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ABSTRACT The detection and identification of stored grain insects is important to ensure the safety of
grain during grain storage. At present, insect identification methods primarily rely on manual classification;
therefore, the automatic, rapid and accurate detection of stored grain insects remains a challenge. This
paper proposes an improved detection neural network architecture based on R-FCN to solve the problem
of detection and classification of eight common stored grain insects. In this network, we use the multiscale
training strategy with a fully convolutional network to extract more features of the insects and automatically
provide the location of potentially stored grain insects through an RPN from the feature map. By using
the position-sensitive score map to replace some fully-connected layers, our network is more adaptive to
detect insects in complicated backgrounds, and our detection speed is improved. In addition, we also used
soft-NMS to solve the superposition interference between insects and to further improve the detection
accuracy. Sufficient comparative experiments are performed using our two stored grain insect detection
datasets, which are carefully annotated by entomologists. Quantitative comparisons against several prior
state-of-the-art methods demonstrate the superiority of our approach. Experimental results show that the
proposed method achieves a higher accuracy and is faster than the state-of-the-art insect image classification
algorithms.

INDEX TERMS Stored-grain insect, object detection, insect classification, improved R-FCN, soft-NMS.

I. INTRODUCTION
Insects are one of the direct causes of loss during postharvest
operations [1]; therefore, it is crucial to detect and identify
stored grain insects by using a stored grain insect monitoring
system.Due to the disadvantages of traditional methods [2]
(e.g., near -infrared, acoustical methods, electrical conductiv-
ity), such as difficulty in sampling, slow speed, and manual
work, rapid and accurate pest detection has long been a
difficult problem to solve. However, the image recognition
method based on deep learning can acquire many images of
grain insects with low cost and a high recognition rate through
seduction and other methods [3].

Deep learning has mademany improvements in agriculture
through the progress of science and research, such as leaf
diseases identification [4] and insect recognition [5], [6].
In addition, deep learning is used to classify the feature
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vectors from insect image features based on the generalized
learning ability of big data to quickly identify the categories
of different insects. Meanwhile, the target detection tech-
nology based on deep learning can automatically learn and
generalize the characteristics of large picture data. Image
detection also has notably high research value in the field of
stored grain pest detection.

In the field of insect classification based on computer
vision, the extraction of insect texture, shape, and local char-
acteristics have long been the focus of research [7]– [10].
Xie et al. [11] combined a sparse-coding technique for
encoding insect images with multiple-kernel learning (MKL)
techniques to construct an insect recognition system, which
achieved an mAP (mean average precision) of 85.5%
on 24 common insects in crop fields. Lim et al. [12]
adopted Alexnet and Softmax to build an insect classifica-
tion system, which was optimized by adjusting the network
architecture. Yalcin [13] proposed an image-based insect
classification method by using four feature extraction
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methods: Hu moments (Hu), Elliptic Fourier Descrip-
tors (EFD), Radial Distance Functions (RDF) and Local
Binary Patterns (LBP), but these images need preprocess-
ing manually, which is undoubtedly very time consuming.
Pjd et al. [14] proposed a prototype automated identification
system that distinguishes five parasitic wasps by identifying
the differences of the wing structure. Mayo and Watson [15]
developed an automatic identification system using SVM to
recognize the images of 774 live moths, without manually
specifying the region of interest (ROI). Because of the dif-
ferent characteristics of different species and because adults
of the same species may exhibit the same characteristics,
the classification of stored grain pests has reached a high level
of accuracy. However, in the practical application process,
there are many problems in the image detection of grain
insects, such as the confusion between insects and grain
particles, the shielding of grain grains from grain insects, and
the shielding of grain insects from grain grains.

To further solve the problem of multiple pests in
real pictures, the researchers also did a lot of research.
Ding and Taylor [16] proposed a neural networkmodel based
on deep learning to classify and count the number of moths
and achieved successful results under relatively ideal experi-
mental conditions. Shen et al. [17] proposed a faster-RCNN
framework based on a convolutional neural network to detect
6 stored grain pests with an accuracy rate of 88.02%.
Liu et al. [18] proposed the PestNet network structure and
used RPN, position score sensitivity and other technologies
to detect pests in the field, which obtained good results.
Xia et al. [19] proposed the Region Proposal Network based
on a convolutional neural network to detect insects in crop
yield, which achieved relatively high accuracy. The rapid
identification of insects by existing models in the field of
stored grain insects has revealed that there are still some prob-
lems to be solved, especially in the detection and identifica-
tion of multiple insects in a single picture. The problems that
need to be solved primarily occur when features are not clear
(the insects were too small relative to the picture), features
are similar (such as the features of Sitophilus oryzae and
Sitophilus zeamais), and the target insects are superposed.

In this context, we proposed improved neural network
architecture, the improved R-FCN, for rapid and accurate pest
detection. In this architecture, we used a convolutional neural
network for feature extraction, a region proposal network, and
a position-sensitive score map for target detection. The strat-
egy of a position-sensitive score map and position-sensitive
ROI pooling are proposed in the network structure of the
R-FCN [20]. As the network structure of R-FCN eliminated
the time consumption of the two-layer full connection layer
in the RCNN series network [21]– [23], it adopted the global
average pooling strategy to reduce the computation of con-
sumption in the two-stage network, and the speedwas notably
improved. Therefore, we adopted the network structure of
R-FCN as the basic structure and further improved it.

In this study, we developed a method based on R-FCN,
which can be used to detect the insects rapidly and accurately.

Firstly, we introduced the backbone DenseNet [24] as a
feature extraction convolutional neural network and used
the depth separable convolution technique [25] to reduce
the number of parameters and computations. Through the
improved DenseNet, the features on the picture could be bet-
ter extracted to achieve accurate identification of insects and
similar species. Then, the multi-scale training strategy [26]
was used to extract more generalized features for accurate
identification. In addition, the soft-NMS algorithm [27] was
used to optimize the attenuation of the adjacent detection box
scores of the overlapped parts, which solved the superposition
problem between insects and other insects, insects and grains,
and insects and grain pores. Thus, the detection performance
of the algorithm was further improved. Finally, we not only
carried out corresponding experiments on the images in a
laboratory environment, but also verified the images in the
actual grain storage environment, and the results were in line
with our expectations.

The rest of this article is organized as follows.
Section 2 describes the datasets we have created and
introduces our proposed network architecture in detail.
Section 3 describes the experiments and analyses. Section 4
presents the discussion and limitations of our work.
Section 5 presents the conclusion of our work.

II. MATERIALS AND METHODS
A. IMAGE DESCRIPTION AND PREPROCESSING
For stored grain insect detection and identification, almost
no standard open-source databases exist. Therefore, with the
help of ASAG China (Academy of State Administration of
Grain), eight kinds of stored grain insects were obtained
in Fig. 1. Dataset 1 was created in a laboratory environment.
We obtained 1716 original images from pest culture dishes
with a resolution of 2592 × 1944. The total images were
randomly sampled and 70% as the training set, and the rest
were used as the testing set. The average insect density
was approximately 14 per picture. Dataset 2 was created
to simulate the actual situation in the green warehouses.
We obtained 784 original images with a resolution of 2592×
1944. The average insect density was approximately 8 per
picture. In this paper, we used dataset 2 to verify the model in
complex cases. Table 1 below shows the number and species
of each original insect image in the training set and test set,
as well as the number of stored grain insects in all images.

For the preprocessing of the original image in Fig. 2,
we used Labeling (an open-source target detection image
annotation software) to carry out the data annotation and store
the annotation information in an XML file. In accordance
with the format of the PASCAL VOC standard data set,
the file directory was arranged to facilitate the data reading
of the model.

The biological forms of adult insects of a single species
were basically the same. The main differences of insects
of different species were in size, shape, and color gloss,
among which the differences of shape were mainly in the
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TABLE 1. The number of images and insects used for training and testing.

FIGURE 1. Sample images of 8 grain insects in our Work. Note that these sample images are from the specimens, and
there is a big gap with the actual situation of the images.

FIGURE 2. The data flow in our research. First, the stored grain insects were marked in raw images. Second, the stored
grain insects were finely annotated through two steps by entomologists in grain stored. Finally, the dataset was
separated into two subsets and fed into the network for training and prediction.

antennae, head, and backplate. Therefore, in the process of
classification, fewer feature values of shape needed to be
extracted, and generally satisfactory results could be obtained

through a deep feature extraction network. But for the identi-
fication process, the location, the direction, and superposition
of insects made the identification a difficult problem.
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FIGURE 3. Data augmentation. (a) Dataset 1 was created in a laboratory environment; (b) Dataset 2 was simulated in actual
situation.

FIGURE 4. Schematic structure of the proposed detection network.

To enrich the training set and improve the generalization
ability of the model, five data enhancement methods were
adopted to expand the training set [28]. The methods are
as follows: 1) enriched the different postures of the insect
through horizontal mirror image; 2) added Gaussian noise to
the training set to enhance the generalization ability of the
model; 3) adjusted the image brightness such that the model
could generalize the detection of insects in scenes with differ-
ent levels of brightness; 4)rotated images to create different
orientations and postures of insects; 5) capture different parts
of the original image through clipping such that the training
set could have more images with different views. Through
these methods, our new data volume is 10,296 images, close
to 144,000 insect images. Basically, meet the experimental
requirements. Table 1 below shows the number and species

of each data-enhanced insect image in the training set and
test set, as well as the number of stored grain insects in all
images. The original image and the data-enhanced image are
shown in Fig. 3.

B. OBJECT DETECTION NETWORK
Our neural network in Figure.4 consisted of three stages:
insect feature extraction, insect regions search and insect pre-
diction. First, the input image was fed into the CNN backbone
to extract feature maps, where DenseNet was used for feature
extraction. Then, we fused the RPN with position-sensitive
score maps to provide insect regions and insect predictions.
During the merging of the overlapping candidate boxes,
we used soft-NMS instead of the original NMS to further
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improve our results. Next, wewill discuss each of these stages
in more detail.

1) CNN FEATURE EXTRACTION NETWORK
Convolutional Neural Networks (CNNs) are a special type of
neural network inspired by the cognitive mechanism of bio-
logical vision. The core of the convolutional neural network is
the convolution operation. Therefore, a convolutional neural
network has excellent performance in image classification,
object detection and other computer vision tasks. Without
complex image preprocessing, a convolutional neural net-
work can automatically extract the effective features from
a large number of original input data, which makes image
feature extraction simple and efficient.

In order to obtain better feature results, more complex
feature extraction is usually carried out with a deeper network
structure [29]– [31]. A variety of novel and advanced CNN
network structures greatly improve the classification perfor-
mance and target positioning performance of the current sys-
tem [32]. However, as the network deepens,such problems as
gradient disappearance/explosion often occur. DenseNet was
adopted to optimize the CNN layers of the model. One of the
advantages of DenseNet is that each layer in its network struc-
ture is directly connected to its front layer, effectively solving
the problem of gradient disappearance through realizing the
repeated utilization of features. At the same time, the number
of channels in each layer of the network is designed to be
notably small, strongly reducing the number of parameters
and redundancy. The dense block in original DenseNet-121 is
shown in Fig.5.

FIGURE 5. Structure of original and improved DenseNet-121. The original
part is the initial structure; the improved part is that we use deep
separable convolution to optimize the network.

2) RPN
In our network, we adopted an RPN module to obtain object
proposals for the potential task of identifying the regions of
the objects. As the RPN generates proposals from the points
on the feature map obtained from the CNN feature extrac-
tion network, it can automatically provide effective regions.
In contrast to other relevant methods e.g. selective search [33]
and edge boxes [34], RPN adopted the sharing of convolution

layer parameters to greatly improved the generation speed of
the proposals and introduced various anchor boxes for box
regression reference to ensure the quality of the proposed
objects.

Fig.6 shows the framework of the RPN module in the
training phase. The RPN network mainly completes two
tasks: 1) the classification of background and foreground
and 2) regression correction of the proposed objects while
obtaining their approximate coordinates. First, we map each
point on the feature map back to the original image to
generate 9 anchors; the Anchor generated by each point
has 3 kinds of length-width ratios (1 : 1, 1 : 2, 2 : 1) and
scales (128× 128, 256× 256, 512× 512). In this paper,
we computed our scales (8× 8, 16× 16, 32× 32) specifi-
cally, which ensured an effective receptive field for finding
tiny insects on the input images.

FIGURE 6. Region Proposal Network(RPN).

For predicting categories and creating bounding boxes,
we employed softmax regression which is an expansion of
logistic regression. Besides, we defined a threshold to filter
most of the boxes which held low scores, and non-maximum
suppression (NMS) was also applied to retain regions with
locally maximal scores, in which Intersection-over-Union
(IoU) was adopted as a metric to eliminate most of the over-
lapping boxes. Training followed Multi-task Loss Function.
The loss function included Softmax Classification Loss Lcls
and Bounding Box Regression Loss Lreg [20], that is:

RPN_loss =
1
Ncls

∑
i

Lcls(pi, p∗i )

+λ
1
Nreg

∑
i

p∗i Lreg(ti, t
∗
i ) (1)

Lcls(pi, p∗i ) = −log
[
pip∗i + (1− pi)(1− p∗i )

]
(2)

Lreg(ti, t∗i ) =
∑

iεx,y,w,h

smoothL1(ti − t∗i ) (3)

smoothL1(x) =

{
0.5x2, if |x|<1
|x| − 0.5, otherwise

(4)

where N is the numbers of anchors, i is the anchor’s index in
the training, pi is the prediction probability of the ith anchor,
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FIGURE 7. The architecture of position-sensitive score map.

p∗i is the label of the ith anchor, and ti and t∗i denote
{x, y,w, h} of the predicted and true bounding boxes, respec-
tively.

3) POSITION-SENSITIVE SCORE MAP AND
POSITION-SENSITIVE ROI CLASSIFICATION
To solve the problem of location insensitivity in classifica-
tion network and location sensitivity in the detection net-
work, we adopted the position-sensitive score map(PSSM)
to encode position information. As shown in Fig.7, a new
convolutional layer is extended after feature map to produce
a 72(C + 1) channels score map to develop a location sense
for each category, in which (C + 1) is the number of object
categories plus the background. Each region through the RPN
is divided into a 7 × 7 grid and mapped into a score map.
Then, the local corresponding score map is processed by
the ROI pooling layer to reduce the weight and height by
applying an average pooling in each region. Finally, the score
map calculated 3*3 confidence scores for C + 1 categories
that represent the possibility of each position, and then the
3 × 3 scores are averaged and used to vote for the final
class score. Similarly, we also fine-tuned the bounding box by
augmenting an extra 4×7×7×(C+1) channels convolutional
layer and produced 4 × (C + 1) channels in a similar way.
Therefore, in the PSSM method, the two score maps are
sensitive to the positions of region proposals because various
channels indicate different positions.

4) TRAINING
Our loss function defined on each RoI is the summation of
the cross-entropy loss and the box regression loss[R-FCN]:

R− FCN_loss = Lcls(pc∗ )+ λ[c∗ > 0]Lreg(t, t∗) (5)

Lcls(pc∗ ) = −log(pc∗ ) (6)

Lreg(t, t∗) =
∑

iεx,y,w,h

smoothL1(ti − t∗i ) (7)

In this equation, c∗ is the RoI’s ground-truth label
(c∗ = 0 represents the background). [c∗ > 0] is an
indicator that equals 1 if the argument is true and 0 oth-
erwise. We define positive examples as the RoIs that have
an intersection-over-union (IoU) overlap with a ground-truth
box of at least 0.5.

C. MODEL OPTIMIZATION
1) IMPROVED DenseNet-121
In this paper, we used the improved DenseNet-121 in Fig.5 as
the CNN feature extraction network by improving on the orig-
inal Densenet-121. On the basis of original Densenet-121,
we changed the3 × 3 convolution in the fourth Dense Block
with deep separable convolution. In this way, we reduced the
parameters and made the network lightweight, and there was
an improvement in accuracy.

2) soft-NMS
In this paper, we changed the traditional NMS to
soft-NMS [27] to improve the detection accuracy of
stored-grain insects with mutual occlusion. The traditional
NMS algorithm directly delete objects with lower scores in
the two overlapped areas, thereby causing missed detection
of occluded objects. In addition, the threshold value of NMS
requires relevant experience and many trials to determine
a more appropriate value.Soft-NMS made the following
improvements:

si =

{
si, iou(M , bi) < Nt
si(1− iou(M , bi)), iou(M , bi) >= Nt

(8)

si = sie
iou(M ,bi)

2

σ , ∀bi /∈ D (9)

In this equation, σ is the attenuation factor,and D was pre-
served after the maximum inhibition treatment suggestion
box set. In this experiment, σ was set to 0.5. Through soft-
NMS, we attenuated the scores of adjacent detection boxes
with overlapping detection boxes M. The larger the overlap
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was, the greater the attenuation of the scores was. At the
same time, by changing score reset function into a continuous
function, the result of the score reset function was prevented
frommutating and caused a substantial change in the category
score sequence.

3) TRAINING STRATEGY IMPROVEMENT
To further improve the detection performance of the algo-
rithm, multi-scale training techniques were used in the train-
ing, and three input image scales were set: 800×640, 1024×
800 and 1280×1024. One of the scales was randomly selected
for training every 1000 iterations. The experiment proved
that more generalized features of the input image at different
scales could be learned through multi-scale training, which
brought about an improvement inaccuracy. Compared with
the previous experiment, it achieved an average improvement
of approximately 1%.

III. EXPERIMENTS AND EVALUATION
A. EXPERIMENT SETTING
In this section, we presented some experiments to validate
effectively of our neural network. All experiments in this
paper were running on two NVIDIA TITAN XP GPUs, and
our codes were based on CUDA 9.0 with Pytorch deep
learning environment. Before training, we expanded the data
set (see section2.1 for details) and compared the difference
of the results after the expansion of the data set through
Faster R-CNN network. We verified the effectiveness and
advantages of several existing exposure models and per-
formed many experiments on our stored grain insect data set.
In this paper, we used two-stage detection models (Faster
R-CNN, R-FCN), a single-stage detection model (YOLO)
[27] and other target detection deep learning frameworks.
On this basis, we conducted experiments to change the use
of different basic networks in these frameworks and used the
open-source model as the benchmark to verify the effective-
ness of the improved model in this paper.

In our basic R-FCN network structure, we used a weight
decay of 0.0005 and a momentum of 0.9. By default, we use
single-scale training where the images were resized such that
the scale (shorter side of image) is 600 pixels [27]. Each
GPU held 1 image and selected 128 RoIs for the backdrop.
We fine-tune the R-FCN using a learning rate of 0.001 for
20k mini-batches and 0.0001 for 10k mini-batches on VOC.
We adopted the 4-step alternating training in [21] to make
R-FCN share features with RPN (Fig.6), alternating between
training RPN and training R-FCN.

B. EVALUATION CRITERION
In target detection, mean average precision (mAP) is often
used as the measurement standard of the result. The mAP is
the mean value of each category’s Average Precision (AP).
The calculation formulas are as follows:

APC (c) =
∫ 1

0
Precision(c)dRecall(c) (10)

Precision(c) =
number of correct detection
total number of detection

(11)

Recall(c) =
number of correct detection
total number of object

(12)

mAP =
1
NC

∑
c∈C

APC (c) (13)

Here, c is the category.

C. RESULTS AND DISCUSSION
During the experiment, the trained DenseNet weight parame-
ters on the ImageNet data set were used to initialize the basic
network, and the MSRA initialization method was used to
initialize the weight parameters of the changed network layer.
During the training, the adaptive gradient descent Adam
algorithm was adopted to update the parameters backprop-
agation, and the expanded training set was updated and iter-
ated 60,000 times. The loss curve of the algorithm is shown
in Fig.8.

FIGURE 8. Loss graph for 60,000 iterations.

Data enhancement could increase the richness of the data
set, so that the convolutional neural network could learn
more generalized features, thereby improved the detection
performance of the network. Table.2 showed that the average
accuracy of the data enhancement Faster R-CNN increases
by approximately 4%. Since the effect was obvious and
the theory was consistent with our experimental results,
we adopted data enhancement in all the networks thereafter.
Compared with the two convolution neural networks under
Faster R-CNN algorithm, the used of ResNet-101 improved
the average accuracy by approximately 3%. We found that a
deeper and better basic network could obtain better image fea-
tures to improve the performance of the detection algorithm.
By comparing R-FCN and Faster R-CNN, the network detec-
tion speed was greatly improved by maximizing the shared
convolution operation and reducing the repetition calculation
such that the detection speed of a single image was reduced
from 0.217 s to 0.124 s with an average accuracy of 83.44%.
The improved image recognition framework substantially
improved the recognition effect, and the R-FCN framework
had a significant speed advantage.
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TABLE 2. Performance of open-source model on stored grain insect data set.

TABLE 3. The results of the improved model on the dataset by using DenseNet-121.

Compared to two-stage detection models (R-FCN and
Faster R-CNN) and the single-stage detection model
(YOLO), the integration testing framework had the advan-
tage of a single image detection time of 0.022 s. However,
the single-stage detection precision was worse than that of
the two phase-detection models, and the average accuracy
was only 68.77%. Therefore, we used the R-FCN algorithm
in the two-stage model and improved it on this basis to obtain
a better network structure and better results.

We conducted 4 comparative experiments based on R-FCN
algorithm and DenseNet-121 network, and the results are
shown in Table 2 and Fig.9. During the basic experiment,
we first replaced ResNet-101 with DenseNet-121 which was
deeper and had fewer parameters. We scaled the original
image to 800*640 resolution as the input of the network
and iterated 60,000 times by updating the training set. The
detection time of a single image was 0.122s, and the average
accuracy mAP on the test set reached 85.28%. The detection
performance of our model was an improvement from the
detection performance of the model in Table 2 to a certain
extent.

For R-FCN+, we used the improved DenseNet-121, which
altered the last dense block of the separable convolution in the

original DenseNet-121. In this way, we reduced the number
of basic network parameters and obtained a faster detection
time for individual images (0.118 s) in Table 3. The method’s
average accuracy on the test set was approximately 1% better
than that of the previous network. Compared with the original
network structure, our R-FCN+ exhibited an improvement in
speed and accuracy.

For R - FCN++, we further used the multi-scale training
skills, setting 800 × 640, 1024 × 800 and 1280 × 1024 as
the three dimensions of input images for training. During the
training, one of the three scales was randomly selected as
the resolution of the input image in every 1000 iterations,
and the training set was updated and iterated 60,000 times.
In the test set, the AP of each type of stored grain insect had a
slight improvement, and its average detection accuracy mAP
reached 87.11%.

For R - FCN+ + +, we improved R - FCN++ and
introduced the Soft-NMS (σ = 0.5) algorithm instead of
the traditional NMS algorithm. This method avoided missing
the detection of two overlapping insects, as seen in Fig.11.
As seen from the experimental results, the final mAP was
only improved by less than 1% (88.06%). At the same
time, we also compared various values of the parameters σ
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FIGURE 9. Detection results of insect(CF). The green represents our insects tag and the blue represents the result of machine detection.
(a) Faster R-CNN(VGG-16); (b)R-FCN(ResNet-101); (c) YOLO.

FIGURE 10. Detection results of insect(RD). The green represents our insects tag and the blue represents the result of
machine detection. (a) R-FCN(ResNet-101), (b) R-FCN+ + +.

TABLE 4. Sensitivity analysis across the various parameter values of σ for
soft-NMS using R-FCN++ on Dataset1.

through experiments and obtained more appropriate parame-
ters in Table 4. According to the results in Table 4, compared
with the NMSmethod, soft-NMS was significantly improved
the results, and the effect decreased with the increase in
parameters. In addition, the detection accuracy of SZ was
strongly improved (approximately 3%) due tomore occlusion
phenomenon in the image.Test results in Fig.10.

For dataset 2, we only used the network to train images of
rice elephants and corn elephants (because they look similar
but are relatively accurate in a laboratory setting). We found
that the detection accuracy of the RCN+ + + (σ = 0.5)
used on real images decreased by 6% on average, but the
detection time was not augmented. As seen from the test
results in Fig. 12, the actual grain storage environment was
more complex, and it was easy to generate shielding between
grain grains and grain worms, resulting in missed detection.

FIGURE 11. Detection effect of Soft-NMS on mutual occlusion of insects.
(a) the result of R-FCN++; (b) the corresponding result of R-FCN+ + +.
Green represents our insect tag, and blue represents the result of
machine detection.

IV. DISCUSSION
In this paper, we proposed the R-FCN+ + + as the final
model. In this model, we started with the R-FCN+ which
used the multi-scale training method to obtain a richer feature
convolution to some extent. At the same time, we further put
forward the R-FCN++ based on the R-FCN+. We used the
improved DenseNet feature extraction network to solve the
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FIGURE 12. Detection effect of R-FCN+ + + on actual grain storage
environment. Green represents our insects tag and blue represents the
result of machine detection. (a) the Sitophilus Oryzae(SO); (b) the
Sitophilus Zeamais(SZ).

problem of gradient disappearance of the deep network due
to its network structure, and depth-separable convolution to
further reduce the calculation amount of the feature extraction
network. Finally, we proposed the R-FCN+++ which used
soft-NMS to solve the exciting problem of overlap between
stored grain insects.

We compared the detection results of Faster R-CNN
and R-FCN frames under different feature extraction net-
works (VGG-16, ResNet-101, DenseNet-121) in Table 2 and
Table 3. Compared to the Faster R-CNN, our speed increased
from 0.217s to 0.118s, and the accuracy increased from
81.36% to 88.06%. Also compared with R-FCN network,
our speed increased from 0.122s to 0.118s, and accuracy
increased from 85.28% to 88.06%. From the results, the accu-
racy and detection speed of our proposed R-FCN+ + +
had been significantly improved compared with the original
model. However, our model still needed further optimization.

Table 5 summarizes the various techniques used by
researchers to automatically classify and detect insects using
images in agriculture. The table includes research litera-
ture, databases, feature extraction, accuracy, detection time
picture description, and purposes. These studies achieved
good results for insect classification. However, there were
some limitations to the image data. There was only one
insect in a single image, and the pictures of the insects were
enlarged. Although good classification results were obtained
under complex background conditions, problems were still
observed in realizing the automatic monitoring process rela-
tive to the small size of the insects.

Insect detection has long been a difficult problem, not only
because of the insect’s small size but also due to the easily
disturbed background and other factors. Although the liter-
ature [14]achieved excellent accuracy in the case of codling
moths, they are relatively large compared with other insects.
Later, Shen et al. [17] and Liu et al. [18] conducted relevant
studies, both of which achieved good results. Among these
studies, the improved inception model [17] published in the
literature had a wider network structure and a smaller model
size. However, our model showed a significant improvement
in detection speed and a slight improvement in detection
accuracy compared with the improved inception model, rang-
ing from 0.182 s in the literature to our 0.118 s. In addi-
tion, the model proposed by Shen et al. [17] is based on

faster-RCN, while the model proposed by us is based on
R-FCN structure. We replaced the last full connection layer
with a position-sensitive score to further increase the speed.
Although the Pes-Net proposed by Liu et al. [18] was also
based on the RFCN structure, we made a series of improve-
ments on this basis such that our model had better results in
insect detection.

Table 5 shows a variety of feature extraction methods that
were applied to insect image detection and classification.
Among these methods, the convolutional network, as a better
method, has been widely used by scholars. However, consid-
ering the relatively few characteristics of stored grain pests,
future studies are necessary to determine whether increasing
the depth of the CNN feature extraction network will fur-
ther improve the network effect. To some extent, our model
reduced the missing detection and error detection in areas
where stored grain insects overlap in fig.7, but the missing
detection still existed in the places where the overlap was
highly serious, and the error detection still occurred near the
edges of the vessels.

The Sitophilus Oryzae(SO) and the Sitophilus Zea-
mais(SZ) are insect varieties with similar physical features,
which are difficult to distinguish by only the naked eye.
Therefore, this paper chose these two varieties for an exam-
ple. In the case of high resolution, we can find that the
images in the laboratory environment can still achieve a high
detection effect, while in the simulated real environment,
the average value decreased by approximately 6%, which is
still considerably higher than the detection effect of human
eyes. Therefore, pest detection based on computer vision
for stored grain is of high significance; computer vision can
not only simplify the operation of relevant grain managers
but also improve the identification of confusing varieties of
insects.

The data augmentation could significantly improve the per-
formance of the model. However, the high resolution of the
images might increase the unnecessary details. In addition,
the high resolution might increase memory consumption and
reduce the detection efficiency of images. In future research,
we will enrich more kinds of resolution images.

To a certain extent, the pictures that we obtained did not
meet the actual requirements. In this article, there was only
one species of insect per image, and therefore, the effects on
detection still need further verification. We hope to further
supplement the relevant data in future studies and to obtain
more real and reliable results.

The dataset 1 adopted in this paper contained eight types
of stored-grain insects, and the images taken in the laboratory
differ from the pictures taken by equipment in the grain ware-
house. Because the pictures in the actual storage environment
were more complex, our model could not reach the expected
results in the actual application (Table 3), but the results
were in line with our expectations. In future research, we will
enrich our image dataset with images from grain warehouses,
improve our algorithm, and apply the automatic detection
system inside stored grain bins.
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TABLE 5. Summary of selected studies conducted for the automated detection of insects in agriculture.

V. CONCLUSION
This paper proposed an effective multi-class stored-grain
insect object detection network, which was based on R-FCN.
This method can detect insects with weak adhesion rapidly
and accurately. To improve the detection accuracy and detec-
tion speed of deep convolutional neural networks in detect-
ing grain storage insects, an improved DenseNet-121 was
proposed. Second, utilizing data enhancement, multi-scale
training techniques were used to further improve accuracy.
Finally, through the soft-NMS algorithm, the problem of
missing detection of two adjacent target objects due to the
hard threshold was improved, and the accuracy of detection
was further improved. In addition, our model was verified by
the actual pictures of two kinds of stored grain insects, and
the results were acceptable. We hope to obtain images from
actual grain storage in the future to improve the accuracy and
speed of identification under a complex background, light,
impurities, and other conditions.
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