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ABSTRACT A novel optimization algorithm named hybrid grey wolf optimizer with crow search algorithm
(GWO-CSA) is developed in this paper for handling large-scale numerical optimization problems. The
proposed GWO-CSA algorithm combines the strong points of both grey wolf optimizer (GWO) and crow
search algorithm (CSA) with the aim to escape from local optima with faster convergence than the standard
GWO and CSA. In this algorithm, GWO operates in enhancing the exploration ability while CSA works as
a local searching scheme to emphasize the exploitation capability to achieve global optimal solutions. In this
sense, the movement direction and speed of leader grey wolf (alpha) is improved by incorporating the CSA
phase. Also, a dynamic fuzzy learning strategy (DFLS) is introduced to enable the occurring of tiny changes
in the neighborhood of the best solution to avoid the caught in the local optima and refine the quality of the
obtained solution. The robustness and efficiency of the proposed GWO-CSA algorithm are investigated on
fifteen CEC 2015 benchmark problems in addition to four large-scale problems and four real applications
related to engineering design optimization taken from the literature. The comprehensive comparisons with
other algorithms have demonstrated the effectiveness of GWO-CSA to address optimization tasks.

INDEX TERMS Grey wolf optimizer, crow search algorithm, numerical optimization, hybridization.

I. INTRODUCTION
Nowadays optimality concepts have appeared frequently
in several real-world applications such as engineering
designs [1], [2], statistical physics [3], economics [4], chem-
istry [5], power system [6] and information theory [7]. In this
regard, optimization methodologies have a significant role in
searching for the optimal solution among all the reasonable
solutions that minimize or maximize the output of a given
system [8]. However, obtaining optima in numerous complex
optimization fields require notable evaluations and compu-
tations. Because of the limitations such as time-consuming,
the dependency of the initial point, higher dimensionality,
and non-convexity and non-differentiability of the cost func-
tion, the solely relying on traditional optimization algorithms
(TOAs) is unreliable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Charith Abhayaratne .

To overcome the lacks of TOAs and meet the ever increas-
ing of optimal industrialization, meta-heuristic optimization
algorithms (MOAs) [9]–[15] have flourished and attracted
the attention of many researchers and scientists during the
past two decades. In this context, researchers have proposed
a sequence of intelligent methods inspired by certain rules.
Particle swarm optimization (PSO) [16], sine cosine algo-
rithm (SCA) [17], [18], moth-flame optimization algorithm
(MFO) [19], ant colony system (ACS) [20], artificial bee
colony (ABC) [21], firefly algorithm [22], [23], and grav-
itational search algorithm (GSA) [24]. These optimization
algorithms have been investigated by several researchers to
deal with optimization tasks at various fields such as design
optimization [25], resource allocation [26], economic dis-
patch [27], and multi-objective optimization [28].

Grey wolf optimizer (GWO) is one of the recent MOAs,
which is developed by Mirjalili et al. [29]. The main inspi-
ration is introduced based on the strategy of hunting and the
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hierarchy of leadership of the grey wolves in nature. Due to
its simple structure and easiness of implementation, it has
been successfully employed to deal with a wide area of opti-
mization problems including feature subset selection [30],
economic dispatch problems [31], optimal power flow prob-
lem [32] and flow shop scheduling problem [33]. However,
as a new intelligent technique, GWOacquires some disadvan-
tages. The first one is its guidance towards the three wolves at
each iteration hampers the search diversity and leads to a local
optimum. The second one is that no mechanism is employed
to enhance the best position of the alpha grey wolf during
each generation which may yield a poor quality of the final
solution.

Apart from the previously introduced GWO algorithms,
many attentions have been developed in the literature to
realize and achieve the optimal solutions for numerous
contemporary tasks. However, several experiments with
high dimensional, complex, and multimodal optimization
problems have confirmed that GWO acquires a mediocre
convergence trends and still easily be stuck at local
optima. Consequently, many researchers have attempted to
improve/modify the performance of GWO in recent year.
In [34], Heidari et al. developed a novel modified GWO by
integrating the Levy flight pattern, named LGWO, to solve
unconstrained optimization tasks. In [35], Long et al. pro-
posed a random opposition-based learning GWO (ROGWO)
for solving benchmark problems as well as optimization of
engineering designs. In [36], Gupta and Deep introduced a
memory-based GWO (mGWO) to deal with global optimiza-
tion tasks. In [37], Long et al. suggested a novel GWO based
on refraction learning (RLGWO) to enhance the original
mode of GWO for solving benchmark test functions, while
Long et al. [38] proposed an improved GWO (IGWO) by
introducing a nonlinear adjustment strategy for controlling
the exploration and exploitation searches, and also an updat-
ing strategy for position is presented. In [39], Long et al. sug-
gested a novel exploration-enhancedGWO (EEGWO), which
employs the nonlinear strategy of control parameter andmod-
ified formulation for position-updating strategy to improve
the exploration ability as well as balance the convergence
among the convergence speed and precision of solution.
In [40], Long et al. developed an efficient and robust GWO
(ERGWO)with an enhanced framework to balance the explo-
ration and exploitation engines while dealing with numerical
optimization problems. In [41], Gupta and Deep proposed
an enhanced leadership of GWO with Levy-flight, named
GLFGWO, with the aim to accelerate the search process and
improve the convergence trends while dealing with uncon-
strained and constrained benchmark optimization problems.
In [42], Yan et al. developed a novel weighted distance-based
GWO (GWOWD) for improving the capability of the algo-
rithm as well as escaping from the local optima when tack-
ling with the benchmark optimization suits and engineering
designs.

Although, the above improvements have been tried to
enhance the solution accuracy and performance of the GWO,

but still some difficult cases such as for more complex multi-
modal tasks the algorithm can suffer from the stagnation at
local optima (LO) and thus the obtained solutions cannot be
accepted on the global scale [43]. Another reason for improv-
ing the performance of the GWO can be answered through the
fact recognized by the ‘‘No Free Lunch’’ theorem [44], that
states that there is no unique optimization method can claim
the best performance for all optimization natures. Hence,
this theorem logically opens the room of research to propose
new algorithms or improve the searching mechanism of the
existing ones. Thus by motivating these facts, the present
work proposes a hybrid sequential variant based on GWO
and crow search algorithm (CSA) aiming to exhibit more
robust performance and greater flexibility against the difficult
and complicated optimization problems. To the best of our
information, this proposed hybrid variant is proposed for the
first time.

Crow search algorithm (CSA) is a new intelligent meta-
heuristics method that is developed by Askarzadeh [45].
It imitates the social, intelligent behavior of the crows during
the storing and restoring processes of the excess food. CSA
has a simple structure, and it is applied for dealing with
optimization problems such as the economic load dispatch
problem [46], magnetic resonance brain images [47] and
engineering optimization [48]. However, CSA does not have
the specific domain knowledge to each problem and may
face the dilemma of trapping in a local optimum. To address
the above issues, GWO is hybridized with CSA in a novel
strategy with the aim to refine the diversity of solutions and
evade the falling in the local optimum.

In this work, a newly developed hybrid meta-heuristic
algorithm named hybrid grey wolf optimizer with crow
search algorithm (GWO-CSA) is implemented to solve dif-
ferent natures of benchmark problems and real-world appli-
cations. GWO-CSA combines the desirable properties of both
GWO and CSA to mitigate their weaknesses. In GWO-CSA,
CSA is embedded to improve the movement of grey wolves
of the GWO. Also, the serialized scheme among the GWO
and CSA can enhance the diversity of the solution effi-
ciently. A novel dynamic fuzzy learning strategy (DFLS)
is introduced to preserve the quality of the best solution
for each iteration. To investigate and validate the efficacy
of the proposed GWO-CSA, it is benchmarked on different
optimization tasks and compared with other well-established
techniques. Simulation results exhibit a superior performance
of the proposed GWO-CSA regarding quality and reliability.
Therefore, GWO-CSA can be an efficient alternative to deal
with complex optimization tasks.

The main contributions regarding this work are outlined as
follows:

(1) GWO-CSA algorithm is introduced to solve different
optimization tasks. In GWO-CSA, the CSA is embedded
into GWO to exhibit two features, namely, to improve the
movement of the leader wolf in its hierarchical structure
(i.e., alpha grey wolf) and exchange the information that
enhances the diversity of solutions.
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(2) Dynamic fuzzy learning strategy (DFLS) is designed
and implemented to enhance the quality of the best so far
solution and improve the convergence performance.

(3) A modified updating strategy based on elite-opposition
is introduced to balance the search among the diversification
and intensification capabilities.

(4) The effectiveness of GWO-CSA is proved through
different natures of benchmark problems as well as the
comprehensive comparisons with other algorithms from the
literature.

The remainder of the paper is organized using some
sections. Section II presents the overview of the grey
wolf optimizer (GWO) and crow search algorithm (CSA),
Section III develops the motivation behind the hybridiza-
tion, Section IV introduces in detail the proposed hybrid
GWO-CSA. In Section V, the simulation results and com-
parisons are demonstrated. Finally, Section VI provides the
conclusions and future research.

II. OVERVIEW OF GWO AND CSA
This section is devoted to overview the basics of GWO and
CSA, respectively.

A. BASIS OF GWO
Grey wolf optimizer (GWO) [29] is developed as a coopera-
tive algorithm based on the hunting behavior of grey wolves
and the social leadership among them in nature. The hierar-
chical leadership is simulated by employing four grey wolves
such as alpha, beta, delta, and omega. The first three best
wolves positions are denoted asα,β, and δwhile the rest of all
wolves are supposed to be omega (ω) andωwolves are guided
by these three best wolves. The updating position of eachwolf
is executed employing some mathematical equations [29].

During the hunting process, greywolves attempt to encircle
the prey that is modeled mathematically as follows:

1(Iter+1)=1p (Iter)−A ◦ |C ◦1(Iter)−1(Iter) | (1)

where Iter denotes the current iteration, ◦ presents the
Hadamard product operation, whereas 1p and 1 represent
respectively, the position of prey and the position of the grey
wolf. The vectors A and C are determined as follows:

A = 2 · a ◦ r1 − a (2)

C = 2 · r2 (3)

a (Iter) = 2− 2 ·
Iter
T

(4)

where a is a linearly decreasing parameter from 2 to 0, and it
aims to preserve the exploration and exploitation capabilities,
r1 and r2 are random vectors from the interval [0, 1]. Here,
T is a maximal number of iterations.
The hunting process is often managed by the alpha grey

wolf, and also beta and delta grey wolves might join in this
process. However, the prey location (optimum) is unknown
over the search area; it is supposed that the wolves, alpha,
beta, and delta, exhibit better perception regarding the proba-
ble location of the prey. Thus, these three wolves (fittest) are

maintained to guide the other wolves towards the probable
location of the prey. Thus scenario of hunting is modeled as
follows.

11 = 1α − A1 ◦ |C1 ◦1α −1|

12 = 1β − A2 ◦ |C2 ◦1β −1|

13 = 1δ − A3 ◦ |C3 ◦1δ −1| (5)

The updating process of a candidate’s position through
using the alpha, beta, and delta wolves is as follows.

1(Iter + 1) =
11 (Iter)+12 (Iter)+13 (Iter)

3
(6)

where A1, A2, and A3 are similar to A, and C1, C2, and C3
are similar to C . The practical steps of the GWO are pro-
vided in Algorithm 1. The updating process of a candidate’s
position through using the alpha, beta, and delta wolves in
2-dimension is provided in Figure 1. Figure 1 shows that the
three best wolves (α, β, and δ) can obtain the location of
the prey as well as the rest wolves update their location in
the vicinity of the prey, randomly.

Algorithm 1 Pseudo-Code of the GWO
Input : T - number of iterations; N - population size.
Output: 1α - the best wolf (solution)

1 Initialize the location of each wolf randomly to
constitute the population

2 Evaluate each wolf and obtain the 1α , 1β , and 1δ (first
three best wolves positions) using the objective function

3 while Iter≤T do
4 for i=1 to N do
5 Update the position of each wolf as

1(Iter + 1) = 11(Iter)+12(Iter)+13(Iter)
3

6 end
7 Update a : a (Iter) = 2− 2 · IterT
8 Update A : A = 2 · a ◦ r1 − a, and C : C = 2 · r2
9 Compute the fitness of each grey wolf
10 Update the 1α , 1β , and 1δ using the objective

function
11 end
12 Output: obtain the best individual 1α

B. BASICS OF CSA
Crow search algorithm (CSA) is developed by Alireza
Askarzadeh [45] based on the nature intelligent of crows.
Crows are intelligent birds as their behaviors exhibit a high
level of cleverness, such as self-awareness in mirror test and
toolmaking ability. One of their unusual behaviors is that they
follow the other birds to observe the food hiding places and
steal their food. Each crow acquires a hiding place to store its
surplus food, and it considers awareness to safeguard it from
probable followers. Also, the crow can make fool by going
to other location if another crow follows it. CSA’ behavior is
formulated through the following assumptions [45]:
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FIGURE 1. Updating strategy in GWO.

1. Crows are found together as a flock.
2. Crows canmemorize the locations of their hiding places.
3. Crows recognize victim’s hiding place by following each

other.
4. Each crow protects food stores by a probability.
It is assumed that crows store their food in an

n-dimensional search environment and N is the number of
crows. The current location of the crow j at Iter-th iteration
is defined as a vector:

xj,Iter = [x1j,Iter , x
2
j,Iter , . . . , x

n
j,Iter ] (7)

where k = 1, 2, . . . ,N , and Iter = 1, 2, . . . ,T . Each crow
in the flock has its memory where its food hiding place is
saved. The food hiding location of crow j at Iter-th iteration
is defined by mj,Iter which is the best position obtained by
crow j till now.
Suppose that at Iter-th iteration, crow j needs to go to its

food hiding positionmj,Iter . At the same time (iteration) crow
i attempts to follow crow j in order to its the food hiding
position. In this situation, two cases may have occurred:

Case 1: Crow j does not become aware that another crow i
is tracking it. In this situation, the crow i can reach the food
hiding location of crow j and the crow iwill update its position
as follows.

xi,Iter+1 = xi,Iter + ri · fli,Iter ·
(
mj,Iter − xi,Iter

)
(8)

where ri is a random number that distributed uniformly in
the interval [0, 1] and fli,Iter is the flight length of crow i at
Iter-th iteration that has a significant effect on the searching
capability of algorithm, where lower values of fl enhances
the local search (closer to xi,Iter ), while higher values of fl
promotes the exploration that is denoted as global search (far
away from xi,Iter ) (i.e. see Figure 2).

Case 2: Crow j finds out that the crow i is tracking it.
Therefore, the crow j will fool crow i by going to another

FIGURE 2. The strategy of searching by the crow regarding the two cases:
fl ≤ 1 (a), and fl > 1 (b).

location in the search region. In general, the two cases can be
considered as follows:

xi,Iter+1 =


xi,Iter + ri · fli,Iter ·
·
(
mj,Iter − xi,Iter

)
if rj ≥ APj,Iter

a random position, if otherwise

(9)

mi,Iter+1 =

{
xi,Iter+1, if f

(
xi,Iter+1

)
> f

(
mi,Iter

)
mi,Iter , if otherwise

(10)

where rj is a random number that uniformly distributed in the
range [0, 1] and APj,Iter represents the awareness probability
of crow j at Iter-th iteration. The main steps of the CSA are
introduced in Algorithm 2.

III. THE MOTIVATION FOR THIS WORK
The standards of the grey wolf optimizer (GWO) and crow
search algorithm (CSA) exhibit good performances on some
unimodal benchmark function problems. However, they deal
with complex multimodal functions, the trapping in local
optima, as well as the premature convergence, may be
occurred. Furthermore, dealing with large-scale dimensions
may deteriorate the performances of simple algorithms.
To overcome these shortages and improve the searching capa-
bility, a new hybrid algorithm based on GWO and CSA
is introduced to solve complex life problems as well as
large-scale dimensions. The proposed algorithm is called
GWO-CSA. In the GWO-CSA, the movements of all grey
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Algorithm 2 Pseudo-Code of the CSA
Input : T - number of iterations; N - number of crows,

fl - flight lenght, AP - awareness probability
Output: Best crow location

1 Initialize randomly the location of a flock of N crows in
the search region

2 Evaluate the crows’ locations
3 Fill the own memory of each crow with its initial
location

4 while Iter≤T do
5 for i=1 to N do
6 Elicit one of the crows at random to track it (for

example j) Generate r ∈ [0, 1]
7 if r < AP then
8 xi,Iter+1 = xi,Iter + ri · fli ·

(
mj,Iter − xi,Iter

)
9 else
10 xi,Iter+1=random location
11 end
12 end
13 end
14 Check the feasibility of new locations
15 Evaluate the new locations of the crows
16 Perform the updating of the memory:

mi,Iter+1 =

{
xi,Iter if f

(
xi,Iter

)
> f

(
mi,Iter

)
mi,Iter , if otherwise

17 end
18 Output: best crow location

wolves, as well as an alpha grey wolf, are improved based on
CSA to enhance the diversity of solutions, efficiently.

Further, a dynamic fuzzy learning strategy (DFLS) based
on the information of the best solution is introduced to enable
the tiny perturbation in the neighborhood of the best so far
outcome and then refine the quality of the solution. By this
methodology, the balance among exploration and exploitation
can be enhanced and the sucking in local optima can be
avoided. The hybrid variant has been tested on numerous
benchmark problems with different dimensions and some
of engineering design applications. Simulation results affirm
its robustness of searching when dealing with numerous
problems.

IV. THE PROPOSED HYBRID ALGORITHM
A hybrid grey wolf optimizer with crow search algorithm
(GWO-CSA) is presentedwith the aim to integrate the search-
ing merits of both algorithms. In this sense, GWO aims
to enhance the exploration search in the first stage of the
searching scheme, while CSA aims to preserve the exploita-
tion capability in the final stage of this scheme. Further,
a dynamic fuzzy learning strategy (DFLS) is presented to
enable the occurring of tiny changes in the neighborhood
of the best solution to mitigate the trapping in the local
solutions and refine the quality of solutions. Therefore, the

proposed GWO-CSA involves three main improvements.
Firstly, a learning strategy based on opposition searching
is introduced to preserve the diversity of crows. Secondly,
an iterative level hybridization with CSA is presented to
accelerate the approaching of the best solution. Thirdly,
a dynamic fuzzy learning strategy (DFLS) is developed as
a neighborhood searching strategy for achieving top-quality
of solutions in each generation. The kernel idea behind
GWO-CSA is demonstrated as follows.

A. UPDATING OF CSA-BASED OPPOSITION LEARNING
In CSA, the crow is updated by considering the awareness
probability, when crow j does aware that another crow i is
following it, then crow i will update its position randomly.
This may lack the diversity of solution and may be deteri-
orated with the immediate convergence rate. Thus, instead
of updating randomly, a strategy based on the opposition
learning is developed to preserve the crow’s diversity and
increase the exploration capability. The updating strategy is
as follows.

xi,Iter+1 =


xi,Iter + ri · fli,Iter ·
·
(
mj,Iter − xi,Iter

)
if rj ≥ APj,Iter

q · (ub+ lb)− xi,Iter , if otherwise

(11)

where ub and lb illustrate the limits of the search space, and
q denotes a random number in [0, 1].

B. ITERATIVE HYBRIDIZATION-BASED GWO WITH CSA
This stage aims to execute both algorithms in sequence itera-
tively to enhance the optimization performance. Here GWO
is used as explore tool to attain the promising areas and CSA
is then allowed to exploit these areas to find better solutions.
In this sense, GWO starts the search procedures using its
mechanism, and then CSA is initialized with the alpha grey
wolf and the other wolves to improve the location of an alpha
grey wolf.

The updating process of the candidate’s position through
using the alpha, beta, and delta wolves is as follows. The
three best crows denoted by 1Crow1, 1Crow2 and 1Crow3 are
obtained using the fitness function then they are compared
with those produced by GWO (1α ,1β , and1δ) to attain the
survival ones as follows.

1α = arg min{f (1α) , f (1Crow1)}

1β = arg min{f
(
1β
)
, f (1Crow2)}

1δ = arg min{f (1δ) , f (1Crow3)} (12)

C. DYNAMIC FUZZY LEARNING STRATEGY (DFLS)
Zadeh developed the main concept of a fuzzy set (FS)
in 1965 [49]. The FS is different from the ordinary set in
which the element or the object is characterized by two values
(i.e., 0 or 1), where 1 and 0 indicate the element which
belongs and does not belongs to S, respectively, where S is
the FS in U (i.e., the universe of discourse) is recognized
by a membership (characteristic) µs (x) that specifies a real
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FIGURE 3. Fuzzy numbers representation.

number from the interval [0, 1] for each class (point) x in U .
Also the value ofµA (x) elucidates the degree of membership
of x in S, where the nearer value of µS (x) to unity the higher
grade of membership of x in S.
Definition 1: Let U represents a group (collection) of

objects or elements defined generically by x, then the set S%

of ordered pairs represents the fuzzy set:

S% =
{(
x, µS% (x)

)
|x ∈ U

}
(13)

where µS% (x) indicates the membership function (general-
ized characteristic function).

To implement the DFLS, the approximated optimal solu-
tion x◦ =

(
x◦1 , x

◦

2 , . . . , x
◦
n
)
= 1α is obtained through the

scenarios of GWO and CSA. In this sense, DFLS aims to
make a tiny perturb around the approximated optimal solution
by constructing the membership function, as in Equation 16,
which assigns different grads for the local region of optimal
solution that can reside. The bounds of the local region are
determined based on θ -the cut level that aims to siege the
optimal solution, where the bounds (i.e., upper and lower
bounds) of the local region can be depicted in Figure 3.

µ
(
x◦ij
)
=



1 x = x◦ij
20x
x◦ij
− 19 0.95x◦ij ≤ x ≤ x

◦
ij

21−
20x
x◦ij

x◦ij ≤ x ≤ 1.05x◦ij

0 x < 0.95x◦ij or x > 1.05x◦ij

(14)

Consider the optimal solution x◦j in the j-th dimension
equals 1. In this sense, when θ = 1, the value of x = x◦j
remains as it is (see Figure 4a), while for θ = 0, the value
of x◦j having the ends, x ∈ [0.95, 1.05] (i.e., x lj = 0.95 and
xuj = 1.05 as in Figure 4b). Further for any θ such that θ =
0.6, the value of xoj gets the bounds 0.98 and 1.02, x lj = 0.98
and xuj = 1.02 as in Figure 4c. The main procedures of DFLS
can be stated as follows.
Step 1. Formulate the membership function and its width

for each dimension as in Figure 3 and Equation 16.
Step 2. Generate the value of θ-cut level randomly to obtain

dynamic bounds for the searching process.

FIGURE 4. θ – Levels schemes.

Step 3. After applying the θ -cut level, the crisp bounds for
the j-th dimension is determined as follows.

xLFj =
θx◦j
20
+ 0.95x◦j , x

UF
j = 1.05x◦j −

θx◦j
20

(15)

Step 4. Map the crisp bounds-based fuzzy technique into
optimization search as follows.

xj =

x
LF
j + rf 1 ·

(
xUFj − x

LF
j

)
rand < 0.5

xUFj + rf 2 ·
(
xUFj − x

LF
j

)
otherwise

(16)

where rf 1, rf 2 are random numbers in [0, 1].
Step 5. If f (x) < f (x◦) then put x◦ = x. The working code

of the introduced DFLS is shown in Algorithm 3.
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FIGURE 5. The flowchart of the proposed GWO-CSA.
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Algorithm 3 Pseudo-Code of the DFLS

Input : x◦ =
(
x◦1 , x

◦

2 , . . . , x
◦
n
)

Output: x◦

1 Formulate the membership function
2 k ← 1, j = 1 : n
3 θ ← rand

4 Fuzzy bounds: xLFj =
θx◦j
20 +0.95x◦j , x

UF
j = 1.05x◦j −

θx◦j
20

5 xj =

x
LF
j + rand ·

(
xUFj − x

LF
j

)
if rand<0.5

xUFj − rand ·
(
xUFj − x

LF
j

)
if otherwise

6 f (x) < f (x◦)⇒ x◦ = x; then set 1α = x◦

7 k ← k + 1
8 Output: x◦

TABLE 1. Test functions.

Thus the GWO-CSA improves the exploration searches by
GWO in the initial stage and enhances the exploitation capa-
bilities of CSA in the final stage to achieve global optimal
solutions. Further, the DFLS is introduced to achieve a high
quality of the final solution. The flowchart of the GWO-CSA
is showed in Figure 5.

V. EXPERIMENTS AND RESULTS
A. BENCHMARK PROBLEMS
In this section, four test functions (F1: Quartic, F2: Rastrigin,
F3: Salmon, F4: Schaffer) are selected from [19] and listed
in Table 1. These problems are typical high-complicated test
problems, where they involve different natures, such as uni-
modal, multi-modal, separable, non-separable, regular, irreg-
ular, and multi-dimensional problems. The characteristics of
these problems such as formulas, and ranges are recorded
in Table 1. The optimal value for each problem is equal
to 0. For all test instances, we attempt to investigate the
performance of the proposed method as well as the com-
parative algorithms with three experiments meanwhile three

TABLE 2. The parameter settings for all algorithms.

TABLE 3. The PC configuration.

dimensions, i.e., D = 100, 500 and 1000, are investigated.
It is noted that the difficulty of searching process grows
exponentially with the dimension.

B. PARAMETER SETTINGS
In all experiments, the parameters of the proposed
GWO-CSA and the comparative algorithms are adjusted after
running a few trials as follows. The population size (PS) is
set to 30 while the maximum number of iterations (T ) is set
to 300, (i.e., the maximum number of function evaluation
is set to 9000) for all test problems with the employed
dimensions. To obtain a fair comparison, each algorithm is
executed 20 independent runs for each test problem, with
the same set of random seeds. The other control parameters
configurations of all comparative algorithms are presented
using the suggestions in their corresponding literature and
they reported in Table 2. To get unbiased comparisons of CPU
times, all the experiments are carried out utilizing the same
PC, where its configuration is provided in Table 3.

C. EXPERIMENTAL RESULTS
To validate the proposed GWO-CSA for large-scale global
optimization problems, it is tested on some benchmark prob-
lems that have different natures, which are listed in Table 1.
The proposed GWO-CSA is compared with classical algo-
rithms and hybrid ones such as GWO [1], CSA [45],
SCA [17], GWO-SCA [50], and MHDA [51]. Three exper-
iments are conducted with three dimensions, respectively,
D= 100, 500 and 1000, where in each one, the results such as
the best value, average (mean), worst, and standard deviation
(st. dev.) are reported. In addition, the convergence curves
that describe the convergence rate of all algorithms on all test
functions are provided for D = 1000 only due to the space
limitation. Based on the depicted convergences, GWO-CSA
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TABLE 4. Results of GWO, CSA, SCA, GWO-SCA, MHDA, and GWO-CSA
with D = 100.

TABLE 5. Results of GWO, CSA, SCA, GWO-SCA, MHDA, and GWO-CSA
with D = 500.

TABLE 6. Results of GWO, CSA, SCA, GWO-SCA, MHDA, and GWO-CSA
with D = 1000.

can provide faster convergence rate and has higher precision
than other algorithms.

In Experiment 1, the proposed algorithm and five compara-
tive algorithms are conductedwith dimensionD= 100, where
the statistical measures are presented in Table 4. Based on the
reported results of Table 4, it is evident that, overall, GWO-
CSA gives the best result among all compared algorithms
from the statistical view. Compared to the other algorithms,
GWO, CSA, SCA, GWO-SCA, and MHDA, GWO-CSA
finds dominant results for all test functions.

TABLE 7. Results of various GWO variants on the studied benchmark
function with D = 1000.

TABLE 8. Characteristic of CEC 2015 benchmark problems.

In experiment 2, the performance of the GWO-CSA is
investigated and compared with that of the GWO, CSA, SCA,
GWO-SCA, and MHDA on all test benchmark functions
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TABLE 9. Comparative results among the proposed method versus different DE variants for CEC 2015 problems.

with D = 500 to show their scalability. The obtained results
as in Table 5 affirm that with increasing the dimension-
ality, GWO-CSA continues to give the best result, which
means that the GWO-CSA is still insensitive to increas-
ing the dimension. Also, the GWO-CSA provides superior

performance compared to the GWO, CSA, SCA, GWO-SCA,
and MHDA on all test benchmark functions.

In Experiment 3, the scalability of the GWO-CSA algo-
rithm and the other comparative algorithms is further veri-
fied with D = 1000 for all test instances. Also, statistical
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TABLE 10. The information on the engineering designs.

TABLE 11. Statistical measures, design parameters, constraints, and
objective function value for CB design.

measures, best value of the candidate problem, mean
(average), worst and standard deviation, are recorded
in Table 6. It is noted GWO-CSA still continues to provide
the superior results over GWO, CSA, SCA, GWO-SCA, and
MHDA algorithms on all test functions. Also the convergence
curves for the six algorithms on the test functions are depicted
in Figure 6, where GWO-CSA has faster convergence speed
and higher precision than the others.

TABLE 12. Statistical measures, design parameters, constraints, and
objective function value for TBT design.

D. COMPARISON WITH SOME GWO VARIANTS
In order to investigate the performance of the proposed
GWO-CSA, nine variants of GWO are benchmarked on
the studied benchmark problems. These variants include
LGWO [34], ROGWO [35], mGWO [36], RLGWO [37],
IGWO [38], EEGWO [39], ERGWO [40], GLFGWO [41],
and GWOWD [42], where the values of parameters for these
nine variants of GWO used for comparison are suggested as
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FIGURE 6. Convergence behaviors of the proposed GWO-SCA and the other algorithms for all problems with D = 1000.

TABLE 13. Statistical measures, design parameters, constraints, and
objective function value for PV design.

recommended in their corresponding literature. The obtained
results of these variants are presented in Table 7. Based on the
achieved results, it can be observed that the EEGWOprovides
the superior results among these variants but the proposed
GWO-CSA still outperforms all the variants as it provides
better results over the EEGWO for F1 (x) and F3 (x) and
faster than it for F2 (x) and F4 (x). The best results among
the presented variants are exhibited in boldface. On the other
hand, the convergence graphs for all problems are provided
in Figure 7 to exhibit the convergence rate towards the best

TABLE 14. Statistical measures, design parameters, constraints, and
objective function value for CSI design.

solution during the searching process. Based on the Figure 7,
the GWO-CSA still provides the faster rate than the other
peers. Also the proposed GWO-CSA can achieve a stable

161604 VOLUME 8, 2020



R. M. Rizk-Allah et al.: Hybridization of GWO and CSA Based on DFLS for Large-Scale Optimization

FIGURE 7. Convergence curves for various GWO variants and the proposed GWO-CSA with D = 1000.

performance than the other variants, where the statistical
measures of the best, mean, worst, and standard deviation
are seem to be coincident. Accordingly, it is evident that
the proposed approach is more fruitful than other existing
variants of GWO and thus the proposed algorithm can be
considered a strongly suitable methodology for optimization
sights.

E. INVESTIGATION ON CEC 2015 EXPENSIVE
OPTIMIZATION PROBLEMS
For further validation regarding the performance of the pro-
posed GWO-CSA, it is benchmarked on CEC 2015 bench-
mark problems which are more competitive suits and require
robust optimizers to achieve a suitable accuracy of the
obtained solutions with fast rates in limited allocated budgets.
The CEC 2015 test suits represent the collection of 15 chal-
lenging expensive problems that involve highly complex
composite and hybrid natures [52]. The natures of these prob-
lems involve the unimodal, multimodal, hybrid, and composi-
tion scenarios and they are listed in Table 8, where the global
optimum value (F∗) is provided for each problem and also the

range space for the variable bounds ∈ [−100, 100]. In this
regard, the results of proposed GWO-CSA are compared
with the traditional GWO, the most competitive variant of
the GWO (i.e., EEGWO), DE and high performance vari-
ants of DE, including SHADE, and LSHADE. On the other
the results of two other variants of DE, i.e. DE1 and DE2,
are taken from [53] and [54], respectively. The results in
terms of the statistical metrics are reported in Table 9 for
10 dimensional (10D) CEC 2015 problems. According to
the achieved results, the proposed GWO-CSA can provide
the better mean values and outperforms the other methods in
most CEC 2015 problems. From Table 9, it can be observed
that the results achieved by the proposed method are bet-
ter in 13 cases, where the best results are highlighted with
the bold values. Therefore, it can also conclude that the
proposed methodology is better or competitive while the
comparison with other methods. On the other hand, the con-
vergence graphs for CEC 2015 problems are provided in
Figure 8 to visualize the rate of convergence towards the
better optima point during the searching process. Based on the
depicted curves in Figure 8, mostly, GWO-CSA converges
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FIGURE 8. Convergence curves for the proposed method GWO-CSA versus different DE and GWO variants on CEC 2015 problems.
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FIGURE 9. Convergence curves of the proposed GWO-CSA against the compared algorithms for the design applications.

with a faster rate towards the better optima point than other
methods.

F. PRACTICAL APPLICATIONS IN ENGINEERING
DESIGN PROBLEMS
In this subsection, further validation of the proposed
GWO-CSA algorithm is conducted on some practical appli-
cations of engineering design problems. Four well-known
practical applications, which are cantilever beam (CB), three-
bar truss (TBT), pressure vessel (PV) and car side impact
(CSI) [18], [48]. These design problems are widely employed
in the literature to validate the efficiency of meta-heuristic
algorithms. The details of these design problems as well as
their mathematical models are presented in Table 10. On the
other hand, the structure of each design problem is appended
in Appendix.

The complexity of these engineering design optimization
problems is contained behind the very tiny feasible region of
the entire search space that is caused by a set of inequality
and equality constraints. However, solving such problems is
more challenging task not only due to the high nonlinear-
ity of these problems, but also due to the complex search
space shapes enclosed by various constraints. Additionally,
in most practical tasks the optimal solution is found on
the boundary between the feasible and infeasible regions.

Therefore, developing a robust optimization algorithm to
locate good feasible solution with acceptable accuracy is cru-
cially important for engineering design fields. In this regard,
the proposed GWO-CSA and other competitive algorithms
are conducted to deal with some of engineering designs
including CB, TBT, PV, and CSI.

Tables 11, 12, 13, 14 present the statistical results reported
by GWO-CSA with the other compared algorithms for
reported CB, TBT, PV, and CSI design problems, respec-
tively. Also, the values of design parameters for all design
problems associated with their constraints are reported as a
counterparts as in Tables 11, 12, 13, 14. Based on the obtained
results, we can conclude that the GWO-CSA gives superior
results for designs over the other compared algorithms.

For the cantilever beam (CB) design problem, because of
the best result, the proposed GWO-CSA achieves a better
result than the other comparative algorithmswhere the overall
results of the proposed GWO-CSA and the other algorithms
are reported in Table 11. Also, the convergence curves for the
proposed GWO-CSA and the comparative ones are displayed
in Figure 9. Furthermore, the box plot diagram is presented
in Figure 10 for all algorithms to exhibit the stability of the
algorithms through the different runs.

For the three-bar truss (TBT) design application,
the reported information in Table 12 provides that the result
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FIGURE 10. Box plot diagrams of the proposed GWO-CSA and different algorithms for the design applications.

obtained by GWO-CSA be similar to CSA regarding the
best value and the mean result. Also, GWO-CSA gives faster
convergence than the other comparative algorithms. In this
sense, the convergence curves for the proposed GWO-CSA
and the comparative ones are depicted in Figure 9 and the
box plot diagram is showed in Figure 10 for all algorithms
to exhibit the stability of the algorithms through the different
runs.

For the pressure vessel (PV) design problem, Table 13
exhibits the results provided by GWO-CSA and the other
comparative algorithms. Given mean value, the proposed
GWO-CSA finds the better one over the other algorithms.
Also, GWO-CSA gives faster convergence than the other
algorithms, where convergence curves are portrayed in Fig-
ure 9 and the box plot diagram is presented in Figure 10 for
all algorithms to exhibit the stability of the algorithms through
the different runs.

For the car side impact (CSI) design application,
the obtained results of the GWO-CSA and the other compar-
ative ones are recorded in Table 14. Based on these results,
the obtained one by GWO-CSA presents the superior result
over the other comparative algorithms regarding statistical
values. Also, GWO-CSA still affirms its robustness through
achieving the faster rate of convergence performance over
the other algorithms, where convergence curves are showed
in Figure 9 and the box plot diagram is presented in Figure 10
for all algorithms to exhibit the stability of the algorithms
through the different runs.

VI. CONCLUSION
This paper proposes a novel hybrid algorithm called
GWO-CSA based on combining the features of both grey
wolf optimizer (GWO) and crow search algorithm (CSA) to
obtain balanced tradeoff among the exploration and exploita-
tion capabilities. GWO-CSAworks in sequence stages, where
GWO operates in exploring the promising areas in the search
region while CSA aims to exploit these areas with the aim to
refine the positions of the grey wolves.

Further, a dynamic fuzzy learning strategy (DFLS) is
developed to improve the quality of solution based on the
alpha cut that sieges the promising solutions. Four bench-
mark test functions are conducted for large-scale dimensions,
and also four engineering designed problems are investi-
gated. Based on the reported results, it can conclude that the
GWO-CSA has a superior performance that is caused by the
integrating methodology of GWO, SCA, and DFLS. Simula-
tions affirmed that the GWO-CSA could achieve very com-
petitive outcomes compared to other comparative algorithms
such as GWO, CSA, SCA, GWO-SCA, and MHDA. Finally,
the GWO-CSA is an efficient methodology that can achieve
the global optimum for most test instances and engineering
applications.

However, even the proposed GWO-CSA approach has
fulfilled competitive and progressive results while the com-
parisons with other methods in this work, the GWO-CSA
may still have improved rooms to be competitive enough
with more effective technologies. First, a novel parameter
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FIGURE 11. Cantilever beam structure (CB problem).

FIGURE 12. Three-bar truss structure (TBT problem).

FIGURE 13. Pressure vessel structure (PV problem).

FIGURE 14. Model of car side impact (CSI problem).

adaptation scheme can be further explored rather than
employing the parameters of initial works for GWO and CSA
algorithms. Secondly, the effectiveness of the GWO-CSA
still deserves further investigation on more harder realistic
problems such as IEEE CEC 2017 test cases.

In future work, we intended to validate and analyze the
GWO-CSA algorithm for solving many objectives optimiza-
tion, combinatorial optimization and developing a binary
version of the GWO-CSA.

APPENDIX
The structure of each design problem is presented as follows:
cantilever beam structure (CB problem) – Figure 11, three-
bar truss structure (TBT problem) – Figure 12, pressure vessel
structure (PV problem) – Figure 13, model of car side impact
(CSI problem) – Figure 14.
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