationally by calculating the impact coeffi-
cient of the added data points on the adjacent grid cells. Thus,
the data points cannot be treated as noise points, and this con-
dition will improve the clustering accuracy. Table 5 includes
the performances of different state-of-the-art methods com-
pared with the proposed method in terms of the sample speed
using the ‘‘DS’’ dataset validated by paired t-test. Meanwhile,
Table 6 includes the performances of different state-of-the-art
methods comparedwith the proposedmethod in terms of time
using the ‘‘DS’’ dataset as validated by the paired t-test.

D. HALF RING, IRIS, AND GALAXY
Figs. 10 and 11 illustrate the performances of different state-
of-the-art methods compared to the performance of the pro-
posedmethod, i.e., CEDGM, in terms of the average accuracy
and average Normalized Mutual Information (NMI), respec-
tively. The parameters of the proposed and other algorithms
are Decay = 100, Minimum Threshold = 2 data points,
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TABLE 6. Performances of different state-of-the-art methods compared with the performance of the proposed method, i.e., CEDGM, in terms of time
using DS as validated by the paired t-test.

FIGURE 10. The performances of different methods in terms of clustering
accuracy.

FIGURE 11. The performances of different methods in terms of the NMI.

Radius = 1, Grid Granularity = 30, minPts = 2 data
points, eps = 1, and number of interval = 5. In the three
datasets such as ‘Half-Ring, Iris, and Galaxy’, the proposed
algorithm has better average clustering accuracy and average
NMI than the other existing algorithms due to the same reason

TABLE 7. Performances of different state-of-the-art methods compared
to the performance of the proposed method, i.e., CEDGM, in terms of the
clustering accuracy.

TABLE 8. Performances of different state-of-the-art methods compared
to the performance of the proposed method, i.e., CEDGM, in terms of the
NMI.

of improving the average clustering accuracy (Section 4.1).
Table 7 summarizes the results of the average clustering
accuracy, and Table 8 summarizes the results of the average
NMI.

V. CONCLUSION
An enhanced method for clustering evolving data streams is
introduced in this paper using a density grid-based method
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called the CEDGM. The main idea of the CEDGM algorithm
is to use a density grid-based method to improve the cluster-
ing quality. This technique is used to reduce the number of
distance function calls and handling outliers. The CEDGM
can handle evolving data streams online. This algorithm is
compared with a familiar technique in terms of the average
number of distance function calls, the average purity and
the average accuracy. The proposed algorithm is particularly
efficient if data streams are constantly evolving.

The CEDGM is tested using different data streams and is
confirmed to be capable of accurately discovering anomalies
within specified periods. It further demonstrates its capability
to generate high-quality clusters in practical network attacks
in the KDDCUP’99 data stream. Extensive evaluations of
different synthetic and real datasets using different quality
metrics shows that the clusters generated in the CEDGM
are pure and more accurate compared to similar existing
clustering algorithms due to summarizing the data points into
a grid and generating CMC. Nevertheless, it has a low aver-
age number of distance function calls due to the grid-based
method and does not depend on the number of data objects,
but rather it depends on the number of cells in the quantized
space in each dimension. In summary, the CEDGM is an
accurate technique with a lower average number of distance
function calls across different data stream speeds and times.
However, one of the limitations of the CEDGM algorithm in
high dimensional data is the non-effectiveness of the grid in
reducing memory consumption, especially with high dimen-
sional data with sparse nature. Our future work will focus on
the improvement of the memory consumption of the CEDGM
algorithm in high dimensional datasets with sparse nature.
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