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ABSTRACT This study focuses on modeling, prediction, and analysis of confirmed, recovered, and death
cases of COVID-19 by using Fractional Calculus in comparison with other models for eight countries
including China, France, Italy, Spain, Turkey, the UK, and the US. First, the dataset is modeled using our
previously proposed approach Deep Assessment Methodology, next, one step prediction of the future is
made using two methods: Deep Assessment Methodology and Long Short-Term Memory. Later, a Gaussian
prediction model is proposed to predict the short-term (30 Days) future of the pandemic, and prediction
performance is evaluated. The proposed Gaussian model is compared to a time-dependent susceptible-
infected-recovered (SIR) model. Lastly, an analysis of understanding the effect of history is made onmemory
vectors using wavelet-based denoising and correlation coefficients. Results prove that Deep Assessment
Methodology successfully models the dataset with 0.6671%, 0.6957%, and 0.5756% average errors for
confirmed, recovered, and death cases, respectively. We found that using the proposed Gaussian approach
underestimates the trend of the pandemic and the fastest increase is observed in the US while the slowest is
observed in China and Spain. Analysis of the past showed that, for all countries except Turkey, the current
time instant is mainly dependent on the past two weeks where countries like Germany, Italy, and the UK
have a shorter average incubation period when compared to the US and France.

INDEX TERMS COVID-19, deep assessment methodology (DAM), fractional calculus, least squares, long
short-term memory, modeling, prediction of pandemics, SIR model.

I. INTRODUCTION
Public health programs and capacity planning are essential
for tracing and managing health risks. These programs focus
on prevention more than diagnosing, detection, and respond-
ing to the cases, including infectious disease outbreaks [1].
To plan successful preventive activities, solid estimates are
needed about the spread and localization of the disease,
and the possible path and case numbers. Therefore, reliable
mathematical predictive modeling for any kind of diseases
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(especially for communicable diseases) is an essential tool for
public health policies. European countries were not particu-
larly successful in combating the COVID-19 outbreak due to
the insufficiency of such predictions.

The spread of COVID-19 could not be effectively avoided
at its origin and has become a pandemic that infects more
than 8 million people in 215 countries and territories as
of 2020 [2]. It is important to understand the behavior
of the pandemic in order to prepare health care work-
ers and other related parties. The modeling and prediction
of COVID-19 have crucial importance for planning hos-
pital resources [3]. To combat with further progression of
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the COVID-19 infection requires predictive modeling. The
authorities can take required precautions regarding the staff
and/or hospital resources to overcome the epidemic-like dif-
ficulties they may encounter in the future by predicting the
progression of the infection [3].

Recent developments in digital technology and informatics
in parallel with the development of data science lead the
companies, institutions, universities and especially, the coun-
tries to give priority to evaluating the data and predicting
what can be forthcoming [3]. Computational mathematical
methods have a significant role in understanding the dynam-
ics of an epidemic and application of such methods on bio-
logical systems has been an interest to many researchers
throughout decades [4]–[7]. Because of the current out-
break of COVID-19, many mathematical methodologies are
being investigated on predicting the trend, estimating the
peak, and modeling the course of the pandemic. The models
can be used separately or in combination, [8] adopts three
types of mathematical models for fitting COVID-19 data:
the logistic model, Bertalanffy model, and Gompertz model.
The least-square method is used for fitting and the final
cumulative number of confirmed cases is predicted. Another
study, [9], combines ARIMA and wavelet-based predicting
techniques for 5 countries. In [10] a method to predict the
spread of COVID-19 based on dictionary learning and online
nonnegative matrix factorization is proposed and evaluated
for one-step predictions and extrapolated near future. In [11],
a stochastic transmission dynamic model is fitted to multiple
publicly available datasets by using sequential Monte Carlo
simulation and resulting number of cases, transmission rate
over time, and basic Reproduction number (Rt ) is inferred.
Besides, Schüttler et al. [12] proposed a Gauss Model to
map time to the Gauss function to model the daily deaths
per day and country. In [13], authors show that simple mean-
field models can be used to interpret epidemic spreading and
to forecast time of the peak of confirmed cases. Another
mathematical method based on the data analysis of logistic
growth equations describing the process on the macroscopic
level is used in an attempt to calculate the expected end of
the outbreak in Italy [14]. Also, [15] carries out a time series
analysis using amixed-effect model of lagged, log-linear case
counts for each province and predicts a province-level growth
rate in China.

Another well-known model that is widely applied by
researchers is the susceptible-infected-recovered (SIR)
model [16]–[18] which uses mainly three variants of infec-
tion: susceptible, infected, and recovered. Nesteruk [19] used
the SIRmodel to predict the epidemic characteristics in main-
land China while Batista [20] applied it to estimate the final
size of the Covid-19 epidemic. However, in the original SIR
model transmission rate β and recovering rate γ remain as
time-invariant variables. As a result, such models are unable
to include the impacts of specific state interventions to control
and avoid the spreading of the virus in different periods into
the SIR-modelling. Therefore, Ping-En Lu used an extended
version of SIR called Time-dependent SIR model, in which

both transmission rate β and recovering rate γ are also func-
tions of time so that model could adapt and adequately predict
the trend of COVID-19 in China [21]. Before that, the SIR
epidemic model had also been used to describe the spread of
other diseases such as influenza and measles [22], [23].

One of the mathematical approaches to model a physi-
cal phenomenon is setting up a differential equation where
the dependent variable satisfies a differential equation with
respect to the independent variable. Integer order differen-
tial equations cannot model processes with memory and
non-locality because of their locality property. On the
other hand, Fractional Calculus is a branch of mathe-
matics that focuses on fractional-order differential and
integral operators and can be used to address the limita-
tions of integer-order differential models. Fractional opera-
tors convert the integer-order differential equations into the
non-integer order differential equation and lead to a very
essential advantage: the memory property. Fractional order
derivatives are the generalization of the integer order coun-
terparts and represent the intermediate states between two
known states. For example, zero order-derivative of the func-
tion represents the function itself while the first-order deriva-
tive represents the first derivative of the function. Between
these known states, there are infinitely many intermediate
states [24]. Therefore, fractional operators provide more
accurate models in many branches of science and engineering
including mechanics, biology, biomedical devices, nanotech-
nology, diffusion, diffraction, and economics [25]–[43].

Memory property of fractional calculus has been employed
for modeling and prediction on epidemics such as Measles,
Malaria, Dengue, and Ebola [44]–[47]. Recently, [48] illus-
trated that the memory feature of the fractional derivative
explores the hidden dynamics of infection in contrast to an
integer type of derivative by analyzing the data of India.
Furthermore, in our previous studies, methods based on
fractional calculus (FC) that work for modeling and pre-
diction of time series were introduced. In these studies,
the children’s physical growth, subscriber numbers of oper-
ators, GDP per capita were modeled and compared with
other modeling approaches such as Fractional Model-1 and
Polynomial Models [3], [7], [49], [50]. According to the
results, proposed fractional models had better results com-
pared to the results obtained from Linear and Polynomial
Models [3], [7], [49], [50]. As a result, the existing applica-
tions of the fractional differential approach on various bio-
logical studies and success of our prior work on modeling
and prediction of time series using fractional approach are
the foundations of our motivation to analyze COVID-19 with
fractional calculus.

This study focuses on modeling and predicting the trend
of COVID-19 pandemic for eight countries including China,
France, Germany, Italy, Spain, Turkey, the UK, and the US.
The first main focus of this study is modeling and the one-step
prediction of the pandemic. After modeling and having the
mathematical expression for the dataset, a short-term future
(30-Days) prediction is investigated. In this study, we mainly

VOLUME 8, 2020 164013



E. Karaçuha et al.: Modeling and Prediction of the Covid-19 Cases

apply our ‘‘Deep Assessment Methodology (DAM)’’ [3] for
predicting the case numbers and death numbers related to the
coronavirus pandemic. DAM is a method that is derived from
the fractional differential equations for modeling and predic-
tion purposes and uses the properties of fractional calculus.
The method utilizes the corresponding Laplace transform
properties. Here, the data is modeled with an approach that
considers the effect of a finite number of previous values
and the derivatives. Further, the prediction is obtained by
assuming a value in a specific time can be expressed as
the summation of the previous values weighted by unknown
coefficients and the function to be modeled is continuous and
differentiable. In this way, DAM takes previous values and
variation rates between different time samples (derivative) of
the dataset into account while modeling the data itself and
predicting upcoming values. Combining the previous values
with the variations weighted by the unknown coefficients
lead to calling this method as ‘‘deep assessment’’. There are
two advantages of the method regarding other approaches
mentioned in this section. First, the proposed method uses the
generalization of the derivative operator. The generalization
of the derivative operator provides flexibility when modeling
the structure of the data. In this way, the modeling has one
more parameter to control and optimize the error between the
proposed modeling and real data. Second, the deep assess-
ment method has the ability of both modeling and prediction.
During modeling, the present value is expressed as a sum-
mation of the previous values and changes of the function
with unknown weights, which is then optimized by the Least
Squares Method. Thus, combining the fractional derivative
and defining the instant value as the summation of the
weighted previous values and changes, the prediction can be
obtained since the epidemic can be assumed as a system with
memory. In other words, previous values and the increase
between the intervals can affect the present and the future.
To overcome the limitation of the locality which presents
in integer-order derivates, the fractional differential equation
is utilized which includes the hereditary and non-locality
properties of the non-integer order derivatives.

In a recent study [51], a mathematical model is presented
by incorporating the isolation class to model the dynami-
cal behavior of COVID-19. Their model employs a Non-
standard Finite Difference (NSFD) scheme and Runge-Kutta
fourth-order method. In [52], outcomes of various models
such as SIR, SEIR, and ARIMA are discussed. Further, [53]
develops twomodels to capture the trend of dynamic: Amath-
ematical model that accounts for various parameters related
to the spread of the virus and a non-parametric model that
uses the Fourier Decomposition Method (FDM).

The number of confirmed cases (prevalence), the intensity
of cases in a specific location (incidence), and the number of
deaths can be used as a proxy of the effectiveness of a coun-
try’s fight against the pandemic. In general, it is a reasonable
measurement of a country’s health system strength and public
health strategy against COVID-19 [54]. Some researchers
used the date of the first recorded case and cumulative case

numbers as a criterion for evaluating coronavirus pandemic
in certain countries [1], [2]. Therefore, the prediction of case
numbers and death numbers is very essential not only for
the researchers but also for governments and institutions to
take action against an uncontrolled spreading. The reliable
number of case predictions defined by modeling based on
scientific foundations is vital for the relevant institutions and
organizations to determine their road maps.

As shown in our previous study [3], DAM successfully
models and predicts time series data. In this study, we pre-
dicted the total number of confirmed cases, death, and recov-
ered case numbers for 8 countries including China, France,
Germany, Italy, Spain, Turkey, the UK, and the US using our
previously proposed work, Deep Assessment Methodology.
To assign performance of DAM on the COVID-19 dataset
we compared the model with Long Short-Term Memory
(LSTM), a special type of artificial neural network used
in analyzing time series problems. Later, a Gaussian fit-
ting approach based on DAM is proposed for predicting
the short-term future of the pandemic and compared to the
Time-dependent SIRmodel [21]. Lastly, an analysis of model
coefficients is made with wavelet denoising and correlation
coefficients to understand the effect of the past.

The structure of the study is the following. Section II
explains the Formulation of the Modeling Approaches where
two methods that utilize fractional calculus are introduced.
After that, Section III, namely the Proposed Approaches,
are devoted to explaining how to obtain modeling, simula-
tion, testing, and prediction. In this section, Deep Assess-
ment Methodology, the prediction with Deep Assessment,
Time-dependent SIR model, Modeling Based on Gaussian
Distribution with DAM, and Prediction with LSTM are
explained. Then, in Section IV, the results are presented and
compared. Section V discusses the limitations of the study.
Lastly, Section VI highlights the conclusion of the study.

II. THE PROPOSED APPROACHES
A. MODELING AND PREDICTION WITH DEEP
ASSESSMENT METHODOLOGY
This section is dedicated to our previously proposed model-
ing and prediction approach Deep Assessment Methodology
(DAM) [3]. The twomain goals of DAMare to find a function
representing the dataset optimally and to predict the unknown
upcoming values. To achieve these goals, DAM exploits frac-
tional calculus and Taylor series expansion. It is suggested for
the readers to see more detail by referring [3].

To express or infer an event or a phenomenon that depends
on its previous values and states, the effects of previous values
and change over time on the current time instant should be
understood. With this motivation, DAM represents a func-
tion g(x) with finite summations of its previous values and
derivatives of the previous values weighted with unknown
coefficients α̃k and β̃k , as shown in (1).

g (x) ∼=
l∑

k=1

α̃kg (x − k)+
l∑

k=1

β̃kg′ (x-k) (1)
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Here, g′ stands for the first-order derivative of g (x-k) with
respect to x. Approximating the function in such a way leads
to achieving the memory property. Later, assuming that g (x)
is a differentiable and continuous function, DAM expands
g (x) as Taylor Series with unknown constant coefficients ãn’s
as given in (2).

g (x) =
∞∑
n=0

ãnxn (2)

Similarly, a previous time instant is expressed as

g (x-k) =
∞∑
n=0

ãn(x − k)n (3)

Using (1) and (3), the form of the function g (x) is obtained
as follows.

g (x) ∼=
l∑

k=1

α̃k

∞∑
n=0

ãn (x-k)
n

+

l∑
k=1

β̃k

∞∑
n=0

ãnn(x − k)
n−1 (4)

Truncating ∞ to M for the numerical calculations and
expressing unknown coefficients α̃k ãn as ãkn, β̃k ãn as b̃kn
yield the final form of the approximated g(x) function and
its first derivative:

g (x) ∼=
l∑

k=1

M∑
n=0

ãkn (x-k)
n

+

l∑
k=1

M∑
n=0

b̃knn(x − k)
n−1

(5)

dg (x)
dx
∼=

l∑
k=1

M∑
n=1

ãknn (x-k)n−1

+

l∑
k=1

M∑
n=1

b̃knn(n− 1)(x − k)n−2 (6)

After this step, the next step is to include the heritability prop-
erty [5], [35], [41]. Therefore, first, the fractional derivative
of g(x) function needs to be defined. Throughout the study,
Caputo’s description of the fractional derivative is employed
as in (7) [18].

Dγ
x g (x) =

dγ g (x)
dxγ

=
1

0 (n− γ )

x∫
0

g(j) (k) dk

(x-k)γ−n+1
,

(j− 1 < γ < j) (7)

In (7), 0 (1− γ ) is the Gamma function. Here, the frac-
tional derivative is taken with respect to x in the order of γ
and g(j) corresponds to the jth order derivative with respect
to x. The derivative is generalized by changing the first-order
derivative in (6) to fractional derivative in the order of γ as

in (7) [3], [7], [49], [50]. In DAM, j is set to 1, and the
fractional-order changes between [0, 1]. Using the fractional
derivative operator which is inserted into the fractional dif-
ferential equation contributes to the hereditary property [3],
[7], [49], [50]. Throughout the paper it is assumed that func-
tion f (x) stands for the total number of COVID-19 confirmed
cases, recovery from the infection, cumulative deaths over
time with the order of γ is equal to (8).

f (x) ∼=
l∑

k=1

M∑
n=0

akn (x-k)n +
l∑

k=1

M∑
n=0

bknn(x − k)n−1 (8)

The function f (x) satisfies the fractional differential equation
(9) and models the discrete dataset related to COVID-19 as it
is given above for g(x) for a general approach.

dγ f (x)
dxγ

∼=

l∑
k=1

∞∑
n=1

aknn (x − k)n−1

+

l∑
k=1

∞∑
n=1

bknn(n− 1)(x − k)n−2 (9)

Here, x denotes the time. Note that, different from (6),
introducing the variable fractional order between 0 and
1 in the derivative operator at the left-hand side of (6)
for f (x) gives a more general, flexible model given in
(9) [27]. Also, this brings one additional parameter, γ , the
fractional-order to model the dataset optimally. To solve the
differential equation, (9) is transformed into the Laplace
domain which converts the equation into an algebraic form.
After taking the inverse Laplace Transform of the trans-
formed algebraic equation, we get the final form of f (x)
as (10) [18].

f (x, γ ) ∼= f (0)+
l∑

k=1

∞∑
n=1

aknCkn(x, γ )

+

l∑
k=1

∞∑
n=1

bknDkn(x, γ ) (10)

where,

Ckn(x, γ ) ,
0 (n+ 1)
0 (n+ γ )

(x-k)n+γ−1

Dkn(x, γ ) ,
0 (n+ 1)

0 (n+ γ − 1)
(x − k)n+γ−2

The infinite summation of polynomials is approximated as a
finite summation given in (11).

f (x, γ ) ∼= f (0)+
l∑

k=1

M∑
n=1

aknCkn(x, γ )

+

l∑
k=1

M∑
n=1

bknDkn(x, γ ) (11)
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Note that, f (0) , akn, and bkn are unknown coefficients that
need to be found. For the Laplace Transform (L), the follow-
ing properties are utilized to find (9) [18].

L[(x − k)n−1] =
0(n)
sn

e−ks and

L
[
dγ f (x)
dxγ

]
= sγF (s)− sγ−1f (0) for 0 < γ < 1.

where L stands for the Laplace transform and L [f (x)] =
F (s).
To reduce the error between the proposed function f (x)

obtained by DAM and real data, the Least Square Method is
employed. The unknown coefficients akn, bkn, and f (0) and
parameters such asM , l, γ , are optimized by minimizing the
squared total error. The squared total error ε2T is defined as the
error between the approximated function f (x) and the actual
data and shown in (12):

ε2T =

m1∑
i=l

(Pi − f (i, γ ))2 (12)

The error ε2T is minimized by a gradient-based approach as
the following.

∂ε2T

∂f (0)
= 0,

∂ε2T

∂art
= 0,

and

∂ε2T

∂brt
= 0.

where, r = 1, 2, 3, . . . l and t = 1, 2, 3, . . .M .
Then, a system of linear algebraic equations (SLAE) given

in (13) is created where [B] the matrix contains all unknowns
akn, bkn and f (0).

[A] [B] = [C] (13)

[A], [B], and [C] are shown in (14), (15), and (16), as shown
at the bottom of the next page, respectively. Optimum values
of M , l, γ are found by grid search. As mentioned above, γ
is constrained in (0, 1) region.

A =
[
A1,1 A1,2

A2,1 A2,2

]
(14)

A matrix consists of the four main blocks below. Note that,
in the matrix, the abbreviations are used as Ckn (x, γ ) = Ckn
and Dkn (x, γ ) = Dkn.
With a data sequence vector P = [P1,P2, . . . ,Pm] that

contains m points, DAM divides the range of the data into
4 regions in total including the prediction range. This is
shown in Fig. 1 where the horizontal axis represents time.
Pi denotes the data for ith date where i < m. Since the
beginning of infection is different for each country, the length
of the dataset used for modeling varies. For example, P2 is the
COVID-19 infected case numbers of a country in the second

FIGURE 1. The regions of the dataset [3].

recorded day of their dataset. The region division is required
because of parameters given in the previous section (10)
such as M , l, γ need to be found separately for modeling
and prediction. Here the first three regions consist of the
actual data where region 4 contains unknown future values
predicted by the method itself. DAMmodels any time instant
in terms of previous l values, therefore the first l value is taken
as ‘‘historical data’’. The second region is the ‘‘modeling
region’’. Then, Region 3 comes as the ‘‘Testing Region’’
which is used to understand the performance of modeling.
Finally, Region 4 is the ‘‘prediction region’’ where the aim
is to predict the next upcoming data, in our case, COVID-19
infected case numbers.

For modeling Region 2, the optimum values of coefficients
akn, bkn,M , l, γ , and f (0) are determined by employing
Least Squares Method.

After modeling the Region 2, the performance of the
method is measured with Region 3. DAM makes a one-step
prediction at a time because every time instant f (xi) depends
on anterior values including f (xi−1). When there are no
actual previous data for calculating a particular time instant,
previously predicted values are used. Otherwise, parame-
ters are updated in an online fashion according to the data
at hand. With the help of function f (x), the first value of
the testing region, f (m1) of Figure 1, is calculated. Here
f (m1) corresponds to the modeling of actual data Pm1 .
Then, since the testing region has actual data, point x
= m1 and its corresponding value Pm1 are included in
the modeling region and f (0) , akn, bkn,M , l, γ values are
adjusted before the next point is calculated (i.e. m1 + 1,
f (m1 + 1)). After value f (m1 + 1)was obtained frommodel-
ing, the value is stored and the same procedure is followed to
find (f (m1 + 2)). These operations are repeated until the last
value of the testing region, is calculated. In our experiments,
m = April 19.
The last region is called the ‘‘Prediction Region’’ where

there are no actual data. In this region, the first pre-
diction f (m+ 1) is found by using the coefficients and
unknowns obtained by the tuning approach in the testing
region. After that, the first predicted value (f (m+ 1)) is
included in Region 3 (testing) for the consecutive prediction

164016 VOLUME 8, 2020



E. Karaçuha et al.: Modeling and Prediction of the Covid-19 Cases

f (m+ 2) . This procedure is iterative and continues up
to f (mx).

The algorithm for the prediction with DAM is given
in Fig. 2. The first step is initializing the parameters

A1,1=



m1−l+1
m1∑
i=l

C11 . . .

m1∑
i=l

C1M

∑
C11

m1∑
i=l

C11C11 . . .

m1∑
i=l

C1MC11

∑
C12

m1∑
i=l

C11C12 . . .

m1∑
i=l

C1MC12

...
...

...
...∑

Clm

m1∑
i=l

C11ClM . . .

m1∑
i=l

C1MclM

m1∑
i=l

C21 . . .

m1∑
i=l

C2M

m1∑
i=l

C21C11 . . .

m1∑
i=l

C2MC11

m1∑
i=l

C21C12 . . .

m1∑
i=l

C2MC12

...
...

...
m1∑
i=l

C21ClM . . .

m1∑
i=l

C2MClM

. . .

m1∑
i=l

Cl1 . . .

m1∑
i=l

ClM

. . .

m1∑
i=l

Cl1C11 . . .

m1∑
i=l

ClMC11

. . .

m1∑
i=l

Cl1C12 . . .

m1∑
i=l

ClMC12

...
...

...
...

. . .

m1∑
i=l

Cl1ClM . . .

m1∑
i=l

ClMClM



A2,1=



∑
D11

m1∑
i=l

C11D11 . . .

m1∑
i=l

C1MD11

m1∑
i=l

D12

m1∑
i=l

C11D12 . . .

m1∑
i=l

C1MD12

...
...

...
...

m1∑
i=l

DlM

m1∑
i=l

C11DlM . . .

m1∑
i=l

C1MDlM

m1∑
i=l

C21D11 . . .

m1∑
i=l

C2MD11

m1∑
i=l

C21D12 . . .

m1∑
i=l

C2MD12

...
...

...
m1∑
i=l

C21DlM . . .

m1∑
i=l

C2MDlM

. . .

m1∑
i=l

Cl1D11 . . .

m1∑
i=l

ClMD11

. . .

m1∑
i=l

Cl1D12 . . .

m1∑
i=l

ClMD12

...
...

...
...

. . .

m1∑
i=l

Cl1DlM . . .

m1∑
i=l

ClMDlM



A1,2=



m1∑
i=l

D11 . . .

m1∑
i=l

D1M . . .

m1∑
i=l

DlM

m1∑
i=l

D11C11 . . .

m1∑
i=l

D1MC11 . . .

m1∑
i=l

DlMC11

m1∑
i=l

D11C12 . . .

m1∑
i=l

D1MC12 . . .

m1∑
i=l

DlMC12

...
...

...
...

...
m1∑
i=l

D11ClM . . .

m1∑
i=l

D1MClM . . .

m1∑
i=l

DlMClM



A2,2=



m1∑
i=l

D11D11 . . .

m1∑
i=l

D1MD11 . . .

m1∑
i=l

DlMD11

m1∑
i=l

D11D12 . . .

m1∑
i=l

D1MD12 . . .

m1∑
i=l

DlMD12

...
...

...
...

...
m1∑
i=l

D11DlM . . .

m1∑
i=l

D1MDlM . . .

m1∑
i=l

DlMDlM


[B]= [f (0) a11 a12 . . . a1M a21 a22 . . . a2M . . . al1 . . . alM b11 b12 b1M b21 . . . b2M . . . bl1 bl2 . . . blM ]T

(15)

[C] =

[ m1∑
i=l

Pi

m1∑
i=l

PiC11

m1∑
i=l

PiC12 . . .

m1∑
i=l

PiClM

m1∑
i=l

PiD11

m1∑
i=l

PiD12. . .

m1∑
i=l

PiDlM

]T
(16)
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FIGURE 2. The algorithm for the prediction [3].

(l,M , x1, x2, . . . xm and P1,P2, . . .Pm,L0 andM0). Here, L0
andM0 are predefined values and determine how many steps
should be taken in the optimization of l andM values. Then,
the counter variable N is introduced, which sets the number
of prediction steps.

The total number of prediction steps is given as n0. The
fractional-order γ starts from 0 to 1 with the increment is
0.01 for each loop trying to find the optimized value. Note
that, γ = 1 corresponds to the integer-order derivative
and it is included in the search region of optimization. For
each value of γ between 0 and 1, matrix A given as (14)
is formed, and then, the unknown constant coefficients are
given in (10) are evaluated together with the parameters l
and M . After modeling, for each testing data, the value of
the error is analyzed and compared to previously obtained
values. If it is smaller than the previous one, the corre-
sponding fractional-order value is memorized. At the end
of Loop II, the optimal value of the fractional-order, which
corresponds to the optimal modeling in the test region is
obtained and the coefficients given in (10) are found. Sub-
sequently, the prediction for the next upcoming value is
made with the same equation. Afterward, all the iterative
procedures starting from the increment for N is repeated so
that the previously predicted value is included in the initial
data for the next step prediction. This process continues up
to the end of Loop I. Finally, n0 the number of predic-
tions is obtained. Keep in mind that, for the parameters l
and M, there exist two loops starting from 1 to l0 and 1 to
M0 trying to find the optimum values of the coefficients
to get the outcomes with a minimum error for the testing
region 4, 8.

DAM is a general framework and can be applied to many
time series modeling problems. Here we apply it to model
and predict the ongoing pandemic, COVID-19. In this study,
the COVID-19 case numbers of countries are modeled until
the 19th of April, 2020. The date 19th of April is in Region 3 as
testing to predict for next values.

B. TIME-DEPENDENT SIR MODELLING AND PREDICTION
APPROACH
We employ the Time-dependent susceptible-infected-recove-
red model (SIR) that is described in detail by Lu et al. [21]
to compare it with DAM. It is a common and well-known
pandemic model, upgraded by using variables as functions of
time. From ordinary differential equations of the traditional
SIR model, with most recent data of that day, we have with n
(total population):

S (t + 1)− S (t) =
−β (t) S (t) I (t)

n
(17)

I (t + 1)− I (t) =
β (t) S (t) I (t)

n
− γ (t) I (t) (18)

R (t + 1)− R (t) = γ (t) I (t) (19)

The formulas for β(t) and γ (t) are derived from the above
equations and the followings are obtained:

γ (t + 1) =
R (t + 1)− R (t)

I (t)
(20)

β (t + 1) =
n[I (t + 1)− I (t)+ R (t + 1)− R (t)]

I (t) [n− I (t)− R(t)]
(21)

The approach is using Finite Impulse Response (FIR)
and Ridge Regression to track and predict the transmission
rate and recovering rate based on historical numbers with
elements of machine learning algorithms. This tracking and
the predicting process is programmed on Python, see more
in [21]. In general, β(t) and γ (t) at time t are predicted based
on previous data of themselves as below:

β (t) =
J∑
j=1

ajβ (t − j)+ a0 (22)

γ (t) =
K∑
k=1

bkγ (t − k)+ b0 (23)

where J and K are the orders of the two FIR filters, aj and
bk are the coefficients of the impulse responses of these two
FIR filters. These coefficients aj and bk are estimated by the
Ridge Regression method:

min
aj

T−2∑
t=J

(
β (t)− β̂(t)

)2
+ α1

J∑
j=0

a2j (24)

min
bk

T−2∑
t=K

(
γ (t)− γ̂ (t)

)2
+ α2

K∑
k=0

b2k (25)

where α1 and α2 are the regularization parameters, β̂(t) and
γ̂ (t) are the predicted transmission rate and recovering rate.
After predicting the value for β(t) and γ (t), we substitute
them into (18) and (19) to find out the estimated number of
infected and recovered cases of the next days.

C. MODELING AND PREDICTION OF THE PEAK WITH
GAUSSIAN DISTRIBUTION
This section briefly explains how to model and predict the
peak time and value for the daily confirmed COVID-19 cases
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using DAM. After modeling the discrete finite data, the pre-
diction of the peak value for the total confirmed cases can be
found by assuming that the derivative of the total confirmed
cases has Gaussian distribution. The number of daily con-
firmed cases follows an increasing trend in the first period of
the pandemic and it is expected that this number decreases by
time with precautions and the immune system. Therefore, it is
reasonable to assume the number of daily confirmed cases
curve has a bell shape. This way, the future of total confirmed
cases and the peak time of the infection can be modeled and
predicted. Using this approach, one can model the discrete
data at the early stages of the pandemic and find an analytical
expression that represents the dataset with minimum error.

In our case, the dataset which ismodeledwithDAMhas the
analytical expression f (x) as given in (10) for the total con-
firmed data in a specific interval. Since the discrete dataset
now has a continuous form, the change of the total confirmed
case over time is represented as g(x):

g (x) =
df (x)
dx

(26)

where, g (x) is assumed to be a Gaussian distribution g (x) =
Ae−a(x-b)

2
with unknown constant coefficients A, a, and b.

Here, A, a, and b are related to the peak of the Gaussian,
the variance, and themean, respectively. For our discrete data,
Gi is defined as:

Gi =
df (x)
dx

∣∣∣∣
x=xi

(27)

Then, from (11), Gi is obtained as (28).

Gi =

[∑
k

∑
n

akn
d
dx
Ckn (x)+

∑
k

∑
n

bkn
d
dx
Dkn (x)

]
x=xi
(28)

The final expression for Gi becomes (29):

Gi =
l∑

k=1

M∑
n=1

akn
0 (n+ 1)

0 (n+ γ − 1)
(xi − k)n+γ−2

+

l∑
k=1

M∑
n=1

bkn
0 (n+ 1) (n+ γ−2)
0 (n+ γ − 1)

(xi − k)n+γ−3

(29)

The same procedure implemented in DAM for optimization,
the Least Squares Method is employed where ε2T corresponds
to a total error between the proposed Gaussian distribution
g(x) and the derivative of the curve representing actual data
found by DAM and is as given in (30).

ε2T =

m∑
i=0

[Gi − g(xi)]2=
m∑
i=0

[
Gi − Ae−a(xi−b)

2
]2

(30)

A gradient-based error minimization approach is followed to
find constant coefficients A, a, and b.

∂ε2T

∂A
=

m∑
i=0

[
Gi − Ae−a(xi−b)

2
]
e−a(xi−b)

2
= 0 (31)

By distributing the exponential term over the terms within the
brackets and substituting Bi = e−a(xi−b)

2
, (32) is obtained.

m∑
i=0

GiBi = A
m∑
i=0

B2i→A =

∑m
i=0GiBi∑m
i=0 B

2
i

(32)

After obtaining (32), ∂ε
2
T
∂a = 0 is introduced as (33),

∂ε2T

∂a
=

m∑
i=0

[Gi − ABi]Bi (xi − b)2 = 0 (33)

The final expression for (33) is as follows:
m∑
i=0

[GiBi] (xi − b)2 − A
m∑
i=0

B2i (xi − b)
2
= 0 (34)

After applying the same procedure to ∂ε2T
∂b = 0, we get (35):

∂ε2T

∂b
=

m∑
i=0

[Gi − ABi]Bi (xi − b) = 0 (35)

Then,
m∑
i=0

[GiBi] (xi − b)− A
m∑
i=0

B2i (xi − b) = 0 (36)

We have 3 equations as (32), (34), and (36) with three
unknowns. Therefore, unknown coefficients can be found
optimally using the Least Square Method.

After obtaining the unknown coefficients, optimal g (x)
can be found. Note that, g(x) is the derivative of the f (x) in
the data region. The integration of g(x) gives the prediction
related to peak value and time of the total confirmed cases.

FIGURE 3. The algorithm for the peak prediction.

In Fig. 3, f (x) and g(x) are illustrated. Here, the actual
dataset that contains m values, the finite dataset from P1
to Pm, is shown. Under the assumption of the derivative of
f (x) is equal g(x), we can predict for the upcoming values
of the function f (x) by employing the Least square method.
Note that, to find f (x) for x > m, optimum g(x) should be
integrated as in (37).

Pr = f (r) = Pm + A

r∫
x=m

e−a(x-b)
2
dx (37)
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In Fig. 3, Pr is the predicted value of total confirmed cases
at r th day and Pm is the known last value of total confirmed
cases at mth day. Area of region S is equal to Pn. Keep in
mind that, the values 1 ≤ x ≤ n corresponds to the historical
data (Region-1) in DAM. Consequently, by integrating the
Gaussian function, the prediction for r th day is obtained.

A prediction with Gaussian modeling can be summarized
as follows. First, the continuous function, which is obtained
through DAM that approximates the real dataset f (x) is
used to find the daily changes in confirmed cases. Then,
by assuming that the daily changes curve is a Gaussian
function, unknown parameters (a, b, and A) of the Gaussian
are obtained by Least Square Method that minimizes ε2T =
m∑
i=0

[Gi − g(xi)]2. Finally, by integrating the area under the

fitted Gaussian curve, the prediction is obtained as given
in (37).

The Gaussian approach models the derivative of the con-
tinuous total confirmed cases which are obtained by DAM
modeling. Unlike this approach, the SIR model employs
discrete total confirmed cases directly. SIR model predicts
upcoming days with modeled function while the proposed
approach calculates total cases by integrating the modeled
curve.

D. PREDICTION WITH LONG SHORT-TERM MEMORY
Conventional Neural Networks that operate on vectors fail
to capture time dependencies on sequential data. Recurrent
Neural Networks are a family of models that address this
issue and are capable of processing over time series. In this
study, to compare the performance of DAMon the COVID-19
dataset, we used a special type of recurrent neural network,
Long Short-TermMemory (LSTM), that is widely popular in
predicting and modeling the content of time series. An LSTM
cell in layer-l and step-t has two kinds of inputs, one from
the previous time step (hlt−1) and another from the previ-
ous layer (hl−1t ). Information from previous time steps are
stored in cell state (clt ) and updated with gated inputs. There
are four gates in an LSTM cell: input, forget, output, and
gate. Gate g is a hyperbolic tangent (tanh) and takes values
between -1 and 1. All other gates are sigmoid functions and
are between 0 and 1. LSTMs optionally inherit information
from previous time steps with the help of gates. Gate equa-
tions are listed below in Equation (38) – (43). Each gate
learns its own set of parametersW ’s and b’s. In equations (42)
and (43), � is the Hadamard Product.

f t = σ
(
W f [hlt−1,h

l−1
t ]+ bf

)
(38)

it = σ
(
W i[hlt−1,h

l−1
t ]+ bi

)
(39)

ot = σ
(
Wo[hlt−1,h

l−1
t ]+ bo

)
(40)

gt = tanh
(
Wg[hlt−1,h

l−1
t ]+ bg

)
(41)

clt = f t � clt−1 + it � gt (42)

hlt = ot � tanh
(
clt
)

(43)

An LSTM unit may consist of one or multiple cells where
each cell updates its state with the previous state clt−1. There-
fore gates, the cell state (clt ) and hidden state (hlt ) are vectors
that contain information from all cells of an LSTM unit.
Equation (42) shows how an LSTM cell is updated. Here,
f gate decides how much of previous knowledge should par-
ticipate in the current state while i gate decides how much of
new input should be acquired. Then LSTM neuron updates
its internal hidden state by multiplying output and squashed
version of clt . An LSTM unit only outputs its hidden state
information h, cell states are utilized internally. To compare
our previously proposed approach to the COVID-19 dataset,
we employed a Vanilla LSTM network with two stacked
LSTM layers and a linear prediction layer. Each LSTM layer
contains 50 units. The model is trained with the Adam Opti-
mizer and the learning rate is set to 0.001 [55].

III. NUMERICAL RESULTS
In this section, we report modeling, prediction, and incuba-
tion period analysis of COVID-19 cases for 8 countries using
the proposed approaches in comparison to Time-Dependent
SIR and LSTM models. COVID19 dataset used in this
study is retrieved from [56] and contains numbers of con-
firmed, recovered, and death cases. Proposed approaches are
implemented on MATLAB and publicly available at [57]
and [58]. First, the performance of DeepAssessmentMethod-
ology on modeling and prediction are investigated. Later, the
peak of COVID-19 infection is predicted using the Gaus-
sian Distribution modeling approach. Further, we compared
DAM prediction performance to other prediction approaches,
Time-Dependent SIRModel and LSTM. Results are reported
using the Mean Average Precision Error (MAPE) metric
which is calculated as follows:

MAPE =
1
k

k∑
i=1

∣∣∣∣P (i)− f (i)P (i)

∣∣∣∣× 100 (44)

where k is the total number of samples, P (i) is the actual
value and f (i) is the predicted value for ith sample.

A. MODELING RESULTS WITH DEEP ASSESSMENT
METHODOLOGY
In this part, we illustrate the modeling performance of Deep
Assessment on COVID-19 cases.

Modeling results for the number of confirmed cases,
deaths, and recoveries using Deep Assessment, are shown
in Table 1. With DAM, l value (the number of required
previous data) is optimized with grid search and varies across
countries. For the modeling of the COVID-19 infected case
numbers of each country, the required previous data l of past
years used in the algorithm differs after optimization and
reported in the second column. Optimized M values can be
found in the first column. The Deep Assessment model has
a 0.6671%, 0.6957%, and 0.5756% average MAPEs for con-
firmed cases, deaths, and recoveries, respectively. For con-
firmed and death cases Turkey is the best-modeled country
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TABLE 1. Modeling results (γ , M, l , and MAPE values) of 8 countries
including china, France, Germany, Italy, Turkey, the UK, and the USA for
COVID-19 dataset using deep assessment methodology.

with the smallest MAPE being 0.13% and 0.0092%, while
for recovered cases USA is modeled best with 1.62e-12%
MAPE. As mentioned in the previous section, the grid search
of the fractional-order parameter includes 1, where it is equal
to the integer-order derivative. Column 4 shows that none of
the experiments optimized fractional-order as 1. This finding
demonstrates the benefit of fractional calculus.

MAPEModeling =
100

m− l + 1

m∑
i=l

∣∣∣∣P (i)− f (i, γ )P (i)

∣∣∣∣ (45)

Fig. 4 illustrates the modeling performance of each coun-
try. As can be seen from the figures, countries with smooth
actual data curves like Turkey and Italy result in smaller
MAPEs. As expected, jumps in the dataset result in relatively
higher MAPEs as in confirmed cases of China and recovered
cases of Germany.

B. ONE-STEP PREDICTION WITH DAM AND LSTM
This section illustrates the prediction performance of Deep
Assessment Methodology on the COVID-19 dataset and
compares DAM with LSTM. For all experiments, the
test region is set to the 19th of April. Table 2 reports

optimized γ , l,M values, and the corresponding performance
of both DAM and LSTM models. Here, column 3 reports
the performance of DAM while column 6 represents LSTM.
Column 3 shows that DAM predicts COVID-19 with an aver-
age 0.1343% error while LSTM yields a 0.6393% error. The
best-predicted country is Italy for confirmed cases and deaths
while France has the smallest MAPE on recoveries. For all
three settings, DAM yields the highest MAPE for Spain.
Table 2 demonstrates that in the implemented setting, DAM
outperforms LSTM by 0.5050% average error and produces
fair results.

MAPEPrediction =
100

m1 − l + 1

m∑
i=m1

∣∣∣∣P (i)− f (i, γ )P (i)

∣∣∣∣ (46)

Table 3 reports the prediction of COVID-19 confirmed cases,
deaths, and recoveries on April 20th for both DAM and
LSTM methods. It can be seen that except for the prediction
of recovered cases of Spain, both models produce similar
results.

C. MODELLING AND SHORT-TERM PREDICTION
WITH SIR MODEL
Following Lu et al. [21], for the prediction, we set α1 and α2
to be 0.03 and 10−6 respectively for all 8 countries. However,
to avoid noising data and due to the trend of each country,
we set the orders of the FIR filters J and K as well as choose
training data for conditioning and predicting β(t) and γ (t)
differently. The performance, parameters, and settings are
reported in Table 4. The first row of the table reports the
starting date of training data for prediction. The orders of
the FIR filters are illustrated in the second and third rows.
The next three rows show MAPE of active cases, recovered
cases, and total confirmed cases respectively within train-
ing periods for all countries. Note that we exclude data of
the 17th of April for China because Wuhan had revised its
official death to increase by 1290 deaths. Also, a special
note for Spain and U.K is that they stopped updating the
recovered number since the 19th of May and 11th of April
respectively. Regard to active cases, the lowest MAPE is
obtained for the US as 0.64% while China yields the highest
value as 3.9945%. In contrast, the lowest MAPE regarding
recovered cases is obtained for China as 0.4102% while
the US yields the highest value as 1.9007%. However, the
MAPE of total confirmed cases, which is the sum of active
and recovered number, are just below 0.8% for all coun-
tries. Finally, the last three rows report active, recovered
and total confirmed cases for each country on date 19th

of July, 2020.
The modeled and predicted active and recovered cases are

illustrated in Fig. 5.

D. PEAK AND SHORT-TERM PREDICTION WITH GAUSSIAN
In this section, the peak of daily confirmed new cases and
short-term trends of COVID-19 (30-days ahead) are pre-
dicted using Gaussian modeling with DAM. As explained
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FIGURE 4. COVID-19 modeling on confirmed, death, and recovered cases for China, France, Italy, Germany, Spain, Turkey, UK, and
the USA with DAM Methodology.

in Section III-C, Deep Assessment Methodology is required
for peak estimation. First, the data is modeled using DAM,
then the derivative of the modeled data is fitted to a Gaus-
sian by Least Square Method, and relevant parameters such
as a,A, and b are optimized. Once, the parameters of Gaus-
sian are determined, the future prediction is made based on
the model at hand. In this setting, for the modeling with
DAM, the total confirmed cases and daily new confirmed
cases until the 19th of June are used. The Prediction range is

30 days, from the 19th of June to the 19th of July. In Table 5,
the performance, parameters, and settings are reported for
Gaussian peakmodeling. The first row of the table, reports the
Cut value, the number of points eliminated during Gaus-
sian fitting to achieve better optimization because taking the
derivative of the edge points in a finite domain causes jumps.
For all countries, M, number of terms in the equation, is set
to 3, as reported in the second row. Fractional order γ ’s are
illustrated in the third row. The largest fractional order is
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TABLE 2. Test (m1 < i < m) results (γ , l , M, and MAPE) of COVID-19 confirmed cases, deaths, and recoveries for corresponding countries.

TABLE 3. Prediction results of the confirmed, death, and recovery cases of the countries for 20 April 2020.

obtained for the UK. For Germany and Spain, γ is determined
equally, being 0.54. Performance of DAM on modeling the
data until the 19th of June is shown in the fifth row. The lowest
MAPE is obtained for Italy as 0.0229%while Germany yields
the highest value as 1.2281%. The average MAPE on model-
ing is 0.5429%. After taking the derivative of modeled data,
Gaussian’s parameters are found by Least Squares Method
and the parameter related to variance (a), can be seen in row 5.
In row 6, b value is reported, which represents the time of
peak after the beginning of the infection. For instance, China
reached a peak 10 days after the first confirmed case. The lat-
est peak is modeled for the USA as 66. The number of daily

changes for the peak date is A in the Gaussian modeling and
shown in the seventh row. The highest change is predicted for
the USA. Finally, the last row reports total confirmed cases
for each country on date 19th of July 2020. The determined
parameters a and b of gaussian are on row 5 and 6, respec-
tively. One can see from the 8th column, the latest peak date
is observed in the USA and the fastest peak date is obtained
for China. It is illustrated that, for modeling, the Gaussian
model produces superior results with smaller M value when
compared to plain Deep Assessment Methodology. With
M = 3, Gaussian yields smaller MAPE compared to M = 7
in DAM.
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TABLE 4. MAPE of training period (until 19 June) and prediction results of the countries.

The modeled and predicted confirmed cases are illustrated
in Fig. 6. The left-hand side figures show the original data,
the modeling, and the prediction curves of total confirmed
cases. The modeling curve is obtained using DAM, after
that, the prediction curve is obtained by fitting the derivative
of modeled data to the Gaussian function. Right-hand side
figures illustrate the actual data and fitted Gaussians which
are the predicted values. Fig. 6 show that peak predictions
are reasonably close to real data except for the US. When
analyzed together with Table 5, it is seen that Germany
yields the highest MAPE due to fluctuations in the actual
data. However, the daily change curve of France is the best-
fitted one. When compared with the prediction results of
the SIR model reported in Table 4, the Gaussian approach
underestimates the trend of the pandemic and yields lower
values of predictions. The reason for that is two-folded.
First, the time-dependent SIR model takes the dynamics of
pandemic into accounts such as transmission rate, recover-
ing rate, and the reproduction numbers. On the other hand,
Gaussian modeling relies on directly confirmed cases data
without using any variant related to pandemic. Secondly,
on Gaussian modeling, a Gaussian function is fitted to the
daily changes in confirmed cases by optimizing two param-
eters. However, daily changes in confirmed cases do not
follow a perfect Gaussian. Therefore, while fitted Gaussian
fades away quickly, daily changes have oscillations on the
right-hand side tail caused by the dynamic nature of the
pandemic.

E. UNDERSTANDING THE EFFECT OF HISTORY BY
ANALYZING THE SHORT-TERM MEMORY
WEIGHT VECTOR
It is important to understand the effect of the previous num-
ber of cases on current cases to assess the severity and the

future of a pandemic. Analyzing the past helps to understand
the net incubation period, the effect of regulations against
the pandemic, whether the virus mutates or not, and the effect
of a particular collective behavior in a country. Therefore,
in this section, we analyze the memory property through opti-
mized coefficients of previous time instances. As explained
in Section II, at any time instant, we can express a function
g(x) as a weighted summation of its previous values and its
derivative:

g (x) ∼=
l∑

k=1

αkg (x − k)+
l∑

k=1

βkg′(x − k) (47)

Here, the second term in equation (47) can be expanded
as:

l∑
k=1

βkg′ (x-k) =
l∑

k=1

[βkg (x + 1− k)− βkg(x − k)]

(48)

To directly see the effect of any previous instant, we sub-
stitute (48) into (47). In this case, g(x) becomes:

g (x) =
l∑

k=1

Akg(x − k) (49)

where the weight coefficient of any previous instant Ak is
calculated as follows:

Ak =
1

1− β1
(αk − βk + βk+1) (50)

In equation (49), l determines the number of previous steps
considered in the modeling. The coefficients αk and βk
are found using the Taylor expansion, fractional deriva-
tive, and Least Square Method as explained in section II.
Once these coefficients are found, the effect of any previ-
ous time instant can be understood by calculating Ak by
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FIGURE 5. COVID-19 modeling on active and recovered cases for China, France, Italy, Germany, Spain, Turkey, UK, and the USA with SIR
Model.

equation (50). Together with l steps considered in the past,
Ak coefficients form an l-dimensional memory weight
vector H :

H = [A1,A2, . . . ,A3]

Any element Ak of H represents how important the kth

previous step in regards to the current instance. To achieve
better modeling and inference, experiments are carried out
with M = 50. In this section, normalized H vectors
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TABLE 5. Prediction results of the confirmed and daily changes in the countries.

are analyzed using wavelet-based denoising and correlation
coefficients.

Fig. 7 illustrates the normalized memory vectors for China,
France, Germany, Italy, Spain, Turkey, the UK, and the US.
To eliminate oscillations, wavelet-based denoising is applied
to each memory vector, H . For each figure, the blue curve
denotes the original memory signal, while the red curve
denotes the denoised signal. Figures indicate that, for all
countries, except Germany and Turkey, coefficients after day
14-20 washes out and has oscillations. When wavelet-based
denoising is applied, coefficients after 14-20 days are zeroed
out. This means that any time instant can be mainly expressed
in terms of the last two weeks. This is consistent with the
incubation period of COVID-19, the number of confirmed
cases today are mainly dependent on the number of cases
in the last 14-days [1]. In countries like Germany, Italy,
and the UK, the highest memory coefficients are observed
within the first week. In the US and France, the high-
est peaks of coefficients span the second week. Based on
this observation, Germany, Italy, and the UK have shorter
average incubation periods when compared to the US and
France.

Among all the countries, Turkey is the one with the
largest non-zero memory period. In contrast to other coun-
tries, memory coefficients of Turkey include non-zero val-
ues up to the 40th day. Considering COVID-19 has an
incubation period up to 14 days, the reason behind this
figure can be the noise on the existing data, the strategy
against the pandemic, and the collective behavior of the
country.

Fig. 8 shows the correlation coefficients (given in Table 6)
between memory vectors by a color map. Correlation coef-
ficient R takes values between [−1, 1] and the sign of R
indicates the direction of a relationship. Positive R means
that, if any value for a country increases, the other country
also increases. Negative R means that if the value of one

country increases, the value of the other country decreases.
In this figure, the red color indicates a strong positive cor-
relation while blue color indicates a strong negative cor-
relation. The color bar is given on the right-hand side of
the figure. One can see that the strongest correlation is
observed in the UK – Italy pair, while the strongest nega-
tive correlation is observed for France and the US. France
is negatively correlated with Germany and Turkey while
China possesses highly positive correlations with France and
Spain. Both China and France has a strong negative correla-
tion with the US. On the other hand, the US and Germany
do not have any positive correlation with another country,
while Turkey does not maintain any relevant affair at all.
Also, Spain has weak positive correlations with the UK,
Germany, and Italy. Germany is negatively correlated with
France. Lastly, two countries that have a strong positive
correlation between them, the UK and Italy, have a simi-
lar pattern of correlation coefficient values. Both countries
have a weak positive correlation with China, France, and
Germany.

IV. LIMITATIONS OF THE STUDY
In this study, the curve of daily changes is assumed to be a
Gaussian function, however, in reality, it does not follow a
perfect Gaussian for every country. Also, the model relies
on the data without considering any prevention measures
taken by governments and social distancing policies directly.
Investigating the direct effect of preventions are left for future
study. However, daily confirmed cases, active cases, and
deaths show the strategies, politics, and preventions such
as curfews, wearing masks, social distancing of each country
indirectly. The change in the daily confirmed cases, active
cases, and deaths overtime inherently keep the information
about each country. Further, the time-dependent SIR model
takes the dynamics of pandemic and thereby the effectiveness
of government interventions over time into account, still,
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FIGURE 6. COVID-19 modeling on confirmed and daily changes for China, France, Italy, Germany, Spain, Turkey, UK, and the
USA. Left-hand side figures demonstrate total confirmed case numbers, while the right-hand side figures illustrate daily
changes in confirmed cases.
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FIGURE 6. (Continued.) COVID-19 modeling on confirmed and daily changes for China, France, Italy, Germany, Spain,
Turkey, UK, and the USA. Left-hand side figures demonstrate total confirmed case numbers, while the right-hand side
figures illustrate daily changes in confirmed cases.
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FIGURE 6. (Continued.) COVID-19 modeling on confirmed and daily changes for China, France, Italy, Germany, Spain, Turkey, UK,
and the USA. Left-hand side figures demonstrate total confirmed case numbers, while the right-hand side figures illustrate daily
changes in confirmed cases.

TABLE 6. Correlation coefficients between country pairs.
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FIGURE 7. Normalized memory coefficients and corresponding wavelet-based denoised signals for
China, France, Germany, Italy, Spain, Turkey, U.K., and the U.S.
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FIGURE 7. (Continued.) Normalized memory coefficients and corresponding wavelet-based denoised
signals for China, France, Germany, Italy, Spain, Turkey, U.K., and the U.S.

FIGURE 8. Correlation Coefficient, R, of Memory vectors between
8 countries: China, France, Germany, Italy, Spain, Turkey, U.K., and the U.S.

the impact e.g. of the reproduction factor (R-Value) needs a
more explicit integration into the modeling.

V. CONCLUSION
This document is aimed to provide practical suggestions on
how to predict case numbers for a better strategy for plan-
ning health resources for patients under the current pandemic
conditions. This modeling is not only for today’s COVID-19
reality, but it can also be used for future local or worldwide
outbreaks. In this study, the number of confirmed cases,
deaths, and recoveries of the COVID-19 outbreak is mod-
eled and predicted for 8 countries including China, France,
Germany, Italy, Spain, Turkey, the UK, and the USA.

First, we modeled the COVID-19 data, from the first con-
firmed case date to the 19th of April by using our previously
presented Deep Assessment Methodology which relies on
Fractional Calculus. Then, a one-step prediction was made
using the DAM and Long-Short Term Memory (LSTM) to
assess the performance of DAM. The third part of the study

focused on the short-term prediction of the pandemic where
the following 30 days are predicted with the Time-Dependent
SIR model and Gaussian model that relies on the derivative
of the continuous number of confirmed cases obtained from
DAM. The purpose of the Gaussian modeling was to predict
the future of the pandemic through the daily changes of
pandemic data and to estimate the peak number of cases.
Employed Time-dependent SIR model effectively predicted
the number of infected and recovered cases in the future
up to the 19th of July. We showed that DAM successfully
modeled the COVID19 dataset with 0.6671%, 0.6957%, and
0.5756% average MAPEs for confirmed cases, deaths, and
recoveries, respectively. Also, results illustrated that DAM is
superior to LSTM for a one-step prediction of the pandemic.
Based on the analysis, it can be seen that fitting a Gaussian
function on the dataset underestimates the future trend of
the pandemic. The proposed Gaussian prediction method
can be used in peak prediction, however, underestimates
the future. Better prediction results can be achieved by tak-
ing the different distributions (generalized inverse Gaussian,
Maxwell-Boltzmann, Nakagami, F and Fréchet distributions)
into account that model the daily change of the number of
patients for the future studies.

Lastly, an analysis of the past is made by applying wavelet-
based denoising on memory coefficient vectors and cal-
culating correlation coefficients between countries’ vectors
obtained with the DAM. The experiments showed that, for
all countries except Turkey, the current number of confirmed
cases of the pandemic was mainly determined by the last
14 days which was consistent with the incubation period of
COVID-19. Results point out that, countries like Germany,
Italy, and the UK have a shorter average incubation period
when compared to the US and France.

Evaluation of multivariable and multifunctional prob-
lems, analyzing time windows, randomness, noise, and error

VOLUME 8, 2020 164031



E. Karaçuha et al.: Modeling and Prediction of the Covid-19 Cases

changes are also left to future work. Implementations of the
DAM and Gaussian Prediction are publicly available at [57]
and [58].
Conflicts of Interest: The authors declare no conflict of

interest. The funders had no role in the design of the study;
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