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ABSTRACT This paper presents a novel beam steerable array antenna that encompasses fully planar, low
profile and lightweight characteristics for satellite communication (SatCom) applications. The proposed
array contains a wideband linear source generator (LSG), an array of circular patches, and an inductive
surface. The LSG is designed based on the substrate-integrated-waveguide (SIW) technology, whereas the
patches are regarded as coupling circular scatterers, placed on the inductive surface for converting surface
wave into the radiating wave. Each scatterer acts as a location-dependent phaser that can tailor the farfield
behaviour to leverage beam steering, and is achieved by changing its distribution mechanically. A prototype
of the proposed design has been fabricated and measured to evaluate the antenna performance. The measured
results are in good agreement with the simulated results. The array antenna operates well with S11 <−10 dB
in the frequency band of 10.75-12.5 GHz and has stable radiation performance with beam steering capability
of nearly ±60◦ in the elevation plane. The total height of the proposed array is about 5.1 mm (0.19λ◦). It is
envisaged that the proposed antenna array will empower small moving platforms due to low cost, low profile
and suitability for mass production.

INDEX TERMS Array antenna, beam steering, low-profile, satellite communication, substrate-integrated
waveguide (SIW).

I. INTRODUCTION
Currently, there is an increasing demand for establishing
seamless, uninterrupted and high data rate wireless connec-
tions for satellite communication [1]. A relative low-profile
antenna system is thus required to enable wireless commu-
nications with a wide-angle scanning capability [2]. During
the last few decades, various established solutions have been
explored to realize such antennas with low apertures and
broad scanning capabilities. In [3], an integrated circuit (ICs)
based stacked patch array antenna was proposed to obtain
the steering capability of ±60◦. The array profile was sig-
nificantly reduced by implementing the principle of folded
reflectarray [4], [5] that incorporated a reflector based polar-
ization grid. Another planar array [6] was designed within
one functional block using an RF circuitry and dual-band
scanning performances were achieved using digital beam
steering concept [7], [8]. Some other planar antennas also
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integrated with active devices to obtain electronic steering
[9], [10]. For this reason, these electronically scanning arrays
have been considered as the future of mobile communication
terminals [11]. However, feeding networks with the ICs or
digital phase shifters are expensive and raise major concerns
for commercial users as they can be cumbersome, lossy and
complicated to design for large array antennas [12].

In recent years, research has been devoted to assimilat-
ing electrical and mechanical scanning capabilities together
[13] and replacing the costly phase shifters with electrically
controllable materials, such as Liquid Crystal [14]. In [15],
Kymeta developed a Metamaterial Surface Antenna Technol-
ogy (MSAT) based on a holographic concept and integrated
with liquid crystals as on-or-off switches, which enabled the
antenna to achieve±60◦ beam scanning at a total thickness of
50 mm. Nevertheless, this technique requires a sophisticated
algorithm for optimizing the desired metasurface in addition
to extra microchip components such as field-programmable
gate arrays (FPGA), and thus it becomes expensive for Sat-
Com operators [12]. Furthermore, despite the reduced cost,
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FIGURE 1. The details of the proposed array antenna with: (a) perspective view, (b) cross-sectional view.

the MSAT also involves complicated assembly and is there-
fore, like other hybrid phased arrays, not suitable for mass
production [16], [17].

The continuous transverse stub (CTS) antenna is a low cost,
low profile antenna solution for SatCom applications. It has
significant advantages in the low-cost feeding mechanisms
and mechanical steering system, obviating the need for any
expensive active phase devices. CTS antennas were invented
in the 1990s by Milroy [18]. Usually, a CTS array consists
of a set of 1-D long radiating slots and a broadband line
source that support the fundamental transverse electromag-
netic (TEM) mode. Its far-field characteristics can be tailored
by rotating the in-between relative positions of the radiating
slots and line source. Later on, Milroy continued to derive
the variable inclination CTS (VICTS) array [19] for scanning
capabilities. In [20], a gap waveguide fed VICTS array was
proposed in the 60 GHz band that has achieved steering range
up to±60◦ within the thickness of 9.35mm (1.92 λ0). A CTS
array with a high aperture efficiency of 60% was presented in
[21] with a rotating feed part. This technique excludes the
requirements of a radiating aperture and ensues in leveraging
array with±30◦ and frequency independent beam directions.
Although several types of CTS arrays have been implemented
to target specific applications [22], their metallic waveguide
structures aremassive and still require high powermechanical
control systems to realize scanning in azimuth and elevation
planes. The mechanical control system also makes the whole
antenna system bulky and consumes more power that is not
feasible for low-cost applications. Furthermore, an external
polarizer is required to maintain the consistent polarization
of VICTS array due to its dependence on the directions of
radiating slots under rotation.

In this paper, we propose a novel low profile array that
integrates several critical emerging antenna technologies for
SatCom applications. The proposed design addresses the
constraints of complex feeding networks and costly phase
shifters; the design process does not require algorithmic pro-
gramming techniques as that have been utilized for elec-
tronic and hybrid beam steering array antennas. The use of

substrate integrated waveguide (SIW) feeding and radiating
patch elements on PCB materials provide mass production
possibility with low-cost processing, and also significantly
reduces the antenna weight. In contrary to existing VICTS
antenna solutions, the proposed approach offers more free-
dom of integrating active components or designing the radi-
ating elements without influencing the plane-wave feeder,
as the inductive surface isolates it from the radiating layer.
In theVICTS antenna, it is not easy to achieve these co-design
characteristics without altering the feeding performance. Fur-
thermore, this design utilizes circular coupling scatterers to
achieve consistent linear polarisation without requiring any
extra external polarizers.

The remainder of this paper is organized as follows.
In Section II, the antenna architecture and its working prin-
ciple will be described. Section III presents the broadband
SIW line source generator (LSG) for the antenna prototype,
and simulated results are briefly illustrated. A detailed char-
acterization of the antenna through simulated and measured
results is explained in Section IV, along with a comparison
of SatCom array antennas from the literature.

II. ANTENNA DESIGN AND ANALYSIS
A. OPERATION PRINCIPLE AND 1-D ARRAY ANTENNA
DESIGN
The proposed array is developed from the phased array sheet
concept [25] and implemented into Ku band specifically for
SatCom applications. It is well known that the 2D guided
surface wave is converted into a 3D radiating beam in free
space with the wavenumber modulation. The directivity is
dependent on the grating period of each scatterer (or antenna
element) [26]. Fig. 1 illustrates the array structure in detail.
From the perspective view, a 50 � coaxial cable is used to
connect the SIW, and the SIW plane-wave feeder, which is
constructed by combining power divider with the multiple
T-junctions, generates the line source for the array. A conduc-
tive mesh layer, known as inductive surface (labelled as M2),
is designed for the surface wave propagating at the interface
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FIGURE 2. (a) Simulation model of 1D array with 9 circular patch
elements as the scatterers. The details of the dimensions are M =
2.5 mm, S = 0.5 mm, d = 6.6 mm, P = 13.3 mm. (b) Simulated results of
normalized radiation patterns of the 1D-array at various frequencies.

of two substrates with different permittivity [27]. The cir-
cular scatterers (labelled as M3) are utilized to couple the
surface wave energy into free-space radiation with consistent
polarization. Fig. 1(b) shows the cross-sectional view which
consists of 5 layers - 3 conductive layers and 2 substrates. M3
layer is etched on the top surface of an FR-4 substrate with a
thickness of 2mm. Beneath the FR-4, another metal M2 layer
is located with both the inductive surface and a SIW plane-
wave feeder in F4B dielectric with a permittivity of 2.94 and
thickness of 3 mm. The beam scanning feature is achieved by
rotating M3 layer in relative to the bottom layer. Each of the
scatterers has a varying phase delaywhich is dependent on the
rotation angle. This position is expressed through the rotating
angle (RA) referred as the angle between theX-axis, as shown
in Fig. 1(a). In order to avoid the interfacial friction while
rotating, an air gap with 0.1 mm space is needed between M2
layer and FR-4 substrates. The whole antenna has a diameter
of 270 mm and a thickness of 5.1 mm, equivalent to just
0.19 λ◦.
A periodic model of a 1-D array was built to investigate

the surface-to-plane wave conversion and is illustrated in
Fig. 2(a). The sidewalls were set as perfect magnetic conduc-
tor (PMC) boundary conditions in order to maintain the plane
wave propagation. When the incident plane-wave propagates
along the y-direction in the SIW, the non-radiative evanescent
field is formed on the inductive surface. This field simul-
taneously propagates in the y-direction and decays expo-
nentially along z-direction. The scatterers on the top layer
perturb this evanescent field condition, and some portion of
the guided evanescent energy is coupled into magnetic dipole
like radiation. A mesh of conductive lines can realize the
inductive surface with the period (e.g. M = 2.5 mm) and
line width (e.g. S = 0.5 mm), which both are sufficiently
shorter than the guided wavelength (e.g: λg = 16.35 mm)
at 10.7 GHz. Its theory was described in [28] with details.
The scatterers diameter (e.g. d = 6.6 mm) is calculated and
optimized according to the microstrip antenna method [29].
The spacing between each scatterer is about one wavelength
(e.g. p = λs = 13.36 mm) in the FR-4 dielectric for achieving
the in-phase radiation. Meanwhile, the simulated radiation
patterns, in Fig. 2(b), verify the above working scenario at
the frequencies of 10.7 GHz, 11 GHz, 11.5 GHz, 12 GHz

FIGURE 3. The equivalent array distribution with the dynamic
coordination system shown in red dash line. (a) When the M3 layer is
relatively rotated by θ = 25◦. (b) The variation of element spacing in X
and Y directions under the condition of rotating angle θ = 25◦, where
Px = Py = P cos(θ) and dy =P sin(θ).

and 12.5 GHz, which indicate that the designed array antenna
works well in the SatCom receiving bandwidth of 10.7 to 12.5
GHz.

B. THEORETICAL MODEL FOR ARRAY PATTERN
Rather than utilizing the frequency scanning capability, the
antenna design mainly focusses on the beam steering capabil-
ities across different frequencies. As stated above, rotating the
upper M3 layer provides the required phased delay to realize
beam scanning, as the relative element period changes along
with it. Here, the equivalent radiation model is analyzed with
a theoretical calculation to obtain the array beam patterns.
Fig. 3 illustrates the equivalent circular element distribution
of this proposed array while the rotating angle (RA) is at
θ = 25◦. By referring to the closed-form solution of the
VICTS array [25], [30], the main beam of this proposed array
is therefore predictable.

As shown in Fig. 3(b), the locations of the elements can be
expressed as:

Xmn = mPx , (1)

Ymn = nPy + mdy. (2)

wherem and n are integers. By assuming each element has the
same coupled amplitude, and each of them is approximately
radiating as an isotropic point source in the farfield, the
antenna pattern can be calculated as follows

AF(θ, ϕ) w
ejβ0R

R

∑
m,n

√
r(1− r)n

× e−jm(β0Py sin(θ) cos(ϕ)−βgPy)

× e−jn[β0(dy sin(θ) cos(ϕ)+Px sin(θ) sin(ϕ))−βgdy]. (3)

Here, r is a coupled energy rate. λg and λ0 are the wavelength
in the SIW and in the air, respectively. R is the distance from
the center element to the far observation point which can be
indicated as:

θ = sin−1(
√
u2 + υ2), (4)

ϕ = tan−1(
υ

u
). (5)
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FIGURE 4. (a) SIW T-junction configuration which transfer the TE mode
into quasi-TEM mode with dimension details, (b)E-field distribution at the
frequencies of 10.5 GHz, 11.5 GHz, 12 GHz and 12.5 GHz, (c)The structure
of the LSG which contains the 1-to-8 power divider and 8 T-junctions and
also with the feeding details of coaxial cable to SIW design. The used
parameters are listed in Table 1.

where u and v are defined below:

u =
(Py − λg)λ0

PxPy
, (6)

υ =
dyλ0
PxPy

. (7)

As Px = Py = P cos(θ) and dy = P sin(θ ) are all relative to
the rotating angle θ and fix element spacing P, the location
of the main beam is easily calculated through the Eq. 4 and 5.
The theoretical antenna radiation results are compared with
the simulated and measured results later in the paper (Table
2).

III. DESIGN OF SIW LINE SOURCE GENERATOR
The LSG is one of the critical parts for the array antenna,
and its key point is to launch a plane wave in the parallel-
plate waveguide. There are already various types of SIW-
LSG have been developed in recent decades. For example,
the series structure with a cascade of π junctions [31], and
parabolic cylindrical reflector based on geometrical optics
[23], [24]. Taking into account the design considerations of
achieving the required bandwidth and utilizing simple low-
cost fabrication techniques, we utilized a SIW-LSG design

TABLE 1. Dimensions of the line source generator (Unit: mm).

FIGURE 5. LSG simulated results including amplitudes of reflection (S11)
and transmission (S21) coefficients.

by arranging a series of H-plane horns together to achieve
plane wave propagation. As shown in Fig. 4(a), the proposed
T-junction design contains two H-plane horns and one 1-to-2
power divider. The sidewalls of it are set as PMC boundary
to imitate the infinite space for the plane-wave propagation.
It is worth noting that the plane-wave propagation is highly
dependent on the coupling between adjacent H-plane horns,
which requires the width (e.g. w0) of the H-plane horn to
be about one dielectric wavelength (e.g. λg) at the highest
frequency of 12.5 GHz in the SIW. We explicitly design the
1-to-2 power divider to connect the above H-plane horns.
For proper impedance matching, the diamond-shaped divider
and the step structure are applied to efficiently transfer the
waveguide mode to parallel-plate mode with a compact size,
where the lengths (e.g. L3, L4) are approximately 0.5λg at
a centre frequency of 11.5 GHz. The E-field distributions at
frequencies of 10.5 GHz, 11.5 GHz, 12 GHz and 12.5 GHz
displayed in Fig. 4(b) indicate that this designed T-junction
can convert the TEmode to quasi-TEMmode perfectly across
the operating bandwidth.

Fig. 4(c) shows the whole structure of the proposed LSG,
including the detail of connecting to coaxial cable. Eight
T-junctions are linked with the power divider and placed
serially together to obtain the full range plane-wave in SIW.
Through the equations in [32], the SIW parameters, of φR, the
plated vias radius, and Vd , the periodic spacing, can be easily
calculated for gaining excellent transmission efficiency. The
coaxial cable connection part was also optimized in order to
have a sufficient transmission. The inner core of the connector
was embedded into the substrate at a length of 2.5mm, and the
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TABLE 2. The details of radiation patterns of the proposed array antenna. (‘The.’ stands for theoretical).

FIGURE 6. The photographs of (a) the top scatterers layer, (b) the bottom
feeding network, (c) the antenna prototype and its S-parameter
measurement setup and (d) the near-field setup for pattern
measurement.

feeding position is placed away from the SIW bottom border
at a distance of St = λg/4 in the SIW. The final parameters
of the LSG structure are listed in Table 1. Fig. 5 illustrates
the simulated S-parameter of LSG with both amplitudes of
reflection and transmission coefficients, which shows that the
LSG transmission with S11 below −10 dB, whilst there is
less than 0.5 dB transmission loss during the bandwidth of
10.5 GHz to 12.5 GHz.

IV. ARRAY ANTENNA PROTOTYPE AND ITS
CHARACTERIZATION RESULTS
In order to validate this proposed array design, a prototype
with a total of 313 patch scatterers was manufactured using
a low-cost PCB processing technology. The bottom substrate
is a double-sided copper-clad, laminated with gold plating.
The high conductivity can reduce the loss of surface wave
propagation on the inductive surface. The top layer of cir-
cular scatterers is shown in Fig. 6(a) and the SIW feeding
network with inductive mesh are shown in 6(b). In addition,
Fig. 6(c) and 6(d) also show the S-parameter and radiation
pattern measurement setup with N5244A PNA-X Network
Analyzer and NSI 2D near-field scanner system, respectively.

FIGURE 7. The reflection coefficient comparison at the rotating
angle (RA) of 0◦, 15◦ and 25◦ between simulated and measured results.

The simulated and measured reflection coefficients at dif-
ferent rotating angles are shown in Fig. 7. The reflec-
tion coefficient remains below −10 dB across the entire
10.75-12.5 GHz band (a relative bandwidth of 15%) and is
unaffected by the rotational angles.

Fig. 8 shows the measured normalized radiation patterns
at rotating angles (RAs) of 0◦, 10◦, 15◦,20◦ and 25◦ and
frequencies of 11.5 GHz, 12 GHz and 12.5 GHz. The sim-
ulated radiation patterns at three RAs are also displayed for
comparison. A relatively good agreement can be observed
between them. In the measurement, the beam steering range
has achieved from 0◦ to 53◦ at 12.5 GHz. The side-lobe
level (SLL) remains −10 dB below the maximum at most of
the rotating angles except the angle at 25◦. This increased
SLL is due to a larger reflected surface wave at the high
rotating angle. Further details on the scanning angle and SLL
for rotation angles of 15◦ and 25◦ are listed in Table 2,
including the data at 11 GHz which shows a steering angle
of 60◦ was achieved.

The antenna gain and radiation efficiency at various rotat-
ing angles are shown in Fig. 9. It can be observed that the
measured gains remain stable with reduced beam scanning
loss in the RA range from 0◦ to 20◦, in which the maximum
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FIGURE 8. Measured and simulated radiation patterns of this beam steerable proposed array at 11.5 GHz, 12 GHz and 12.5 GHz. Solid lines
show the measured directivity at rotating angle (RA) of 0◦,10◦,15◦,20◦ and 25◦, and dash lines represent the simulated results at RA of 0◦,
15◦ and 25◦.

FIGURE 9. Simulated and measrued realized gain and efficiency comparisons at different rotating angles (RAs).

scanned angle reaches 45◦ at 11.5 GHz within 1 dB gain
difference. Comparing to the simulated gain at RA that equals
to 0◦, the measured gain is with the average lower value of
2.8 dB. This gain reduction is attributed to substrate material
loss and fabrication tolerance because the F4-B dielectric
has a high loss tangent above 10 GHz, and it was used
to manufacture the feeding structure. Also, the upper FR-4
substrate would have an impact on the antenna gain as it is a
well-known lossy material. The FR-4 was used here to gen-
erate the surface wave at the interface of two materials, and
these two substrates should have a different permittivity [27].
In this case, FR-4 is a suitable option as the permittivity is
different as compared to F4-B, and it has some advantages
in price compared to low loss RF PCB substrates. Likewise,
this material loss causes radiation efficiency to decrease from
65% in simulation to 40% inmeasurement. And themeasured
radiation efficiency continues decreasing as the frequency
increases above 10 GHz, which illustrated in Fig. 9. Despite

these losses, a 70% efficiency is achieved for RA = 0◦ in
simulation, which indicates that the antenna efficiency could
be improved with low loss substrate, and this should be
considered for a commercial exploitation.

Besides, in Fig. 9, a relatively significant gain drop of 5 dB
has been observed at the rotating angle of 25◦. This gain drop
is attributed to the increased spacing between scatterers with
the rotating movement, resulting in a decreased number of
radiating elements, and less surface mode energy is trans-
ferred into a radiation mode. This also leads to the high SLL
occurred along with the increased reflective wave. It can be
clarified that at this phrase, the proposed array scans to 45◦

within the gain reduction of 2 dB, and the gain drops to 5 dB
while the scanned angle is above 60◦. It is a concern that this
gain drop and high SLL have caused the radiation efficiency
reduces below 20%, and higher power may be needed to
reach the SatCom signal in some areas. It is worth noting
that VICTS array also suffers from the same reflective wave
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TABLE 3. The performance comparisons of different types of steerable array antennas.

issue. To overcome this issue, the authors in [19] applied the
RF choke to reduce its robust reflective wave. This RF choke
presents an extremely high impedance to any incidences
and generated magnitude interference between reflective and
transmitted waves. However, this RF choke requires a very
good mechanical processing which significantly increases
the cost and complexity of the manufacturing. Nevertheless,
the fully planar and isolated feeder characteristics of our
approach do, however offer the possibility to alleviate the
aforementioned issues. With emerging metasurface features,
it is possible to eliminate the coupling effect while increasing
the numbers of radiating elements and enhance the antenna
gain and efficiency at a sizeable rotating angle. For example,
by integrating a resistive surface as a perfectly matched layer
or absorber at the end of the plane-wave feeder, one can
alleviate the reflective wave issue straightforward with low-
cost fabrication in contrast to the VICTS array. This will be
conducted in future work.

Finally, Table 3 summarizes the performances of the cur-
rent published beam steering array solutions for SatCom
applications. Electrical ICs or digital beam steering enabled
technologies that have been used in planar array design offer
a very low profile and wide scanning range [3], [7]. How-
ever, they still suffer from the complex feeding networks,
which lead to low antenna gain and high cost in scaling to
larger arrays. Another patch array which integrates liquid
crystal beam steering avoids the lossy network but has limited
steering range [14] or requires extra FPGA for algorithm
programming [15]. Meanwhile, the hybrid [13] and VICTS
arrays [20] have the highest radiation efficiency, but they both
suffer from bulky mechanical control systems which have
been built with metalized waveguides. In terms of weight and
assembly, the proposed array antenna has the advantages of
lowweight, easier assembly and package. The proposed array
is low profile and has achieved comparable scanning perfor-
mance. The fabrication of the proposed antenna is particularly
suitable for mass production and can be further scaled to
a larger aperture with cost-efficient LSG feeding network.
Overall, this proposed array antenna solution has the poten-
tial with integrating active/passive components for specific
applications, like Radar Cross-section (RCS) reductions, and

low-cost attractive contributions to satellite communication
on small moving platforms.

V. CONCLUSION AND DISCUSSION
In this paper, a novel beam steerable array antenna with
low-cost SIW feeding network has been presented for the
Ku-band SatCom applications. The proposed antenna has
been successfully validated using the SIW technologies and
PCB process. The theoretical, simulated andmeasured results
of radiation patterns have excellent agreement among each
other. The bandwidth of reflection coefficient for S11 <

−10 dB is around 15% in measurements for all rotat-
ing angles. The ±60◦ scanning capability and peak gain
of 19.5 dBi have been obtained at this designed band-
width. Although the array side-lobe levels (SLLs) need some
improvements, it is still worthy of conducting further work
to fulfil and develop for practical use. This developed array
antenna solution is an up-and-coming candidate for the satel-
lite communication on the small moving platforms where low
cost, low profile, easy assembly and integration are required.
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