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ABSTRACT In this article, a compact broadband circularly polarized (CP) antenna with non-planar reflector
is presented. In this antenna, two fan-shaped cross-dipoles as the primary radiator and a stepped ground as a
reflector are proposed to generate a broadband CP radiation. Besides, four L-shaped patches are introduced
to effectively extend the bandwidth (BW) and extract a gain improvement together with the stepped ground.
The measured -10 dB impedance BW is 132.08 % (1.36-6.65 GHz) and 3 dB axial ratio (AR) BW is 128.6%
(1.39-6.4 GHz), closely with the simulated AR BW 136.73% (1.18-6.28 GHz), showing the proposed antenna
features a wider bandwidth, comparing with other broadband CP antennas using similar structures. Due to
the compact structure, the overall size of the proposed antenna is only 0.27A;x 0.27x1x 0.12; (where A
is the free-space wavelength at 1.36 GHz). The proposed antenna has a wide application scope, such as the

wireless network and satellite telecommunications.

INDEX TERMS Circularly polarized, stepped ground, cross-dipoles, wideband antenna.

I. INTRODUCTION

Circularly polarized antenna has been widespread used in
current wireless communication, such as Navigation Posi-
tioning System, and Wireless Local Area Networks(WLAN).
Currently, China employs the bands of 3.3-3.6 GHz and
4.8-5.0 GHz for sub-6-GHz 5th generation (5G) new radio
(NR). The broadband CP antenna with low cost is desired
to meet the tremendous requirement of 5G mobile net-
works. Thus, low-profile and low-cost with widely overlap-
ping bandwidth CP antennas deserve further research and
discussion.

As amain approach to realize CP, recently, the cross-dipole
antennas have drawn much attention and interest in academia.
For cross-dipole antennas, CP characteristics are mainly pro-
duced by two feeding excitations with equal magnitude and
90° phase difference. In the recently, many different CP
antennas with cross-dipole structures have been proposed
in [1]-[6]. In [1], the antenna uses two classical orthogonal
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straight dipoles and four coupled rotated metallic plates to
realize wideband CP radiation. In [2], two crossed trident-
shaped dipoles are employed to achieve a broadband char-
acteristic in three bands. In [3], the crossed bowtie dipoles
are introduced to broaden axial ratio (AR) BW. With para-
sitic modified patches in [4], the antenna obtains a —10 dB
impedance bandwidth (BW) of 99.2% and AR BW of 72.7%.
A broadband CP cross-dipole antenna using a circular ring
reflector with improved AR and gain performance was pre-
sented in [5]. To achieve low profile and broadband AR
bandwidth, an AMC structure is utilized in [6].

In general, the feeding methods of the CP antenna
have two categories: single-feed and multi-feed. For multi-
feeding, additional phase shifter [7] or complex power
divider [8] are required, significantly increasing the com-
plexity of the antenna. On the contrary, single-feed has a
distinct advantage in simple structure [9], [10]. To achieve
broadband, many other derived feeding structures have
been proposed, such as the single L-shaped probe [11],
the Z-shaped coupling feedline [12], and the coplanar
waveguide (CPW) [13].
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Parasitic patches are generally used to achieve a broader
bandwidth. In [11], four parasitic elements are employed
to achieve the AR BW of 28.6%. In [14], two U-shaped
parasitic patches are utilized to obtain wideband operating
frequency. In [16], by adopting four sequentially rotated
parasitic strips, the AR BW of the antenna is increased
to 11.55%.

To achieve broadband CP, a fan-shaped cross-dipole
antenna with non-planar reflector is proposed in this article.
By the employed of the stepped ground, the bandwidths
are significantly improved. Moreover, the bandwidth is fur-
ther enhanced by L-shaped parasitic patches, four Z-shaped
plates and four metal posts. The structure is compact with
an overall dimension of 0.271;x 0.27A1x 0.12A;. The mea-
sured impedance BW for [S;;| < —10 dB is 132.08 %
(1.36-6.65 GHz), and AR BW for AR < 3 dB is 128.6 %
(1.39-6.4 GHz). The antenna has been simulated in ANSYS
High Frequency Structure Simulator (HFSS). The proposed
antenna has a prominent performance in impedance BW and
AR BW, in comparison of other designs using the similar
configuration.

This article is organized as follows. Section II describes the
configuration and the design strategy of the antenna, and the
major parameters analysis. Section III provides the measured
results of the proposed antenna with comparison between
other cross-dipoles designs. Conclusions are presented in
section IV.

Il. ANTENNA CONFIGURATION AND DESIGN STRATEGY
A. ANTENNA CONFIGURATION

Fig.1 shows the geometry of the proposed antenna, which
consists of a stepped ground, two fan-shaped cross-dipoles,
four Z-shaped plates, four L-shaped parasitic patches, and
four metal posts. The main radiator is printed on both sides
of a substrate with a dielectric constant of 4.1, a loss tangent
of 0.003 and a thickness of 1 = 1.6 mm. The cross-dipoles
are centrosymmetric and etched on both sides of the substrate
plate, and each pair is composed of two same cross-dipoles
arms with arch height 3 and chord length w3. They are fed
by a 50 — Q2 coaxial cable. The outer conductor of the coaxial
probe is connected to the dipoles printed on the bottom layer
and the stepped ground, which is shown in Fig.1(b) and (c).
The four copper plates are used to enhance the bandwidth
of circularly polarized cross-dipole antenna. They are placed
around the stepped ground. The cross-dipoles are surrounded
by the parasitic patches. As shown in Fig.1(a), r; is the center
distance between the parasitic patches and the cross-dipoles.
The metal posts are connected to the top or the bottom layer
of the cross-dipoles, respectively. Both of them have the same
diameter. In Fig.1(c), the stepped ground consists of three
layers. The height of each layer is 1 mm, and the widths
of them are /5, lg, and W at the top, middle, bottom layer,
respectively. As shown in Fig.1(c), the top and middle layers
are copper rings. The bottom layer is a copper ground with
four Z-shaped copper plates. Three layers are bonded by
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FIGURE 1. Configuration of the proposed cross-dipole antenna. (a) Top
view. (b) Side view. (c) Perspective view and configuration of the
non-planar reflector. W = 60.8 mm, wy = 3.4 mm, w; = 17 mm,

wy = 4.9 mm, wy = 27.4 mm, [ = 4.9 mm, /; = 15.83 mm, /;, = 4.88 mm,
Is = 7.74 mm, I; = 2.37 mm, I5 = 7.46 mm, I = 16.4 mm, « = 29.59°,

ro =2.82 mm, r; = 3.0 mm, ry =29.09 mm, r3 = 15.5 mm, hy =27 mm,
hy = 1.6 mm, hy = 19.9 mm.

metal paste. It is used as a reflector to obtain unidirectional
radiation patterns.

B. CIRCULAR POLARIZATION OPERATING PRINCIPLE

The CP operation of conventional crossed-dipole antennas
were previously presented in [19]. As mentioned above,
the proposed antenna exhibits a widen AR BW mainly due
to the shape of the cross-dipoles and the stepped ground.
Different from traditional cross-dipoles, the fan-shaped cross-
dipoles have the advantages of expanding the bandwidth due
to its conical structure. The fan-shaped cross-dipoles can
excite two CP fields along the chord and the arc of them,
respectively. The coupling between the cross-dipoles and the
parasitic patches can generate additional CP band. Current
distributions of the main parts of the antenna are shown
in Fig.2.
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FIGURE 2. Current distributions of the main parts of the antenna.

As observed from Fig.2, two CP fields are realized by
the current induced by the cross-dipoles. In both CP bands,
the E-field rotates by 90° in clockwise direction when the
phase changes from 0° to 90°. The main CP operating band
is produced by the current on the chord of the cross-dipoles.
The second CP operating band is generated by the current
on the arc of the cross-dipoles. It can be seen from Fig.2 that
the current flows on the cross-dipole in the tangent of the
arc curve. Thus, the current flowing on the arc of the nearby
cross-dipole is in the orthogonal direction. Since the length of
the current on the arc of the cross-dipoles is longer than the
former, the second CP operating band is lower.

The high CP fields are mainly generated by the cou-
pling between the parasitic patches and the stepped ground,
as shown in Fig. 2. The coupling current on the parasitic
patches can be further equivalent to two orthogonal magnetic
dipoles along the +45° diagonal directions. The distributed
current on the plates and posts can balance the current ampli-
tudes and increase the resonant path.

C. ANTENNA WITH NON-PLANAR REFLECTOR

The antenna’s performance can be enhanced by using a
cavity-backed reflector as the additional radiator in [20].
The main principle is that the coupling radiating aperture is
formed by the cavity-backed edges when the main radiator
is excited. In this article, to reduce the high-profile of the
cavity-backed reflector, we have utilized a stepped ground.
To examine this, a planar ground and a stepped ground with
the same size is radiated by one plane electromagnetic wave,
respectively.
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FIGURE 3. Numerically computed reflection phase of the planar ground
and the stepped ground. (a) planar ground. (b) stepped ground.

As shown in Fig.3, the reflection phases of the planar
ground almost keep constant no matter the scan angle or fre-
quency varying in a certain range. In contrast, the reflection
phases of the stepped ground have a large change at different
frequencies. It also has an obvious impact on the reflection
phase when the scan angle changes.

Axial Ratio(dB)

12} — — Withplane ground - - - With plane ground |
- - - - With stepped ground With stepped ground | o5
3dB -10 dB
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FIGURE 4. The continuous tapered-helix antenna with planar ground and
with stepped ground. (a) Antenna with planar ground. (b) Antenna with
stepped ground. (c) Simulated performance of two antennas.

In order to further verify such phenomenon, a continuous
tapered-helix antenna is designed, as shown in Fig.4. Two
similar size metal grounds are used as the helix antenna
reflector. One is planar ground, and the other is stepped
ground.

Simulated ARs and reflection coefficients of two anten-
nas are presented in Fig.4 (c). Comparisons of two types
of ground verify that the ARs and reflection coefficients is
enhanced when the antenna with stepped ground, especially
in the higher frequency band.

Fig.5 (a)~(c) shows the comparison results between the
rectangular cross-dipole antenna (Antenna I) and the fan-
shaped cross-dipole antennas (Antenna II, III, Prop.). All
the antennas use cross-dipoles, four parasitic patches, four
plates, and have the same height. Different from the proposed
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FIGURE 5. The comprehensive comparison of four methods to improve
the performance of the CP radiation. (a). Reflection coefficients. (b).
ARs. (c). boresight gains. (d). The perspective view of the four antennas.

antenna, a stepped ground is not used in Antenna I, Antenna I1
and Antenna III. Configuration of these antennas are shown
in Fig.5 (d).

As shown in Fig.5, Antenna II exhibits a better perfor-
mance in terms of impedance BWs and AR BWs com-
pared with Antenna I, since the fan-shaped cross-dipole was
utilized. However, the comparison results indicate that the
boresight gain of Antenna II has a similar performance as
Antenna I. Antenna III is with the four metal posts compared
with the Antenna I, II. For antenna III, one arm of the cross-
dipole, a metal post, a coaxial cable and the planner ground
can be considered as a circuit loop. Through a proper adjust-
ment of the size and position of the posts, the CP performance
could be improved, which has been shown in Fig.5. The
plates are welded on the stepped ground which can substitute
the height weight of surrounding back-cavity. In addition,
too many layers of the stepped ground will increase the
complexity of the design process. After careful analysis and
optimization, when the number of layers is 3 and the size
is the same as that of the antenna substrate, it has good
performance.

Without profile increasing, both a widen impedance BW
and AR BW can be realized when the stepped ground is
utilized by the proposed antenna. Fig.5 also demonstrates
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that the broadside gain of the proposed antenna at the higher
frequency is improved than the others. Such a combination
of the stepped ground and the plates is an effective method to
expand the wideband and realize a gain improvement.
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D. PARAMETERS ANALYSIS

To further investigate the coupling effect of the L-shaped par-
asitic patches and fan-shaped cross-dipoles. The CP perfor-
mances for different values of /g and wi are shown in Fig.6.
Seen from Fig.6, when the value of [¢ =16.4 mm, the antenna
operation achieves the wider AR BW and highest gain in
the frequency range of 6-7 GHz. Besides, the width of the
Z-shaped plates(wq) has an impact on the impedance BW
and AR BW, which is demonstrated in Fig.7. By choosing
a proper size, a very wide AR BW is obtained. When w;
increases, the middle resonant band of the impedance would
shift downwards and the impedance BW increases until w
reaches an optimum value. Meanwhile, the performance of
the AR BW has a remarkable change in the lower band and
the middle band. For w; = 17 mm, the AR BW achieves a
wideband operation in a corresponding impedance BW. Thus,
the value of wi = 17 mm is set as the optimum value for the
design.
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FIGURE 7. (a) Reflection coefficients and (b) ARs under different w;.

IIl. RESULTS AND COMPARISON

A. MEASURED AND SIMULATED RESULTS

To verify broadband CP, a prototype of the proposed fan-
shaped cross-dipoles antenna was designed, fabricated, and
tested. Fig.8 (a) shows the antenna prototype, and the simu-
lated and measured reflection coefficients of the prototype are
shown in Fig.8 (b). From Fig. 8(b), the measured reflection
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FIGURE 8. (a) The antenna prototype. (b) Simulated and measured
reflection coefficients.
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FIGURE 9. Simulated and measured ARs and peak gains.

TABLE 1. Comparison between the proposed antenna and other CP
cross-dipoles designs.

Ref Size( %)) Impgf;}‘nce AR BW ZZ‘":E

[1] 0.28x0.28x0.11 0'8?1'135'?22(,/3& og%)z]co;/gz 7.0 dBi

[3] 0.56 % 0.56 x0.19 1'?&%'.990%{2 20%2;763 A)()}HZ 9.4 dBi

[9] 0.57 x 0.57 x 0.24 1'?%‘;'.32;& 2"3&212%” 9.7 dBi

[10] 0.42 x 0.42 x 0.23 1'9?53'.22% A)()}HZ 2'30('227%}1{2 6.8 dBi

[15] 0.96 x 0.96 x 0.09 3'6(46'67.';’0/3HZ 4'1(25';@()*& 115 dBi
2-3GHz  2.25-2.73 GHz

(71 054x054x016 5 0y SGos om0 9P
(49.5%) (33.8%)

[21] 0.45 x 0.45 x 0.23 1'0211';2 ASHZ 1'1%;17'_6; A)()}HZ 7.3 dBi

coefficients are in good agreement with the simulated results.
The measured results show that the antenna yielded a wide
operation of 1.36-6.65 GHz (132.08 %), which is in accor-
dance with the simulated result of 132.3%(1.34 to 6.58 GHz).
Fig.9 depicts simulated and measured AR and peak gains in
the boresight direction of the prototype. The measured 3-dB
AR BW is approximately 128.6 % (1.39-6.4 GHz), close to
the simulated AR BW 136.73% (1.18 to 6.28 GHz). The mea-
sured peak gain in such passband is 9.45 dBi. The measured
patterns at frequencies of 1.5 GHz, 3.8 GHz and 6.0 GHz in
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FIGURE 10. Simulated and measured radiation patterns of the prototype.
(a) 1.5 GHz (b) 3.8 GHz (c) 6.0 GHz.

both xz- and yz- planes are illustrated in Fig.10. As shown
in Fig.10, the measured results agree well with simulations.
Although the patterns are not ideally symmetric due to the
asymmetrical feed, the cross-polarization levels still remain
below —15 dB. If necessary, a larger ground reflector could
be used and the better front-to-back ratio would be realized,
while, it is beyond the research scope of this work.

B. WIDEBAND PERFORMANCE COMPARISON OF THE
ANTENNA AND OTHER PREVIOUS DESIGNS

The comparisons of the proposed antenna with the recent
proposed cross-dipole antennas are summarized in Table 1.
In Table 1, the proposed antenna shows a salient performance
regardless of the considerable volume reduction and the
greatly improvement of impedance and AR BW, compared
with other antennas.

IV. CONCLUSION

In this article, a broadband CP antenna with non-planar
reflector is presented. By the use of the cross-dipoles with
parasitic patches, the stepped ground, four plates and four
mental posts, the proposed antenna yields a low profile,
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good impedance matching, and wider 3-dB AR BW.
Through designing a proper reflector, the reflection phases
can be changed, which can produce a wideband CP band
and improve the broadside gain. To verify broadband perfor-
mance, a prototype has been fabricated and measured.

The proposed antenna achieves —10-dB impedance band-
width of 1.36-6.65 GHz (132.08 %), as well as 3-dB AR
BW of 1.39-6.4 GHz (128.6 %), showing the antenna has a
prominent broadband performance. In addition, the measured
radiation fields of the antenna have a RHCP in the boresight
direction.
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