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ABSTRACT A heat sink is a specific type of heat exchanger integrated with heat generating devices –
mostly electronics – for the sake of thermal management. In the design procedure of heat sinks, several
considerations such as manufacturing cost, reliability, thermal and hydraulic performance have to be
included. In the past few decades, the prevailing trend of electronics design miniaturization has led to high-
power-density systems necessitating high performance cooling concepts. This paper intends to provide a
comprehensive review on various employed heat transfer enhancement techniques in cooling procedures
of electronics thermal management devices, with a focus on core ideas. The main motivation is to give a
rapid overview on the key concepts in different high-performance cooling designs along with a quantitative
comparison between the different concepts all in one reference which is missing in literature. For this,
the key idea of each design is firstly categorized, and then a detailed description is provided for each case.
The discussed categories consist of concepts based on channel cooling in various scales, phase transition,
jet impingement, spray cooling and hybrid design. At the end, quantitative comparison is illustrated for
thermal and hydraulic performance of a selection of the reviewed references covering all these different
categories. Based on this comparison, an overview on thermo-hydraulic performance of the presented
categories is provided, and recommendations for future studies are given based on this and the detailed
review of references.

INDEX TERMS Coolant, convection, heat transfer, impingement, phase transition, thermal management.

I. INTRODUCTION
In order to achieve reliable and highly-efficient operation
for power electronics, especially for those cases with high
requirements on compactness following the ongoing minia-
turization trend, it is necessary to provide thermal manage-
ment solutions capable of dealing with high-power-densities.
Thermal management is a crucial topic in a variety of appli-
cations including electronics, solar collectors and furnace
engineering [1]. Specifically, in electronic devices, in order
to avoid damage caused by formation of local hot spots on

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

the one hand, the maximum temperature within the device is
desired to be kept in a restricted range [2]. On the other hand,
in order to achieve the desired reliability, smooth cooling with
uniform temperature distribution has to be achieved. This
explains why efficient cooling mechanisms have become
an important topic of numerous research activities with the
growing trend of developing high-power-density electronic
devices with compact design. For this, various thermal man-
agement techniques have been developed. As illustrated in
FIGURE 1 along with corresponding references, the major
methods in this reference list, that form the main categories
in this paper, are channel cooling-based thermal manage-
ment designs in various scales including mini-channel and
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FIGURE 1. Classification of the reviewed research categories (a: reprinted with permission from [35], b: reprinted with permission
from [41], c: reprinted with permission from [60], d: reprinted with permission from [84], e: reprinted with permission from [76]).

microchannel, phase transition-based cooling techniques, jet
impingement and spray cooling designs along with hybrid
designs benefitting from combination of these methods.

A wide variety of general cooling concepts is available in
literature, and they are different from the viewpoint of cool-
ing capacity, involved mechanisms and improvement poten-
tial. A primary method for electronics cooling is to attach
highly-conductive extended surfaces called fins with various
structures to the heat dissipating part [3]. Heat is conducted
through the solid layers to the extended surfaces, and natural
convection releases heat to the ambient. Obviously, thermal
interface materials play a key role in such designs [4], and
an area increase is the core idea. However, the advances in
electronics have necessitated higher cooling capacities mak-
ing this method incompatible with a majority of more recent
designs [5].

In order to achieve higher cooling performance, forced
convection-based air cooling concepts have emerged. Fan
induced air cooling, benefiting from the forced convection
mechanism, was proposed as another thermal management
solution in electronics industry. Further improvement of
the heat transfer coefficient in this method for instance by
higher air flow velocities is accompanied by higher noise and
requires high power. Ultimately, it is the low heat capacity of
air which impedes the usage of forced convection-based air
cooling concepts in high-power-density applications [6].

Another major thermal management method is liquid cool-
ing. The designs in this category show higher cooling capacity
making them suitable for being integrated with compact elec-
tronics and high power densities [7]. Liquid cooling methods
can be categorized by various concepts including direct and
indirect approaches. The wide application of liquid cooling
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has been emerged in different design concepts including
cold plates, jet impingement-based designs and immersion
cooling [8], [9]. Each of the above-mentioned methods has
attracted growing attention in the past few years. In cold
plate designs, channel cooling in various scales from micro
to mini-channel is used. The microchannel topic has been
the center of attention according to its desirable features for
miniaturization. In fact, in spite of low flow rate and small
hydraulic diameter in microchannels which lead to laminar
flow regime, effectively a high heat transfer can be achieved
by allowing many small channels in parallel, inducing a
large solid-fluid interface. In addition, it benefits from design
flexibilities such as diameter reduction for increasing heat
transfer coefficient which is in accordance with compact
design scope that has made this method attractive to thermal
management designers [10]. However, the increased pressure
drop can lead to restriction of further miniaturization [11].
This is why tuning the parameters in microchannel-based
designs has formed a great proportion of research items in
this field [12].

The other method of liquid cooling in the subcategory of
direct methods is immersion cooling. This concept benefits
from the desirable feature of having the fluid close to the heat
source, for instance the electronic chip [9]. In this method,
natural convection and two-phase flow are involved; however,
an important restriction of this method - i.e. the requirement
of liquid compatible with the device - led to restrictions of its
application in thermal management devices.

Liquid jet impingement has been shown to be an efficient
cooling technology by achieving thin thermal boundary lay-
ers and desirably high heat transfer coefficients, which make
the concept suitable for compact designs [13]. However,
the more complicated design and manufacturing procedure
of this type of cooling devices compared to channel cool-
ing designs led to intense competition between these two
methods.

Another efficient thermal management method is spray
cooling which works by breaking the coolant into droplets
and impinging them to the hot surface. The role of the thermal
boundary layer acting as a thermally insulating layer in chan-
nel cooling and impingement cooling designs is minimized in
this method, so it is known as an efficient concept widening
its application in high capacity cooling and general com-
pact designs [14]. However, there are important parameters
restricting performance of spray-based thermal management
designs, and the most important one is the high pressure drop
required in the nozzle to produce spray droplets [15].

In another category of cooling devices, phase transition
is utilized. Phase change material (PCM) and heat pipe-
based designs can be placed in this group. The main advan-
tage of heat sinks utilizing PCM lies in the significantly
higher heat absorbed in latent form compared to sensible heat
absorption designs [16]. However, low thermal conductivity
of conventional materials used as PCM led to a restriction
of this approach, and also a great attention is attracted to
the enhancement of effective thermal conductivity in these

systems [17] and [18]. On the other hand, heat pipes, which
can be placed in different categories from indirect liquid
cooling to phase transition cooling designs, benefit from
liquid-vapour phase change mechanism. In fact, a heat pipe
is partially filled by liquid, and its inner wall called wick acts
as capillary pump. Heat is absorbed by the working fluid in
the evaporator side leading to fluid evaporation. Following
this, the vapour goes to the condenser side due to a pressure
gradient and is condensed there. Thewick structure transports
the fluid back to the evaporator. As a result, benefitting from
this mechanism, the effective thermal conductivity of a heat
pipe reaches several tens of thousands of Watt per meter
Kelvin, which makes it an attractive technology for thermal
management purposes [19], [20].

With the growing trend towards high-power-density elec-
tronics applications on the one hand, and performance restric-
tions of conventional thermal management solutions on
the other hand, the use of high performance heat transfer
enhancement concepts in this field has become more critical
in the past few years [21]. Since heat sink design for being
integrated with electronic devices is becoming more compact
and needs to be capable of dealing with high-power-density
thermal management applications, it seems necessary to pro-
vide a review on novel ideas on heat transfer enhancement
methods used in such systems in one review paper. By doing
this, it is intended to collect inspiring ideas in one reference
to facilitate the design procedure for future studies.

The main motivation of this review paper goes back to
the fact that the reviews available in literature in the field of
thermal management are restricted to a specific topic, such
as phase transition cooling [1] and [85], channel cooling
ideas [86], nanoparticle dispersion [87] and jet impingement
cooling [88]. However, in this paper, the focus is on core
heat transfer improvement ideas used in various designs with
different heat transfer mechanisms from phase transition, nat-
ural to forced convention and different working fluids ranging
from air, liquid, refrigerants, nanofluids, and phase change
materials with different physics from single phase convec-
tion to multiphase. These are grouped in a comprehensive
classification ranging from channel cooling-based heat sinks,
impingement designs, spray cooling, phase transition cooling
to hybrid cooling systems used for thermal management of
power electronics (see FIGURE 1). Moreover, a quantitative
comparison is made between all these different ideas at the
end in order to provide the thermal management designers
with the opportunity of rapid scan of the core ideas used in
different papers and a quantitative comparison of the cooling
capacities. Note that all of the reviewed references may not
necessarily be integrated with power electronics; however,
their key concepts are reviewed here as the representative
inspiring ideas that can be potentially utilized in future cool-
ing designs integrated with power electronics. Besides, it is
noteworthy that for each thermal management idea, there
may be several papers, but at least one representative paper
is brought to compare with other different concepts in order
to provide the thermal management society with a guideline.

166882 VOLUME 8, 2020



S. Lohrasbi et al.: Comprehensive Review on the Core Thermal Management Improvement Concepts

FIGURE 2. Graphical review of papers containing high performance ideas for heat transfer enhancement in channel
cooling-based heat sinks: (a) reprinted with permission from [22]; (b) reprinted with permission from [32]; (c) reprinted with
permission from[34]; (d) reprinted with permission from [36]; and (e) reprinted with permission from [39].

This work should enable to have a quick scan on the previous
works and also to inspire from high performance ideas as a
starting point to come upwith new exclusive thermalmanage-
ment ideas. For each category in the proposed classification,
an introductory description, a table and a schematic of ideas
are provided in the next sections. Finally, a quantitative anal-
ysis is done to provide fair comparison between the various
reviewed methods from thermo-hydraulic performance point
of view. Moreover, at the end of this paper, the gaps that can
be potentially filled later are listed in the conclusions.

II. HIGH PERFORMANCE IDEAS IMPLEMENTED IN
CHANNEL COOLING – BASED HEAT SINK DESIGNS
A. INTRODUCTION TO CHANNEL COOLING
Channel and mini/micro channel cooling-based thermal man-
agement designs are reviewed in this section. According
to the advances in manufacturing methods, channel cooling
in all scales has attracted considerable attention as thermal
management solution [89]. In contrast, there are still undeni-
able challenges involved in channel cooling, including pres-
sure drop/pumping power penalty and restricted heat transfer
due to the formation of a boundary layer, and non-uniform
cooling due to undesirable temperature rise in the coolant.
To tackle these issues, several ideas have been implemented
in order to reduce the thermal boundary layer and to achieve
uniform cooling at minimal pressure loss. In FIGURE 2,
a schematic of some channel cooling designs is provided.
As illustrated in this figure, the facilitated manufactura-
bility made channel configuration ideas one of the most
widely-investigated methods in this class. In addition, insert-
ing different solid bodies such as pin fin, lattice structures and

various types of vortex generators form another main concept
for heat transfer enhancement in this category. Similarly,
flow agitation by simple structures such as reeds is a simple
and efficient method, used to cause strong vortices in the
flow to disturb boundary layer and enhance heat transfer.
Another part of studies in this context is skin design such
as nature-inspired shark skin structure as illustrated in the
mentioned figure. Finally, enhancing thermal performance
of a heat sink by improving the coolant is the other field
reviewed here. In addition to single phase channel cooling,
another possibility is to use a boiling fluid as a coolant
with higher cooling capacity compared to its single-phase
counterpart due to utilization of latent heat of vaporisation
in the heat transfer process. Besides, uniform temperature
distribution should be in principle easier achieved in flow
boiling heat transfer since it occurs at the fluid saturation
temperature. However, there are restricting challenges asso-
ciated with this approach. Flow instabilities such as flow
reversal causing strong severe pressure drop fluctuations and
wall temperature instabilities are the examples. Accordingly,
benefitting from positive aspects of multiphase channel cool-
ing along with tackling the challenges has become a hot
topic in this field [90]. The characteristic parameters in this
category of thermal management designs include flow rate,
Reynolds number (Re), Prandtl number (Pr), Strouhal num-
ber (St), hydraulic diameter (Dh) and geometrical parameters
associated with each case. Besides, the response functions
considered in the design procedure are the approximated
total thermal resistance (Rth), thermal efficiency index (ηi),
thermal performance factor (η), heat transfer coefficient in
terms of Nusselt number (Nu) or convective coefficient (h),
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and hydraulic loss in terms of pressure drop (1P), friction
factor (f ), and pumping power (P.P). In addition, the junction
temperature (the highest operating temperature of the active
region within a semiconductor device), peak temperature,
maximum temperature difference and critical heat flux (in
two phase cooling) are also used to describe thermal perfor-
mance. The equations describing the abovementioned param-
eters are as follows [27]:
• Dh = 4A

p , where A and p represent flow cross section
and wetted perimeter respectively.

• Re = ρUD
µ

, where ρ,U ,D andµ represent fluid density,
flow characteristic velocity, characteristic length and
dynamic viscosity, respectively,

• Pr = cpµ
k , where cp, µ and k are specific heat, dynamic

viscosity and thermal conductivity respectively.
• St = νL

U , ν is vortex shedding frequency, L is character-
istic length and U is flow velocity

• Rth =
Th−Tc
Pt

, where Pt ,Th and Tc are total heat load
generated by the device, hot spot temperature and inflow
bulk temperature, respectively. Note that there is another
version of total thermal resistance where Pt represents
the input heat flux on the heating surface (W/m2). In this
case, thermal resistance unit is Km2/W instead of K/W.

• h = q
Tw−Tb

, where q, Tw and Tb are heat flux, channel
wall temperature, and average coolant bulk temperature
respectively.

• Nu = hD
k , where h, D and k represent convective

coefficient, characteristic length, and fluid thermal con-
ductivity, respectively.

• P.P = Q1P, where Q and 1P are volumetric flow rate
and pressure drop, respectively.

• f = 21P
ρu2

.DhL , where u and L refer to average flow
velocity and length of the channel, respectively. Besides,
1P,Dh and ρ are flow pressure drop, hydraulic diameter
of flow passage and fluid density, respectively.

• ηi =
Nu
f 1/3

, where Nu and f are Nusselt number and
friction factor, respectively.

• η =
(Nu

/
Nup)

(f
/
fp)

or η =
(Nu

/
Nup)

(f
/
fp)

1/3 , where Nu and f are Nus-

selt number and friction factor, respectively. Note that in
this equation, the subscript p refers to plain channel in
the absence of thermal enhancement. It is noteworthy
that the two presented forms of thermal enhancement
factor (η) show the same concept of considering both
thermal and hydraulic performance; however, in the sec-
ond version, less emphasis is placed on hydraulic loss.

The detailed review of channel cooling thermal manage-
ment concepts is presented in TABLE 1. the reviewed con-
cepts include channel configuration modification, conductive
insert immersion, obstruction introduction, flow vibration,
use of structured surface, and coolant property enhance-
ment. As discussed in this table, in the channel cooling
concepts, the applied approaches are mainly targeting on
disturbing boundary layer for the sake of thermal mix-
ing enhancement in terms of temperature uniformity, heat
transfer coefficient improvement and junction temperature

decrease at minimized hydraulic cost in terms of pressure
drop or pumping power. In the majority of the reviewed ref-
erences, the enhancement methods lead to a rise of pressure
drop. However, there are ideas with negligible pressure drop
increase, and there is even an idea reducing pressure drop,
which is the channel skin design. Finally, two-phase channel
cooling which normally achieves higher thermal performance
compared to single phase shows promising opportunities for
further improvements.

III. HIGH PERFORMANCE IDEAS IMPLEMENTED IN
PHASE TRANSITION – BASED HEAT SINK DESIGNS
A. INTRODUCTION TO PHASE TRANSITION COOLING
Solid-liquid and liquid-gas phase changes are the most
widely-used phase transition-based designs in power elec-
tronics thermal management. For this, two main approaches
are the utilization of phase change materials (PCM) and heat
pipe assisted heat sinks. Thermal management by utilizing
PCMs has been considered as a promising technique due
to numerous desirable features including high heat storage
density as a consequence of high latent heat of fusion for
common PCMs, and being able to withstand a large number
of cycles at relatively constant melting temperature. However,
the main drawback of PCM-based thermal management is
the low thermal conductivity of PCM materials. The other
phase transition-based group of devices which benefit from
the high effective thermal conductivity of heat pipes face
some challenges in terms of heat transfer performance from
heat pipe to device and regarding design compactness, which
should be also complemented by innovative ideas. The main
idea of heat pipe was proposed by Grover et al. [91]. Cot-
ter [92] developed a basic theory that has been used since
then as a basis for heat pipe design. Heat pipes make use of
a liquid-gaseous phase change of a working fluid to transport
heat from an evaporator to a condenser. Since the phase
change takes place at a constant temperature, the device is
capable of transferring heat for long distances with small
temperature gradients. This makes them act as a ‘‘ther-
mal superconductor’’ and an efficient alternative for thermal
management of high-power-density electronic components.
However, conventional heat pipes suffer from restrictions
in thermal performance that are tried to be eradicated by
the ideas discussed in this section. According to the men-
tioned plus and minus points for the abovementioned phase
transition-based heat sink designs, heat transfer enhancement
has become a hot topic in this field. In this section, the related
innovative ideas employed to enhance these systems are
reviewed. An overview is provided in FIGURE 3.

The characteristic parameters in PCM based thermal man-
agement devices are phase change time, operation time of
electronic devices without exceeding critical temperature,
melting fraction, heat source temperature, solid insert effi-
ciency, input power, and the stored energy. On the other
hand, filling ratio is one important parameter in heat pipe
assisted devices, and it is defined as the ratio of working
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TABLE 1. High performance heat transfer enhancement ideas utilized in channel cooling heat sink designs.
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TABLE 1. (Continued). High performance heat transfer enhancement ideas utilized in channel cooling heat sink designs.
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TABLE 1. (Continued). High performance heat transfer enhancement ideas utilized in channel cooling heat sink designs.
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TABLE 1. (Continued). High performance heat transfer enhancement ideas utilized in channel cooling heat sink designs.

fluid volume to the total volume of the miniature-loop heat
pipe. In addition, condenser/evaporator temperature and their
temperature difference along with evaporation, condensation
and total thermal resistance form the other important parame-
ters in heat pipe-assisted thermal management devices. These
thermal resistance values are calculated as follows [48]:

• Rthe =
Te−Ta
Ph

,Rthc =
Ta−Tc
Ph

and Rtht = Rthe + Rthc ,

Where Ph,Ta,Te and Tc are heat load and temperature at
adiabatic section, evaporator and condenser, respectively.

Finally, the heat transferred by the heat pipe for calculation
of heat transfer capacity by Qtransferred

/
Qinput is the other

characteristic parameter.
The reviewed phase transition based thermal management

concepts are provided in detail in TABLE 2. In the PCMbased
concepts, the conducted review shows that themain challenge
is to deal with the weak thermal conductivity of phase change
materials. This explains why a majority of works in this field
are focused on the use of conductive inserts or other methods

in order to improve the functionality of PCM based designs
in minimizing and stabilizing maximum temperature of the
target system. The heat pipe assisted thermal management
devices reviewed in this article benefit from various ideas
from modification of evaporator and condenser to modifi-
cation of wick in order to enhance the thermal performance
of heat pipes in terms of quick response, minimized thermal
resistance and reliable operation.

IV. HIGH PERFORMANCE IDEAS IMPLEMENTED IN JET
IMPINGEMENT – BASED HEAT SINK DESIGNS
A. INTRODUCTION TO JET IMPINGEMENT COOLING
The jet impingement technique has attracted the atten-
tion of thermal management designers in the past decade
due to desirable features including higher local thermal
absorption, potential of achieving more temperature unifor-
mity, and suitability for hot-spot-targeted cooling design.
However, impingement-based cooling designs suffer from
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FIGURE 3. Graphical review of papers containing high performance ideas for heat transfer enhancement in phase
transition-based heat sinks: (a) reprinted with permission from [41]); (b) reprinted with permission from [43]; (c) reprinted
with permission from [46]; (d) reprinted with permission from [48]; and (e) reprinted with permission from [52].

various restrictions. Interferences between adjacent jets or
interactions due to collision of surface flows, large size/
weight of fluid delivery system, and the required pump-
ing apparatus can be named as a few. In this section,
the recent research items containing novel ideas for improv-
ing impingement-based heat sink designs for being inte-
grated with power electronics are reviewed. The different
enhancement techniques are mainly categorized in six groups
including impingement configurations, immersed jet array,
impinged area design, impingement manifold design, uti-
lization of multiphase impingement cooling and additively
manufactured impingement nozzles (see FIGURE 4).

The important parameters and response functions used for
performance evaluation and design of impingement-based
systems are jet dimensions, jet-to-wall distance, critical heat
flux (two phase impingement cooling), surface superheat
defined as the surface and saturation temperature differ-
ence (two phase cooling), steady state temperature, outlet
temperature, maximum – minimum temperature difference,
heat flux, coolant flow rate, Reynolds number, heat transfer
coefficient (Nu and h), pressure drop, and pumping power.

Besides, pressure coefficient in the following form is also
used as another response function in this section among the
reviewed references [57]:
Cp =

2(Px−Patm)
ρu2

, where Px ,Patm, ρ and u represent local
static pressure on target surface, atmosphere pressure, coolant
density and impingement velocity. Meanwhile, another per-
formance evaluation criterion used in this field is overall
performance as a balance between thermal and hydraulic
considerations in the form of the area under the curve of
thermal resistance as a function of pumping power [60].

A wide variety of methods are used as impingement design
modifications in impingement based cooling concepts as
reviewed in TABLE 3. The major ideas are those using
various jet configurations for strong and uniform cooling
performance, surface modification and coolant properties
enhancement. The review shows that in general, jet impinge-
ment based cooling with potentially high number of cooling
units is an efficient thermal management solution with a
potentially low pressure drop. Meanwhile, the reviewed arti-
cles in this table also show that the manufacturing challenges
of fluid delivery system for such designs are being tackled
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TABLE 2. High performance heat transfer enhancement ideas utilized in phase transition-based heat sink designs.
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TABLE 2. (Continued.) High performance heat transfer enhancement ideas utilized in phase transition-based heat sink designs.
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TABLE 2. (Continued.) High performance heat transfer enhancement ideas utilized in phase transition-based heat sink designs.

by the new trends in manufacturing technologies especially
additive manufacturing which may facilitate novel impinge-
ment designs.

V. HIGH PERFORMANCE IDEAS IMPLEMENTED IN
SPRAY COOLING – BASED HEAT SINK DESIGNS
A. INTRODUCTION TO SPRAY COOLING
Spray cooling is recognized as higher cooling capacity
method compared to natural/forced convection cooling meth-
ods discussed earlier [84]. In this method, a liquid coolant
is emitted from a pressurized nozzle and breaks up into
droplets impinging the hot target surface. As a result of this
impingement, droplets are turned into a thin liquid filmwhich
flows radially along the surface. Obviously, compared to
the normal/tangential flow impingement-induced heat sink
designs where coolant generates a thermally insulating liquid
boundary layer and experiences undesirable temperature rise,
in spray cooling the hot surface permanently receives fresh
coolant droplets, leading to high cooling performance. In a
relatively different spray cooling mechanism entitled elec-
trospray cooling, electric potential is applied between liquid
and target surface to produce the spray for evaporation heat
removal. This technology benefits from several advantages

over conventional spray cooling including lower required
power to generate the spray compared to mechanical spray
systems with high friction losses, and avoidance of droplet
deceleration by drag force. This is achieved by droplet accel-
eration by an electrostatic force, leading to droplets imping-
ing on the surface with higher velocities.

Investigation of spray cooling is categorized by approaches
on the spray and droplet level. The former examines spray
cooling performance from flow behaviour, surface condi-
tions, fluid properties, nozzle array and similar viewpoints.
However, in the droplet level analysis, the impact of droplet
flow (single droplet or droplet burst) on the film flow (dry
surface, stationary film, and flowing film) is analysed. Obvi-
ously, in the spray level examination approach, deep under-
standing of detailed heat transfer mechanisms (convection
between hot surface and film flow, nucleate boiling on the hot
surface, conduction in film flow, and interfacial evaporation
from liquid film to surroundings) is missing unlike the droplet
level [15]. The categories of enhancement ideas exploited in
this field are illustrated in FIGURE 5 and a detailed descrip-
tion is provided in TABLE 4.

The important parameters and response functions in spray
cooling devices can be named as follows: critical heat flux
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FIGURE 4. Graphical review of papers containing high performance ideas for heat transfer enhancement in jet impingement-based
heat sinks: (a) reprinted with permission from [54]; (b) reprinted with permission from [56]; (c) reprinted with permission from [58];
(d) reprinted with permission from [60]; (e) reprinted with permission from [62]; (f) reprinted with permission from [64];
(g) reprinted with permission from [65].

(the peak average heat flux that is met once nucleation
sites cover the heated surface completely), surface tem-
perature and its non-uniformity, junction temperature, sur-
face superheat as the difference between surface-temperature
and saturation-temperature, heat transfer coefficient, aver-
aged surface temperature, and thermal resistance. Besides,
the difference between inlet pressure and back pressure
of the spray nozzle is used for hydraulic cost description
is some references. Finally, spray angle, droplet diameter,
droplet velocity, and volume fraction along with surface

tension can be named as the other important parameters
in this class. In addition, a dimensionless number used in
this category is known as Bond (Bo) number to evaluate
the contribution of the capillary effect, which physically
reflects the ratio of the gravitational force to the capil-
lary force as Bo = R

/√
γ
/
(ρl − ρV ) g, where R, γ ,

ρl, ρV , and g represent the radii of microcavities, the sur-
face tension of coolant, the density of liquid coolant,
the density of coolant gas and the gravitational constant,
respectively.
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TABLE 3. High performance heat transfer enhancement ideas utilized in jet impingement heat sink designs.
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TABLE 3. (Continued.) High performance heat transfer enhancement ideas utilized in jet impingement heat sink designs.
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TABLE 3. (Continued.) High performance heat transfer enhancement ideas utilized in jet impingement heat sink designs.

FIGURE 5. Graphical review of papers containing high performance ideas for heat transfer enhancement in spray cooling-based
thermal management designs: (a) reprinted with permission from [66]; (b) reprinted with permission from [69]; (c) reprinted with
permission from [70], (d) reprinted with permission from [72].

Aside from all of the plus points in thermal performance
of spray cooling-based thermal management devices, there
are undeniable challenges restricting overall performance of
these systems including significant pumping power required

to provide large pressure drops for the nozzles to produce
the desired fine spray. Clearly, thermal performance enhance-
ment methods are required to deal with the challenges to
enhance the overall performance of such systems and reduce
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TABLE 4. High performance heat transfer enhancement ideas utilized in spray cooling thermal management designs.
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TABLE 4. (Continued.) High performance heat transfer enhancement ideas utilized in spray cooling thermal management designs.

total cost in terms of pumping power. For this, several meth-
ods are used. TABLE 4 contains the core concepts and major
results of spray cooling designs for thermal management.
This technology is generally known for its high cooling per-
formance due to the mentioned features which have made it
suitable for high power density applications. As illustrated in
this table, the major design modifications in this category are
the use of structured surfaces, nozzle array modifications and
coolant property enhancements. However, the motivation for
adopting such approaches in spray cooling is different from
the single phase cooling designs since these modifications
can also alter wettability and nucleation sites in addition
to a surface area increase for the sake of thermal transport
enhancement. The review shows that spray cooling is an
attractive technology for high performance cooling, but still
there are crucial challenges to be addressed for ensuring
reliable operation.

VI. HIGH PERFORMANCE IDEAS IMPLEMENTED IN
HYBRID HEAT SINK DESIGNS
A. INTRODUCTION TO HYBRID COOLING DESIGNS
In this section, the designs benefiting from two or more
heat transfer improvement techniques known as hybrid
designs are reviewed. The research items in this section
utilize combinations and synergies of jet impingement,
solid insert, mini-microchannel array, surface modifications,
phase transition and thermoelectric coolers (see FIGURE 6
and TABLE 5). The characteristic parameters in the reviewed
hybrid designs are jet dimensions, jet-to-wall distance
(for impingement contained designs), volume fraction of
nanoparticles (for nanofluid contained systems), thermo-
electric cold and hot side temperatures, fin dimensions,
flow rate, Reynolds number, heat transfer coefficients, pres-
sure drop and pumping power, hot spot temperature, max-
imum temperature rise (difference between maximum and
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FIGURE 6. Graphical review of papers containing high performance ideas for heat transfer enhancement in hybrid designs:
(a) reprinted with permission from [75]; (b) reprinted with permission from [78]; (c) reprinted with permission from [79];
(d) reprinted with permission from [81]; (e) reprinted with permission from [82]; (f) reprinted with permission from [83].

minimum substrate temperature). Besides, overall perfor-
mance is defined as (h

/
1P) and thermal conductance is

defined as (q
/
(T̄s − Tinflow)) where q, T̄s and T inflow are input

heat flux, averaged surface temperature and coolant inflow
temperature respectively.

The hybrid thermal management ideas along with the key
ideas and major results are discussed in detail in TABLE 5.
The table contains the designs combining at least two con-
cepts among jet impingement, fin insertion, microchannel,
structured surface, thermally enhanced coolant, foam inser-
tion, phase transition and thermoelectric cooler. The review
of the hybrid designs indicates that in the majority of the
proposed designs, the combination of ideas leads to a higher
thermal performance in comparison with either of the indi-
vidual ideas. However, in some designs, this combination is
shown to require further considerations in order to avoid side
effects caused by the interactions between different individual
concepts.

VII. QUANTITATIVE COMPARISON BETWEEN THE
THERMAL MANAGEMENT CATEGORIES
In order to provide a fair comparison between the cooling
performance of the reviewed ideas in this paper including

channel cooling, spray cooling, impingement cooling, hybrid
designs and phase transition based designs, the effective ther-
mal conductance is adopted as the quantitative criterion as
follows [77]:

• αeff =
q
1T [Wm

−2K−1], Where q and1T represent heat
flux and temperature difference.

In channel cooling, impingement and hybrid cooling, the
temperature difference between inflow and hot spot is used.
In spray cooling, it is calculated as the difference between sur-
face temperature and saturation temperature. Finally, in heat
pipe thermal management devices as the candidate of phase
transition-based cooling, it is defined as the temperature dif-
ference between evaporator and condenser. The comparison
is provided in FIGURE 7. The diameter of the circles in this
figure is proportional to the required pumping power except
for the phase transition-based cases (No. 11 and 12), where
no pumping power is required.

As illustrated this figure, the operating range of chan-
nel cooling and impingement cooling ideas shows the pos-
sibility of achieving desired performance with comparably
low pumping power. However, the effective thermal perfor-
mance is lower for these cases compared to other categories
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TABLE 5. High performance heat transfer enhancement ideas utilized in hybrid heat sink designs.
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TABLE 5. (Continued.) High performance heat transfer enhancement ideas utilized in hybrid heat sink designs.
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TABLE 5. (Continued.) High performance heat transfer enhancement ideas utilized in hybrid heat sink designs.

FIGURE 7. Effective thermal conductance versus pumping power for the papers reviewed in the categories provided in FIGURE 1
(diameters are proportional to pumping power (W) except for No. 11 and 12).

especially spray cooling. This can be mainly attributed to
the nature of single-phase channel cooling and impingement

cooling benefitting only from sensible heat absorption unlike
the spray cooling or two-phase channel cooling designs.
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Another reason is that the majority of channel cooling ideas
available in literature are based on the laminar flow regime,
and only a minority of research items has provided analysis
on turbulence enhanced designs to benefit from increased
momentum/energy exchange due to turbulence nature. On the
other hand, the impressive effective thermal performance of
spray cooling ideas is normally accompanied by high pump-
ing power. In fact, it is known that in spray cooling cases,
the crucial challenge is to keep the system working safely
and reliably under high pressure differences in the order of
MPa between the inlet pressure and back pressure for a long
time. In addition, it is inferred that a combination of different
cooling ideas and wise layout of hybrid designs can fulfil
high thermal performance at affordable pumping power as
achieved in case No. 13 and 15. Finally, the impingement
and phase transition-based concepts indicate an overall ther-
mal performance of the same order but at different power
demands. Therefore, choosing among these methods should
be based on the specific priorities of the target system.

VIII. CONCLUSION AND RECOMMENDATIONS
A review on high performance concepts used for improving
heat transfer mechanisms involved in power electronics ther-
mal management was provided in this paper. The main moti-
vation was to give a comprehensive overview on the available
thermal management ideas and potentially inspiring new ones
and combinations of them. For this, a categorization covering
the commonly-used heat sink designs was presented. In the
categories, channel cooling in various scales, impingement
cooling, phase transition-based designs, spray cooling and
hybrid designs were presented. Following this, a detailed
description of the core of each idea was provided. Finally, a
quantitative comparison was given for a representative sam-
ple of the reviewed concepts from the viewpoint of thermal
and hydraulic overall performance.

Based on the conducted study, the following items are
proposed as future research recommendations.
• Turbulence-enhanced channel cooling forms a tiny
minority of designs in this category. However,
the upcoming manufacturing technologies enabling
complicated structures for novel mixing devices, and
allowing a balance between enhanced thermal per-
formance and increased hydraulic loss are promising
opportunities for adopting this approach.

• The employed heat transfer enhancement methods in
spray cooling such as surface modification indicate con-
siderable heat transfer enhancement and a great potential
for power electronics thermal management, but there are
still crucial challenges such as safe and reliable opera-
tion under high pressure difference between the high and
low pressure sides of the nozzles. Meanwhile, in spite of
the high cooling capacity at the maximum power oper-
ation point, keeping the hot spot temperature stable at
real transient working conditions has to be considered in
spray analysis. More works on miniaturization attempts,
for instance driven by piezo actuation-based pumping,

are needed in order to enable ultra-compact designs also
with spray cooling concepts.

• In heat pipe-assisted cooling devices, the effective ther-
mal conductivity and thermal performance are desirably
high. But still some ideas seem to have crucial short-
comings that necessitate further studies. For instance,
ultra-thin flattened heat pipes indicate impressive ther-
mal performance, but there are still drawbacks such as
decreased thermal performance under miniaturization
constraints which necessitate a decrease of thickness.
More research is to be done by reconsidering the inner
structure of this type of heat pipes to address such serious
issues while preserving the positive thermal aspects.

• Impingement cooling with low pressure drop and
hot-spot targeted cooling ability was shown to be
promising for achieving compact designs by adopting
approaches such as channel–confined jets. However,
the generation of the impingement jets in such con-
figurations by common methods such as orifice plate
obstructions can be costly from the hydraulic perfor-
mance viewpoint. Fulfilling compactness at minimized
hydraulic loss is recommended as a topic of further
study.

• According to the illustrated high potential of hybrid
designs in achieving high thermal performance at
acceptable hydraulic loss, it seems promising to find
an optimum combination of the individual cooling con-
cepts by considering the synergies between individual
methods.
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