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ABSTRACT With the increase of data traffic in the global mobile network, the limitation in resources
of data computing close to the edge is becoming an important issue to resolve. This article addresses
the cloud radio access network (CRAN) in 5G HetNets architecture and proposes to take benefit of extra
computing and storage resources in the edge to enable the offloading of a set of mobile user services from
the remote cloud computing servers to an edge cloud computing infrastructure deployed next to remote
radio heads (RRHs) to better serve mobile users and improve energy efficiency. However, this architecture
poses many challenges. The first one is related to the clustering of the various deployed RRH to better
serve end-users. For that, we propose a two-stage RRH clustering mechanism in order to fully exploit
the benefits of C-RAN architecture. The second challenge is related to the scheduling of the offloading.
Therefore, we propose a cost-based scheduling scheme (CBSS) that aims to minimize the scheduling cost
while considering resource availability in the infrastructure, resource requirements from users’ applications,
services execution deadlines, and load balancing. The proposed solution permits us to make better offloading
decisions and to improve the users’ experiences. The solution was implemented in a simulator to highlight
its performances and compare them with other existing approaches.

INDEX TERMS Cloud RAN, 5G HetNets, edge Cloud-RRH, radio resource management, offloading,

resource scheduling, resource cost.

I. INTRODUCTION

The evolution toward global mobile networks has been char-
acterized by an exponential traffic growth during the last
years. The network traffic has roughly doubled every year
since 2011 [1]. This growth is mainly due to the huge suc-
cess of smartphones and tablets and emerging applications.
Currently, smartphones and tablets are powerful enough to
run a large variety of applications (entertainment, health care,
business, social networking, traveling, news, etc.). Many of
these applications are based on a client/server model with
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a light client running in the mobile device (i.e., native or
web client) and a heavy server running in the cloud, thereby
overcoming the limited capacities of end-user mobile devices.
This necessitates to setup end-to-end communication from
the mobile terminal to the application or service logic running
in the far-end cloud computing infrastructure.

Mobile Cloud Computing (MCC) has been introduced to
allow the execution of the application or service logic closer
to the user localization. For that, it advocates the deploy-
ment of additional cloud computing resources in the edge
network to run some applications and eventually improving
the end-user experience by reducing the response times since
the requests of the application clients are processed in the

164815


https://orcid.org/0000-0003-4331-0984
https://orcid.org/0000-0002-9532-2074
https://orcid.org/0000-0002-3461-4284
https://orcid.org/0000-0002-1807-7220

IEEE Access

0. Chabbouh et al.: Novel Cloud-RRH Architecture With Radio Resource Management and QoS Strategies

edge cloud computing infrastructure and not in the far end
cloud computing infrastructure.

In the 5G network architecture, a cloud-based radio access
network has been proposed for decoupling the baseband
units (BBUs) from remote radio heads (RRHs) and for
moving them into the cloud to enable centralized pro-
cessing and management. With this approach, a complex
base-station operation can be simplified to cost-effective
and power-efficient RRHs by centralizing the processing.
This simplification facilitates the efficient management of
large-scale small-cell systems.

In conventional mobile network architecture, one BBU is
logically associated with only one RRH. Therefore, radio
resources may be underutilized since one RRH may not
consume all the available BBU resources. Moreover, this one-
to-one assignment is very expensive for 5G networks, where
a large number of small cells will be deployed. Cloud RAN
(C-RAN) architecture solves this problem by allowing a
one-to-many mapping between BBUs and RRHs. Thus,
BBU radio resources could be more efficiently used, decreas-
ing not only the cost of infrastructure but also its energy
consumption.

Another important mechanism that is used in this work is
the Mobile data offloading. This mechanism aims to benefit
from external additional communication resources (such as
the availability of Wi-Fi network access at the same location
as cellular networks) to migrate the communication of the
data from the mobile network access to the other access to
benefit of its higher capacities. The concept of offloading
can also be applied to the processing resources and in this
case, the objective is to migrate the communication of the
data to the near system where there are additional storage
and processing resources. Offloading has also been used with
IoT in order to improve traffic management. In fact, with the
explosive growth of connected objects and the corresponding
IoT applications, massive traffic needs to be processed in
time. To deal with this challenge, offloading tasks to fog
nodes was proposed [43].

Several state-of-the-art approaches have exploited cloud
computing technology for this purpose [2]. However, these
approaches have mainly introduced the computing capacities
in the core network and not on the edge of the network
with the risk of degrading the performances if the geographic
distance with the users is far. Indeed, the offloading benefits
may be easily wasted and energy consumption increased.

In this work, we propose a novel cloud RAN heteroge-
neous architecture, namely, Edge Cloud-RRH that aims to
introduce an edge cloud computing infrastructure close to
the C-RAN infrastructure introduced by 5G networks. In this
approach, we propose adding additional computational and
storage resources to high RRH infrastructures (macrocells)
installed in the edge network close to mobile end-users. With
this infrastructure, it will be possible to offload (i.e., move
closer) applications/services from the far end cloud comput-
ing infrastructure close to install and execute them in the
edge cloud computing infrastructure, the Edge Cloud-RRH
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allowing short distance interaction between the end-users ter-
minals and the applications/services servers. The technology
that is able to support this offloading is named containeriza-
tion [3]. It provides a resource abstraction in terms of virtu-
alization and isolation based on containers that surpass other
virtualization techniques. To fully capitalize on the proposed
architecture, we further introduce radio resource management
(RRM) strategies that aim to efficiently schedule offload-
ing requests among the containers. The proposed solution
encompasses a two-stage RRH clustering mechanism and a
cost-based task scheduling scheme to reduce the overload and
the migration costs.

The remainder of this article is organized as follows.
Section II discusses relevant literature and the motivation for
this work. Section III describes preliminaries and the system
model of our proposed approach and provides an overview
of the operational aspect of the solution. Then, the radio
resource management strategies are introduced in Section IV,
together with the proposed solution algorithms. Performance
evaluation of the strategies is presented in Section V. Finally,
Section VI presents the conclusions of this work and envi-
sioned future work.

Il. RELATED WOR

In this section, we present and discuss several studies that
have considered resource management in C-RAN RRH het-
erogeneous networks.

A. RRH CLUSTERING

RRH clustering has already been proposed in the literature
for many purposes. In [4], the authors formulated the problem
of RRH clustering as a bin packing problem. They proposed
optimal and heuristic solutions to improve network energy
consumption without compromising the QoS (Quality of
Service) expressed as numbers of required resource blocks
in available RRHs. In [5], the authors studied the problem
of joint activation and clustering of RRH to improve user
utility function. They introduced a coverage constraint to the
problem formulation to ensure the connectivity for all end-
users. The overall end-user QoS is defined as a weighted sum
of SIR (signal to interference ratio) and the average number
of users assigned to one RRH. In another work [6], authors
proposed a lightweight and load aware dynamic RRH assign-
ment (DRA) algorithm. The proposed algorithm reduced the
complexity of the clustering procedure and offered quite close
BBU resource savings as compared to FFD (First Fit Decreas-
ing). In [7], the authors introduced a greedy RRH clustering
algorithm for C-RAN downlink, which aims to maximize
the sum-rate gain and reduce network piloting overhead.
Authors in [8] presented a greedy dynamic RRH clustering
mechanism-based multi-objective optimization to balance
the throughput maximization and RRH energy consumption
minimization. In [9], the authors focused on delay-tolerant
best-effort traffic to derive a dynamic clustering and user
scheduling approach for cooperative base stations. In [41],
the authors proposed to jointly optimize RRHs clustering

VOLUME 8, 2020



0. Chabbouh et al.: Novel Cloud-RRH Architecture With Radio Resource Management and QoS Strategies

IEEE Access

and beamforming assignment in Cloud-RAN downlink. They
developed a heuristic algorithm to provide sub-optimal per-
formance by Dinkelbach’s transformation. Next, to handle
non-convex formulation, they proposed an iterative approx-
imation algorithm with linear approximation and constraints
relaxation.

In all these works, the proposed approaches were focused
on homogeneous scenarios (i.e., clustering one types of coop-
erating RRHs). However, 5G systems are deemed to be het-
erogeneous networks with various type of RRHs associated
with the different types of cells (macro and small).

In our work, we address explicitly the heterogeneity in
the Cloud RAN architecture and we propose a two stages
RRH clustering mechanism. In the first step, we propose
to use a fuzzy logic controller to cluster Low RRHs (small
cells) considering their inter and intracluster interferences.
In the second step, we propose to cluster High RRHs (macro-
cells) considering the global system interference and the
BBU system capabilities. The problem is modelled as a linear
program optimization and a heuristic resolution algorithm.
The aim is to study different RRHs clustering techniques in
order to reduce network power consumption and resource uti-
lization while assuring the required level of QoS to end-users
applications.

B. OFFLOADING

Offloading mobile data from cellular networks to Wi-Fi and
vice versa has become an important feature in cellular net-
works for alleviating the impact of data on the quality of
cellular connections.

Various cloud offloading systems were proposed in the
literature [10], [12]. MAUI [11] and ThinkAir [12] profile
hardware components and perform offloading to optimize
mobile devices’ energy consumption. These approaches con-
sider only the energy consumption but unfortunately, ignore
other offloading aspects that may impact the service quality.
CloneCloud [13] optimizes mobile applications’ partition-
ing between local executions (in the mobile terminal) and
offloading the execution in the cloud computing with the
objective of minimizing the execution time or the energy
consumption.

In addition to mobile cloud frameworks, other research
efforts focused on offloading decision-making. For example,
Yuh-Shyan et al. [14] proposed an energy-aware data offload-
ing scheme for C-RANs in which a BBU takes the offloading
decisions considering the mobile terminal’s transmission rate
and energy consumption of both the cellular network and the
Wi-Fi network. The main strategy of C-RAN is to schedule
the offloading decision of a mobile terminal from the RRH
to the Wi-Fi access point. The proposed scheme eventually
reduced the energy consumption and improved the through-
put of the network. However, the performance improvement
was readily observable only if the data size is sufficiently
large.

Another offloading decision algorithm in the context of the
femto-cloud paradigm is proposed by Oueis et al. in [15].
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The algorithm performs a series of classifications that con-
sider several parameters, including the latency, battery level,
and mobile terminal memory, without including them in
a complex optimization problem. The proposed algorithm
categorizes the application tasks into ‘“‘urgent” and ““not
urgent” and sends urgent and offloadable tasks to the femto-
cloud regardless of the channel conditions. This strategy
affects mobile handset’s energy consumption and violates the
latency constraints if the total offloading exceeds a certain
threshold (3%).

In [16], Ting-Yi et al. proposed a context-aware deci-
sion algorithm (CADA) for offloading mobile applications to
the cloud servers. The decision engine is composed of four
components: a context-aware decision algorithm, a context
profiler, an energy model, and a context database. Through
the context profiler, CADA uses the location and the time of
day in its decision-making for the application of individual
methods. However, such profiling is a source of overhead and
requires extensive memory for storing and processing users’
profiles.

In [40], the authors’ objective was to jointly optimize
the task offloading decision, elastic computation resource
scheduling, and radio resource allocation. They formulated
the problem as a stochastic mixed-integer nonlinear program-
ming problem. They eventually theoretically analyzed the
tradeoff between energy efficiency and service delay.

Various factors have been considered in the offloading
decisions introduced in the literature. In [17], Huijun et al.
proposed an offloading decision model that takes network
unavailability into consideration. Based on the network con-
nection states and durations that are recorded in a history
buffer, the partition of the application is calculated, such that
to improving the performance of a network. Based on the
level of improvement, the decision offloading is validated or
not. The proposed algorithm enhances network performances
in terms of execution time and energy consumption; however,
system’s complexity increases with the number of mobile
users.

In summary, mobile cloud offloading was already
studied for various networks and several decision algo-
rithms were proposed. The proposed solutions exploited
multiple-objective optimization techniques. However, due
to the changes in the network states, a decision must be
refreshed if the system conditions change.

C. SCHEDULING CONSIDERATIONS

Scheduling user’s computing tasks is a key challenge in
a cloud computing environment. The optimal allocation of
resources and scheduling of the offloading requests helps
to guarantee application performance and reduce operating
costs. Several existing works have addressed these issues and
are discussed in this section.

In [18], Katyal and Mishra proposed a selection algorithm
that uses the standard deviation to decide which scheduling
algorithm to use among two; namely, Min-Min and Max-
Min, for minimizing the total execution time of tasks. In [19],
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FIGURE 1. Proposed CRAN Architecture.

an improved Max-Min algorithm is modified by Santhosh
and Manjaiah to define two new algorithms based on the
average execution time. In contrast to Max-Min, a task with
a run time that is slightly above the average run time is
selected and assigned to the resource that yields the mini-
mum run time. The average run time is calculated via the
arithmetic mean for independent tasks and via the geometric
mean for dependent tasks. The main objective is to reduce
task makespan. Barbarossa et al. proposed a task scheduler
with three priority levels [20]: the scheduling level, which
represents the objective to be achieved by the planner; the
resource level that represents the available attributes to fulfill
the desired objective; and the task level, which represents
the available alternatives among which the best task should
be scheduled first. Therefore, each task requests resources
under a preset priority and is scheduled accordingly. In [21],
Thomas et al. proposed a task scheduler that is based on
credits. In this approach, tasks are assigned credits based
on two parameters, namely, the user priority and the task
duration, and the task with the highest credit value is executed
first. A scheduler that is based on particle swarm optimiza-
tion (PSO) was proposed by Khalili and Babamir in [22].
PSO is a population-based search algorithm that is inspired
by bird flocking and fish schooling, where each particle learns
from its neighbors and itself during the time it travels in space.
As with other metaheuristics, this PSO-based scheduler does
not offer guarantees or bounds on the generated solution,
especially as the search space expands.

Himani and Sidhu proposed a cost-deadline based (CDB)
scheduler in [23], where the scheduling cost is calculated
according to the task length, the deadline, and the number
of required processing elements. Then, tasks are sorted to
determine the execution order via a task-to-VM mapping
that is based on a Min-Min heuristic. Via this approach, the
CDB minimizes missed deadlines.

In [24], the authors have investigated cost-based schedul-
ing using linear programming. They have proposed a task
scheduling algorithm that is based on delay bound constraint
(SAH-DB) for improving the task execution concurrency:
when a task is received, all the resources (CPU, memory,
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and network) are sorted in descending order of the resource
processing capacity; then, the task is dispatched to resources
with the minimum execution time.

In this article, we propose a novel CRAN architecture
in which an Edge Cloud-RRH is introduced into the edge
network. By Edge Cloud-RRH we mean, cloud computing
capabilities associated with the RRH and able to support
the execution of containers. While most previous works
have focused on the job completion time, we propose in
this work resource management strategies based on a joint
offloading and scheduling optimization mechanism aim to
reduce the cost of task scheduling across all application tasks
encapsulated in containers. In contrast to previous works,
we model the cost of tasks as a function of the overloading
state, delay time, and migration time. The scheduling pro-
cess is implemented considering the available resources, the
resource requirements, deadline, and load balancing in the
Edge Cloud-RRH infrastructure.

Ill. SYSTEM MODEL AND OPERATION OVERVIEW

A. PRELIMINARIES

The objective of the proposed approach is to overcome the
challenges that are presented by the exponential increase
in mobile data traffic. Via a CRAN-based framework,
the proposed system aims to optimize the delay, throughput,
and application response time. The presented strategies for
resource management in 5G HetNets with cloud management
target offloading and scheduling algorithms that are dynamic
and computationally efficient.

The proposed novel CRAN framework is illustrated
in Figure 1. It is characterized by a heterogeneous-access
architecture composed of macrocell (managed by High-RRHs
or H-RRHs) and small cells (managed by Low-RRHs or
L-RRHs). It also introduces an edge-cloud infrastructure,
namely, Edge Cloud-RRH. It is connected to the H-RRHs
using high-speed fibers links or alternatively high-speed radio
links.

In traditional CRANSs, all RAN functionalities are cen-
tralized in BBU pools. In this work, we propose a flexi-
ble division of the functionalities between edge and central
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(core) clouds. We further consider additional computational
and storage resources in the Edge Cloud-RRHs to be utilized
for computational offloading of user applications.

B. VIRTUAL MACHINES VS. CONTAINERS

In this section, we motivate the use of containers over virtual
machines (VMs) in our architecture. Figure 2 serves as a
reference for the argument.

| Bins/Libs |
Container

Bins/ Libs

. Bins/ Libs

=

Guest 0OS Guest OS5
v VM

Hypervisor / Host OS

FIGURE 2. VM vs. container virtualization architecture.

Bins/ Libs
Container Engine

Host OS

Hardware

Machine virtualization requires that the full guest
OS (operating system) images are instantiated in each
deployed VM. In addition, all binaries (Bins) and
libraries (Libs) are necessary for running user applications.
Such requirements result in slow VM initialization and some-
times degradation of performances.

Meanwhile, containers represent a virtualization solution
that is flexible and lightweight. Recall that containers are
packaged, self-contained, ready-to-deploy parts of applica-
tions that may, if necessary, include middleware and business
logic in the form of binaries and libraries that are needed for
running user applications [25], [32], [34]. Containers a) have
a lightweight, portable runtime; b) facilitate the development,
testing, and deployment of applications to many servers; and
c) facilitate the interconnection between applications.

In current datacenters, the control of VMs entails the use
of a virtual infrastructure manager (VIM) to oversee the
VM lifecycle. Similarly, we introduce in our solution, a new
functional entity, namely, the containers’ manager (CM), for
overseeing container placement/deployment, container mon-
itoring, and application scheduling.

Using the CM, mobile users can access their services
directly in the edge cloud by requesting the CM to instantiate
them in the edge and request an offloading (in part or in
whole) of the service logic computation from the far cloud
computing into these containers. Furthermore, containers
need not to be always active; rather, they can be activated
or deactivated as needed. These different interaction schemes
are illustrated in Figure 3. End-user terminal can trigger
an offloading request (Off Req) to the CM (in red). The
CM schedule this request and execute it. It then sends back
offloading responses (Off Res) to the CM (in green).

C. PROBLEM DEFINITION
In conventional architectures, one BBU is logically
associated with one RRH. Therefore, radio resources may
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be underutilized since one RRH may not consume all the
resources of the BBU but cannot be used by other RRH.
Moreover, this one-to-one assignment is very expensive for
5G networks, where a massive number of cells is deployed.
Cloud RAN architecture resolves this problem by allowing
a one-to-many mapping between BBUs and RRHs. Thus,
we propose to efficiently cluster RRHs in order to allocate a
pool of BBU to each cluster and allow them to share the same
pool of resources. This will eventually improve the utilization
of the resources, reduce the power consumption, and maintain
the same quality of service level as the one-to-one mapping
case with an appropriate clustering and scheduling.

In the proposed architecture, the mobile application may be
moved to the Edge Cloud-RRH infrastructure and executed as
tasks. This will reduce the response time of the applications
and eventually increase the end-user experience. The CM is
responsible for deciding which application tasks are to be
executed. In this scheme, a container is characterized by the
three-tuple (CPU, RAM, and network bandwidth). We con-
sider that the request from the end-users equipment is com-
posed of a set of tasks to instantiate in the Edge Cloud-RRH.
Each task is associated with its execution delay constraint and
resource requirements in terms of CPU, RAM and network
bandwidth.

The CM should execute a scheduling algorithm to accom-
modate a substantially important number of offloading
requests. The following section addresses two objectives
when designing the scheduler:

a) the scheduler should consider the overloading and
migration costs (minimization) when selecting the right con-
tainer to execute the application task.

b) the schedule should take into account the level of load of
each Edge Cloud-RRH to achieve a load balancing between
them and achieve better scalability.

IV. RRM STRATEGIES FOR EDGE CLOUD-RRH WITH QOS
AND COST OPTIMIZATION

A. RRH CLUSTERING STRATEGY

First of all, we propose a two-stage control loop for our
heterogeneous C-RAN system. The first loop involves the
decision of L-RRH clustering, while the second loop involves
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the decision of H-RRH clustering. The decision-making pro-
cess of the first loop should be aware of intra- and inter-
cluster interference and traffic load of all base stations in
order to define a clustering schema that minimizes these inter-
ferences. Furthermore, the second loop’s decision-making
process should be aware of system interference and BBU
capacity. The global objective is eventually to enhance the
QoS, reduce the resource utilization and power consumption.

1) INTERFERENCE COORDINATION MODEL
In our architecture, end-user terminals can be either con-
nected to L-RRH or H-RRH. The user terminals are con-
nected to the RRH that provides them the best SINR.

When a user i is associated with L-RRH j, the received
signal to noise and interference ratio is formulated by the
following expression [5], [44]:

2
i jwij| Pl
2
ZrECL/j |hi,rwi,ri p;,r + ZrECr/CL p;’r + 02

ey

where Cp is the RRH cluster containing L-RRH j, C, are
other L-RRH clusters which don’t contain L-RRH j, h; , is
the channel vector of user i served by L-RRH r, w;, is
the precoding weight between user i and RRH r, p;r is the
corresponding transmission power, p; , is the received power
at user i from L-RRH r and o2 is the noise. We assume
h; , the channel between a user i and a L-RRH r to be dis-
tributed as a Rayleigh random variable and counting pathloss.
The first interference term, Zr eCry; |hi,rwi,r ‘2 pﬁ‘r, stands for
the intra-cluster interference. It depends on the coordination
strategy used within this L-RRH cluster. The second term,
3 reC,/Cy p{ »» stands for the inter-cluster interference.

SINR; j =

For L-RRH clustering, we will consider both intra-cluster
and inter-cluster interference. However, for H-RRH cluster-
ing, we will assume zero-forcing (ZF) precoding. Therefore,
intra-cluster interferences are eliminated and the SINR, when
a user i is associated with H-RRH j, is formulated as follows:

,
Pij
> ro+o?
keCy/Ch Pik

where Cy is the RRH cluster containing H-RRH j, Cj are
other H-RRH clusters that don’t contain H-RRH j.

SINR;; =

@

2) ENERGY MODEL

Besides radio performance improvement, Cloud RAN archi-
tecture enables high energy savings, essentially thanks to
efficient radio network hardware utilization. In order to esti-
mate energy saving, we adopt an energy consumption model
where the BBU and RRH power consumption are measured
separately [35]. The total power consumed by a BBU at time
t is formulated by the following equation:

n
Pppy, = Ppp + ZPRRH,- 3)

i=1
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n
where Ppp is energy consumed by the BBU and > Prrp, is

=
the sum of energy consumed by all RRHs alloclated to this
BBU at instant t. The power consumed by a RRH is given by
the following expression:

P
Prri = —— + (Pgrr % N7Rx) “4)
NPA

where P, is the radiated power, nps is the power amplifier
efficiency, Prr is the power consumed by radio frequency
circuits, and Nygy is the number of transceiver antennas.

The total energy consumed by a BBU pool is given by the
following expression:

PBBU—pPool = ZPBBU + Py (5)

where Y Pppy is the sum of the energy consumed by all
active BBUs in the pool and P is the energy consumed by
the common infrastructure of the site which includes cooling
systems, backhaul transmission equipment, lights, AC/DC
converters, site monitoring systems and possibly site access
control systems. This energy is expressed as follows:

Py = Pcooling + Ppackhaul + Plighting + Pmoniloring (6)

3) L-RRHS CLUSTERING

For L-RRHs clustering (first stage of our clustering mecha-
nism), we propose to use a fuzzy logic controller (FLC) in
order to reduce uncertainties in clusters creation and reduce
overhead while considering a multitude of parameters.

FLC is composed of three steps as illustrated in Figure 4.
The first is the fuzzification. It consists of mapping each crisp
input into a fuzzy variable. In our work, we will consider three
variables which are SINR, load level of L-RRH, and load
level of H-RRH. We chose to use the load level as the number
of used RB (Resource Blocks). We divide each variable into
three fuzzy levels: low, medium and high. Mapping is done
using a membership function which defines the membership
degree of the crisp input with the fuzzy variable. In our
case, we will apply a triangular membership function, giving
accurate and exact values. Membership functions for SINR
H-RRH load and L-RRH load are represented in Figure 5.

Crisp input values

Py L_.
Base ‘ -

Inference

Defuzzification

Continuous values

FIGURE 4. Fuzzy logic control proces.
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FIGURE 5. Membership functions.

In the second step, inference is modelled as a set of fuzzy
rules. We have specified and applied 27 rules that are sum-
marized in Table 1. In defuzification step, the output action
which is denoted here by the probability that a particular
L-RRH is added to the cluster C, is given by the gravity center
of conclusions ¢; in each rule weighted by the membership
function using the following expression:

ZIZL e () (x3) ¢
212;1 (e g (e2) g (x3)

N

a(xy,x2,x3) =

4) H-RRHS CLUSTERING

H-RRH clustering objective is to allow obviously a better
resource utilization by avoiding one-to-one mapping between
BBUs and H-RRHs. The aim of clustering is to reduce the
number of used BBUs in order to decrease the network energy
consumption.

We propose here to model the problem as an optimization
problem under resources’ constraints. We consider a system
composed of a set of n H-RRHs, each with an average
RBs demand (dy, ..., d,;) and m user terminals (u, ..., uy).
We consider that each BBUs has the capacity to simultane-
ously process K RBs.

The optimization problem consists of finding the minimum
number of BBUs B < n and a B-partition Cl; U Cl, U
... U Clg of the set of n H-RRHs such that } ;. di < K
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TABLE 1. FLC rules for L-RRHs clustering.

Rule SINR L-RRH | H-RRH Cluster
load load membership

1 Low Low Low Out
2 Low Low Medium Out
3 Low Low High Out
4 Low Medium Low Out
5 Low Medium | Medium Out
6 Low Medium High Out
7 Low High Low Out
8 Low High Medium Out
9 Low High High Out
10 Medium Low Low In

11 Medium Low Medium In

12 Medium Low High Out
13 Medium | Medium Low In

14 Medium | Medium | Medium In

15 Medium | Medium High Out
16 Medium High Low Out
17 Medium High Medium Out
18 Medium High High Out
19 High Low Low In

20 High Low Medium In

21 High Low High Out
22 High Medium Low In

23 High Medium | Medium In

24 High Medium High Out
25 High High Low Out
26 High High Medium Out
27 High High High Out

(each BBU cannot process a sum of demands higher than its
capacity).The solution is optimal when B is minimal.

We introduce two binary variables x(; j to indicate if a
H-RRH is added to a cluster or not:

1 if H — RRHi is added to cluster j
Xoin =
@) 0 otherwise
And b; to indicate if a BBU is active or not:
- J1 if aBBU is active
"7 10 otherwise
1 if H— RRH iis added to cluster j
0 otherwise
The linear programming formulation of the problem is as
follows:
n
Minmize B =) b;
i=1
. n .
Subject to Zj:l dixij < Kb, Yie(l,....,n} (8)

n
Z,-leu,j) =1, Viell,...,n} 9)

The optimization is subject to constraints given by (8)
and (9). Constraint (8) guarantees that BBU maximum capac-
ity is not exceeded, i.e., the sum of loads from the cluster

164821



IEEE Access

0. Chabbouh et al.: Novel Cloud-RRH Architecture With Radio Resource Management and QoS Strategies

of H- RRHs associated with a BBU does not exceed the
BBU peak capacity. Constraint (9) ensures the fact that each
H-RRH is associated with exactly one cluster.

H-RRH clustering is formulated as a modified one- dimen-
sional bin packing problem. Since the bin packing problem
is NP-hard [10], it is hard to find an optimal solution in large
network systems. Therefore, we propose a heuristic algorithm
to cluster H-RRHs. The proposed algorithm is inspired from
Best Fit Decreasing (BFD) and Worst Fit Decreasing (WFD)
strategies [10], however, it has the particularity to fill all
unused resource blocks and reduce the number of BBUs.

The proposed heuristic algorithm is specified in the follow-
ing Algorithm 1. R stands for the set of H-RRHs 1;, D is the
set of their demands d; expressed in term of the number of
requested RBs per frame (sum all terminals demands in the
same cluster) and C represents the set of remaining candidate
H-RRHs to cluster (C is initialized to R). The proposed
heuristic algorithm implements the following steps:

« Sort the set of demands D in a decreasing order.

o Select the H-RRH r;, with the highest demand and for
cluster Cry,.

o Form the set R" of H-RRHs r, € R C R that can
be clustered with 7;, and the set D’ of their associated
demandsd, € D' C D.

o Select from R’ the H-RRH r; with the smallest RB
demand in order to first be clustered with 7, subject to
rp+rs < K, where K is the maximum capacity of a BBU
expressed in the number of available RBs.

e Add rg to Crp and update its cluster rjy; with its
demand dp ;.

o If r + ry < K is not satisfied, r; to which it belongs
cannot be extended and the algorithm repeats with the
following H-RRH that comes straight below ry.

o The algorithm is performed until no more clustering can
be performed.

Algorithm 1 H-RRH Clustering Algorithm
1. Initialize d;
2. Attribute d; to r;
3. Initialize C = R

4. Repeat
5. Sortd; € D
6.  Select d;, = max d; and its associated ry,
7. FormD Cc DandR CR
8. Selectd; = min d,/d, C D’
9. Ifd,+ d; <K then

10. Thus < IR U ry

11. dnus < dp + dg

12. Update D, R and C

13.  Else

14. C < C —{ry}

15. Select d; = max d;

16. rh< 1,

17. Go to step 7

18. Until C =@
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When this algorithm is executed, it results in a set of
clusters of H-RRHs that are grouped together in clusters,
each being served by the same BBU. The number of assigned
BBU is eventually lower than the number of RRHs and a
sum of demands in each cluster lower than the maximum
capacity of a BBU. This eventually allows saving the energy
consumption of all the inactivated BBUs while maintaining
the QoS of the end-users.

B. OFFLOADING STRATEGY
Regarding the offloading strategy, the general principle is
illustrated in Figure 6.

When a Mobile Terminal should execute a heavy applica-
tion task, it takes a decision regarding the local execution
of the task or its possible offloading. Examples of criteria
maybe time-delay, energy-saving, end-user policy, etc. If the
decision is to offload the task, it triggers an offloading request
to the serving RRH.

The offloading request specifies a six-tuple, namely,
(TaskID, StpCAPyr, CAP, Ejyc, B), where Stp is the size
of the task, CAPyr is the mobile terminal’s capacity,
CAP is the capacity that is required by the received task,
Ejoc is the energy that is expended for local execution and
B is the bandwidth that is needed between the RRH and the
mobile terminal.

The Containers’ Manager (as shown in Figure 6), processes
the offloading request and if granted, it sends a resource
allocation request to the serving container to specify the
required capacity after receiving the task code. Once pro-
cessed, an offloading response will be routed to the mobile
terminal. The Cloud RAN maintains a set of active containers
to execute end-users tasks at the edge of the network. The
CM maintains an up-to-date state of the load of the containers
in order to schedule the execution of the end-users tasks
depending on their size and their deadlines. It also performs
load balancing between active containers for better use of the
resources.

The bandwidth of the uplink connection between the
mobile terminal and the serving RRH is assumed to be B.
Following the notation in [30], [33], we denote the time that
is required for transmitting S, bits in uplink with rate r,,
by tu, namely, t,, = Syup/ryp. Similarly, for the downlink
transmission requirement for remote processing from the
Edge Cloud-RRH to the serving RRH, #5 = Sg1/ra1.

For power consumption at the mobile terminal in the uplink
and the downlink, we adopt the following models:

Pup = k(tx,l) + k(tx,Z) *Pix (10)
Pdl = kgx,1) + k(x2) - Prx (11)

In the above, k(. 1), k(x,2), K(x,1) and kg 2) are constants
that are evaluated based on measurements that are provided
in [27], [32]. Respectively, the constants correspond to the
uplink baseline power, the uplink power that is associated
with the transmission, the downlink baseline power, and the
downlink power that is associated with receiving data.
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Shannon’s theorem identifies the maximum possible rate
for a channel with K users:

Fupk) = B 102 (1 + Gup - P k) (12)
raky = B -log (1 + Gar - px,RRHce)) (13)

In the above, Gy, and G represent the channel gains that are
normalized by the noise power in the uplink and downlink,
respectively, while p(.x k) and px rrRHce) are the transmission
powers of the user and the serving RRH.

Considering equations (10) and (11), the energy that is
expended by a mobile terminal in the uplink and downlink
can be computed as follows:

Eup = k(;x,l) . tup + k(tx,2) : tup *Prx (14)
Eqr = kgx,1) - tar + ke 2) - tat - Pre (15)

rup
According to (12), py = 2 g =L Thus, the energy that

is consumed by a mobile terminal during offloading can be
computed as follows:

Eoﬁ = Eup + Ea (16)

Since the energy that is consumed by the mobile terminal
in local processing is proportional to the number of processed
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bits, Ej,. can be computed as follows:
Ejpe = €0+ S (17

where € is a constant that accounts for both the Joules/cycle
and the cycles/bit for the processor at the mobile terminal and
S is the number of bits.

For latency, we considered #y and #; as the times that are
needed to process one bit at the mobile terminal and at the
serving RRH, respectively. The time that is required for the
offloading process to be completed is equal to the sum of
the following elements: the time that is required for sending
the bits from the mobile terminal to the serving RRH via the
uplink; the time for the remote processor to execute the
offloaded computation; and the time for sending all the output
bits via the downlink. Thus, the expressions for the latency for
the local processing and offloading are as follows:

Lipe =1-S (18)
Loﬁ = Iy +1 S+t (19)

C. OFFLOADING ALGORITHM

The main objective of this algorithm is to determine whether
an application should be processed locally or must be
offloaded to the Edge Cloud-RRH. The objective of the deci-
sion is to enhance the user’s quality of experience (QoE)
while optimizing the use of resources in both the network and
at the mobile terminal.

To facilitate the decision-making, we introduce a set of
parameters to be utilized without increasing the solution’s
complexity to the formulated optimization problem. The
algorithm, which is illustrated in Figure 8, is applied at each
time slot to process the set of tasks that are generated by the
launched applications.

The algorithm starts by examining channel conditions.
Computing the channel capacity using Shannon’s theorem
(as described above), the channel coefficient is compared
to the average channel coefficient, which is calculated and
updated over time. If the current channel realization exceeds
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FIGURE 8. Proposed offloading decision algorithm for CRANs.

the computed average, the channel is considered to be in
a relatively “good” state and the task can be offloaded.
Otherwise, the MT will try to process the application locally.
However, mobile terminal resources are limited in terms of
computational capacity and latency generated by local exe-
cution should not exceed the maximum latency. Accordingly,
if the required computational capacity exceeds the predefined
percentage of the total locally available capacity or latency
condition is not verified, the task execution is filed. Other-
wise, the task is executed locally at the MT;

Next, latencies are compared using equations (18) and (19).
If the minimum between latency that is generated when the
task is offloaded to the Edge Cloud-RRH and that generated
by local execution is higher than the maximum latency autho-
rized by the application, the task execution is failed.

If not, the algorithm decides whether the latency that is
generated by offloading is higher. If so, it verifies that the
MT has the necessary resources to execute the task before
deciding to execute it locally. Otherwise, the task is offloaded
to Edge Cloud-RRH.

D. SCHEDULING OPTIMIZATION STRATEGY

The second strategy that is proposed in this work is con-
cerned with scheduling while optimizing both the load bal-
ance and the execution time. This strategy, which is illustrated
in Figure 9, proceeds as follows.

First, the resource monitor collects the information about
container resources and sends a report to the load evalua-
tor. This information is used to compute a score for each
container, which is used to determine whether a container is
overloaded or not. The load on a container can be defined by
CPU usage, RAM usage, and network bandwidth utilization.
All three resources should be considered uniformly when
checking a container load [28], [33]. Otherwise, three cases
are possible: CPU overloading, memory overloading, and
network overloading.
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FIGURE 9. Scheduling Stages in Edge Cloud-RRH.

A container may not be using its network bandwidth or
RAM memory at full capacity. However, the number of pro-
cesses that are running on it may be overloading the CPU,
thereby resulting in an average CPU usage that exceeds the
number of cores in the machine. This corresponds to the case
of CPU overloading.

Similarly, a container may not be using the full capacity
of its CPU and memory but may have more connections
and congested bandwidth. This corresponds to the case of
network overloading.

Finally, memory overloading can be detected via swap
activities [29]. By tracking the memory utilization and
whether the swapping activities exceed a threshold, memory
overloading can be detected.

Assuming uniform consideration of the metrics (CPU,
memory and network), a score can be calculated as
follows [29]:

1 1 1

score = . .
1—CPU 1—net 1—mem

where CPU, net, and mem represent the respective utiliza-
tions on the container, which are expressed as percentages
of maximum capacity. If one resource is highly utilized,
the overall volume would be considered as high. By using this
approach, the above volume formula can be used to calculate
a score for comparison against a threshold for determining
whether a container is overloaded or not.

The structure of the containers’ manager that utilizes this
score is illustrated in Figure 10, and the algorithm that is used
to evaluate the loads is detailed in Algorithm 2.

Algorithm 2 returns to step 1 every 30 seconds to
auto-organize Containers list formation until the container
resource utilization changes with time. Thus, our approach
considers system dynamics.

Finally, the dynamic scheduler uses the best-fit list that is
generated by the load evaluator and the execution time to
allocate the offloading request to a container. The dynamic
allocation algorithm is presented as Algorithm 3.
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If all activated containers are overloaded and the best-fit
list is empty, a new container is created and the offloading
request is assigned to it.

Algorithm 2 Load Evaluation Algorithm

Input: Container load metrics
Output: BestFit_list
C_list: Containers that are active
Container_score: 1_éPU * 1= r]nem * l—ln I
Overload_list: list of containers that are overloaded
BestFit_list: list of containers that are suitable for offload-
ing
Step1: For i=1 to number_C in C_list do
calculate Container_score[i];
If Container_score[i] > Threshold then
add Container[i] to Overload_list;
Else
add Container[i] to BestFit_list;
End if
End for
Step2: Sort BestFit_list in increasing order of Con-
tainer_score
Sleep (30 sec)
return to Stepl

E. STRATEGY FOR SCHEDULING BASED ON THE
OVERLOAD COST

In this section, we elaborate on our proposed strategy that is
based on the overload cost. This scheduling strategy consid-
ers the deployment cost, deadline, and available resources.
This strategy aims to reduce the complexity of the offload-
ing decision-making while enhancing the user computing
experience.

Fulfilling the application time constraints, we assume that
each Edge Cloud-RRH infrastructure can run N predefined
containers. Each container is characterized by its available
capacity resources, which are denoted by CPU;, RAM; and
Net;, where i € N. An offloading request is specified as a
set of M tasks to be executed with a deadline D, where each
task is characterized by its requirements CPU;, RAM; and
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Algorithm 3 Containers Dynamic Allocation Algorithm
Input: BestFit_list
Output: Container allocation
If BestFit_list # O then
For i=1 to number_C in BestFit_list do
Compute ExecutionTime_Container[i];
f(Container;) < ExecutionTime_Container[i];
End for
New_list <« Sort containers in ascending order of
f(Container;);
Affect Offloading_Request to New_list[1];
Else
Wake a new Container;
Affect Offloading_Request to Containerpew;
End if

Net; and has an expected execution time Ty j, j € M. This
is the execution time if all resource requirements are met.
We further consider a binary variable #; j), which indicates
whether a task has been allocated to a container:,

; 1 if task jis allocated to container i
)= 0 otherwise

A cost C is associated with each container-to-task assign-
ment, the value of which depends on whether the container is
overloaded after the execution of the task and whether the task
migration was necessary (due to user mobility). (As discussed
previously, the monetary costs of energy consumptions are
not considered in this work.) The considered costs are speci-
fied in detail as follows:

Denote the computational capacity of container i at time ¢
by Ceqp. Accordingly,

(o capPV

Ccap,- = CcapfAM (20)
CcapNet
Denote the average cost of resource utilization of task j on
container i by Cyy; ;. This cost can be computed as follows:
Cycru
Jii
Curam 1)

C Net
“tj,i

Cutj.i =

We can further define the utilization rate y; of container i
that corresponds to the system configuration to be computed
as follows:

CPU
cru _ E(tanciy)

Mi - Cmp.cp U
1
2 (1-CRAM
= | ,,RAM _ (“J’ “j.i 22
/*’Ll //Ll' — C[;apRAM ( )
1
Nei
e _ Pl
v Ccapfver
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The container is overloaded if max (ui NNy T
If a task j is allocated to an overloaded container, we associate
a penalty that is positively proportional to the level of the
overloading.

The overload cost metric, which is denoted ovys,
is defined as follows:

CPU , RAM Net) > 1.

_ )G =D max (Y, pfAM, ) > 1
OVcost; =

0 otherwise
(23)

Then, the total overload cost for the Edge Cloud-RRH to
execute all tasks can be calculated as follows:

N
OVeost; = E i OVcost; (24)

where N is the number of containers.

Migration costs are considered in accounting for user
mobility. As a user moves from one cell to another in the
network, the user’s task can also be migrated. We associate
a penalty r; when a MT task j is migrated from one container
to another one to capture the resulting service downtime that
is incurred. The total migration cost can be computed as

follows:
Migcost, = Zi Zj Lij) T (25)

Only migrations within the same Edge Cloud-RRH within
the same provider are considered. The applied penalty is
further dependent on the type of task that is migrated.

We now formulate the proposed strategy. Recall that the
objective is to minimize the total task assignment cost while
considering both the overload and migration costs in exe-
cuting all offloading requests. The problem is formulated as
follows:

Minimize « Z OVeost, + ﬁmigcost, (26)
Subject to Zj ij) Tng <D (27)
Zj i) - Cu;/(;[g’U < CPU; (28)
Zj 1) Cytam < RAM, (29)
Zj i) - Cyher < Net (30)
2
(Zi—‘“)z >1 G1)
N

Zj tij =1 (32)

The objective function in (26) aims at minimizing the
total costs, with o and B used as weights to facilitate the
implementation of preference. The objective is constrained
by equations (27) through (32). Constraint (27) ensures that
each offloading request is executed prior to the application’s
deadline, with D identifying the worst case, namely, the case
in which all tasks are sequentially executed. Meanwhile, con-
straints (28-30) enforce that all tasks’ requirements in terms
of CPU, memory and network bandwidth are within the con-
tainer capabilities. Constraint (31) guarantees load balancing
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between containers in the same Edge Cloud-RRH. Finally,
constraint (32) limits the assignment of each application to a
single container. This problem is a MIP and, therefore, can
be solved as a linear program since the objective function is
linear with respect to all the variables.

V. PERFORMANCE EVALUATION
In this section, we describe the evaluation methodology and
results for our proposed resource management strategies.
We use CloudSim, which is a simulation framework for
cloud-based scenarios. The simulator is used in tandem with
a 5G HetNet CRAN RHH topology.

Three scenarios are considered, with each evaluating the
performance of our strategies toward a single objective:
offloading, scheduling, and cost.

A. SCENARIO FOR EVALUATING RRH CLUSTERING
STRATEGY

This section provides simulation results for the proposed
two-stage RRH clustering scheme. As a first step, the fuzzy
logic controller was developed using jFuzzyLogic java
library [36], [37]. We considered a heterogeneous C-RAN
system where H-RRHs have coverage of 500m and a max-
imum capacity of 24 RBs and L-RRHs are 30m-radius [26].
To evaluate the energy consumed by the network, we used the
power values listed in Table 2 [38].

TABLE 2. RRH clustering Simulation parameters.

Parameters Values
Coverage of H-RRH 500m
Coverage of L-RRH 30m

K 24 RBs
S 16dB
Number of H-RRH 1000
200w
Bus
2000W
cooling
200W
P backhaul
s50w
P lighting
o 50w
monitoring

Figure 11 shows the considered normalized mean values
of the traffic load given by considering loads of all spatially
distributed H-RRHs within a 24-hour interval as introduced
in [39].

Figure 12 shows the evolution of the average SINR versus
the number of L-RRHs per H-RRH. Results show that while
without using clustering, the QoS degrades with the increase
of the density of RRHs, the proposed clustering scheme is
able to improve the QoS with the increasing of L-RRHs
density.

We have executed different simulations for different
L-RRHs density conditions: sparse, medium, and dense sce-
narios with 20, 40 and 80 L-RRHs/H-RRH, respectively.
We evaluated the network QoS expressed by average SINR
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FIGURE 12. SINR variation as the number of active L-RRHs per HRRH.

for different clusters sizes. The results that are highlighted
in Figure 13 show that presented scheme is more effective in
the dense deployment scenario and bigger cluster size. There-
fore, the proposed clustering mechanism can be deployed in
high dense 5G C-RANs.
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FIGURE 13. SINR variation as cluster size.

Figure 14 shows the variation in the average number of
BBUs required to meet the C-RAN load of 1000 RRHs in the
case of using FFD and proposed RRH clustering mechanism.
In FFD (First Fit Decreasing), RRHs are ranked in descending
order of their respective loads. Then, the first fit algorithm
is applied to map the RRHs to the BBUs. We can see that
the number of activated BBUs has been reduced through
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the use of our clustering mechanism. Therefore, the energy
consumed by the network is reduced as shown in Figure 15.
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FIGURE 15. Network energy consumption.

B. SCENARIO FOR EVALUATING THE OFFLOADING
STRATEGY

This scenario is used to evaluate our proposed offload-
ing decision algorithm, especially with respect to the total
offloading. We consider an urban environment with a het-
erogeneous CRAN in which each cell is comprised of seven
H-RRH units and four L-RRH units. Per [26], the radial
coverage is 500 m for an H-RRH unit and 30 m for an L-RRH
unit. Other system simulation parameters that are relevant to
this scenario are listed in Table 3. The values in the table for
go and fy have been aligned with the measurements that are
specified in [27] for the energy and frequency characteristics
of localized computing in commercial handsets and for the
computation of data ratios in practical applications.

First, we evaluate the application response time (in ms)
while varying the data size (ranging from 1 to 100 kbits). The
performance of the proposed scheme is compared to that of
total offloading. The results (shown in Figure 16) demonstrate
that the proposed offloading scheme improves the user expe-
rience by reducing the response time. If the data size is small,
the proposed scheme and total offloading perform similarly.
However, as the data size increases, the proposed scheme
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TABLE 3. Simulation parameters to evaluate offloading strategy.

Parameter Value
k(tx1) 0.4W
ktx,2) 18
k1) 0.4W
k(rx,z) 2.86 10~ W/Mbps

€ 8.6 108 J/bit

to 107 s/bit

t; to/2
Bandwidth (B) 10 MHz

Maximum latency authorized

by the application (L;;4,) 4s

y,
snnn | —@—=Proposed scheme
2600 —e—Total offloading

Response time (ms)

Data size (Khit)

FIGURE 16. Application Response Time (in ms), with the Data Size Varied
(from 1 to 100 kbits).

outperforms total offloading, with an average improvement
of 14% in response time.

In Figure 17, we illustrate the results of evaluating the
energy that is expended by the mobile terminal while varying
the data size (from 1 to 100 kbits). According to the fig-
ure, the proposed offloading algorithm results in the mobile
terminal expending less energy in our solution compared
to the total offloading solution. As with the response time,
the proposed scheme’s advantage becomes more apparent
as the data size increases. On average, a 15% improvement
in energy consumption is observed. Therefore, the proposed
algorithm can augment the mobile handset battery lifetime
while executing heavy applications.

C. SCENARIO FOR EVALUATING THE SCHEDULING
STRATEGY

The proposed scheduling model for this strategy was imple-
mented inside CloudSim as part of the cloud broker. The
scenario entailed virtualizing ten datacenters; two to six hosts
were created in each datacenter, with 2 GB RAM, 1 TB
storage, and 10 GB/s bandwidth in connection. In addi-
tion, 50 containers and 100-1000 tasks were implemented
under the simulation platform. The task length ranged from
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1000 million instructions (MI) to 20000 MI. Other parameters
that are relevant to the scenario are listed in Table 4 [30].

TABLE 4. Simulation parameters to evaluate the scheduling strategy.

Entity Parameters Value
Datacenter Number of datacenters 10
Number of hosts 2-6
Container Scheduler Space_shared and
Time_shared
Container Total number of containers 50
MIPS 500-2000
Memory (RAM) 256-2048
Bandwidth 500-1000
Cloudlet Scheduler Space_shared and
Time_shared
Number of PEs requirement 1-4
Cloudlet Total number of tasks 100-1000
Length of task 1000-20000

In the scenario, we assume that tasks are mutually indepen-
dent; namely, there is no constraint regarding the sequential
processing of the tasks. We also assume that task process-
ing does not undergo preemption, interruption, or migration
between processors.

The performance of the proposed task scheduling model is
evaluated via comparison with a round-robin (RR) scheduler
and ACO [42]. We have implemented these three algorithms
in the simulator. Figure 18 plots the average makespans of
the three evaluating schedulers. As highlighted in this figure,
the proposed scheduler outperforms ACO and RR.

Another basis of evaluation for the scheduling is the degree
of imbalance, which is denoted as D;, among the containers,
and computed as follows:

Di _ Tmax + Tmin (33)

Tavg
In the above equation, Tiyayx, Tinin, and Ty are the maximum,
minimum, and average execution times, respectively, of the
containers’ tasks.
Figure 19 plots the average degree of imbalance of each
algorithm as a function of the number of tasks, which is varied
from 100 to 1000. According to the figure, the proposed task
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scheduling model outperforms both RR and ACO algorithms
in terms of the system load balance.

D. SCENARIO FOR EVALUATING THE STRATEGY FOR
SCHEDULING BASED ON THE OVERLOAD COST
In this scenario, we consider an Edge Cloud-RRH with
N heterogeneous containers, where N = {25, 50, 75, 100}.
The computing capacity of the containers is varied between
1 and 10 CPUs, while the memory is varied from
128 Mbytes to 512 Mbytes. The network bandwidth is
varied between 100 Kbps to 200 Kbps. The number of
tasks M is varied in steps of 20 tasks, namely, M =
{20, 40, 60, 80, 100, 120, 140}. Meanwhile, the task require-
ments are varied as follows: CPU between 1 to 4; memory
between 128 and 1024 Kbytes; and bandwidth between 1 and
20 Kbps. Offloading requests are embedded sequentially,
with requirements randomly varied. Simulation parameters
that are relevant to this scenario are listed in Table 5. We also
fix the valuesa = 8 = 0.5and A = 2.

We compared the proposed cost-based scheduling scheme
with the SAH-DB scheduling algorithm [24] (a task
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TABLE 5. Simulation parameters for the scenario that is used to evaluate
the overload cost strategy.

Entity Parameter Value
Container | No. of containers 25-100

CPU 1-10

Memory (RAM) 128 - 512 Mbytes

Network Bandwidth | 100 — 200 Kbps
Task Total No. of tasks 20 - 140

CPU 1-4

Memory (RAM) 128 — 1024 Kbytes

Network Bandwidth | 1—20 Kbps

scheduling algorithm that is based on a delay-bound con-
straint) for 25 to 100 cloud containers. For the pro-
posed scheduler, we used IBM’s linear programming solver
CPLEX [31] to generate solutions for the formulated problem
and multiple specified data inputs. The scheduling efficiency
was evaluated in terms of the execution cost under a varying
number of associated tasks. Figure 20 presents the results.
The proposed scheduling algorithm can reduce the total exe-
cution cost compared with the SAH-DB algorithm for various
numbers of associated tasks. Meanwhile, the total scheduling
cost decreases with the increase of the number of resources
and increases with the number of associated tasks.

VI. CONCLUSION

Cloud radio access networks (CRANS) have recently demon-
strated considerable potential in mobile cellular networks,
especially in terms of enhancing resource management and
asset sharing. Our objective in this work was to intro-
duce novel strategies that homogenize resource management,
QoS evaluation, and cost optimization. The work involved
three main aspects, which are described below.

First, we proposed a CRAN architecture that is based
on a flexible RAN functionality division for 5G networks.
We introduced the Edge Cloud RRH, which represents inter-
mediate storage and computation capabilities. In order to
enhance radio resource management and reduce energy con-
sumption, we proposed a two-loop RRH clustering mecha-
nism. The first loop used a fuzzy logic controller to decide
about L-RRHs clustering. The second loop was dedicated to
H-RRHs clustering. The problem was formulated as a bin
backing problem and resolved using a heuristic algorithm.
Simulation results showed that the proposed scheme is effec-
tive for high dense deployments and is able to reduce system
energy consumption.

The architecture further entailed a division of functional-
ities between the central (core) and edge clouds. The objec-
tive of this division is to enhance resource utilization while
improving network performance. The division makes addi-
tional resources available to the user, thereby enabling either
total or partial offloading to the Edge Cloud-RRH. Overall,
the offloading improves the user experience and enhances the
energy efficiency.

Then, we introduced a decision framework for offloading.
The framework utilizes an algorithm that considers several
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key parameters in heterogeneous CRANs to employ our Edge
Cloud-RRH for offloading. The algorithm optimizes the use
of both network and mobile terminal resources and its effi-
ciency is evaluated via numerical simulation. The simulation
results demonstrate that the proposed algorithm reduces the
task response time and the energy consumption in the mobile
terminal.

Finally, we proposed a novel scheduling scheme for
minimizing the computational scheduling cost in Edge
Cloud-RRH that considers available resources, connection
resource requirements, deadline, and load balancing. The
considered scenario involves users offloading tasks to the
Edge Cloud-RRH, and we focus on scheduling tasks that
request several resources such as CPU, memory, and disk.
The scheduling problem is formulated as a cost minimiza-
tion problem in which user performance in terms of system
overload and migration cost is considered. The scheme was
evaluated via simulation; the results demonstrate that it can
schedule offloading requests with minimal total execution
cost.

In future work, we will consider the RRH clustering
problem in the heterogeneous Cloud RAN architecture as a
two-stage control loop. The first loop will use a fuzzy logic
controller to identify the L-RRH clusters, and the second
loop will target the H-RRH clusters. The problem will be
formulated as a bin backing problem, and a heuristic will be
employed to reduce the computational requirements of the
solution.
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