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ABSTRACT Unsupervised learning methods have been increasingly used for detecting latent factors in
high-dimensional time series, with many applications, especially in financial risk modelling. Most latent
factor models assume that the factors are pervasive and affect all of the time series. However, some factors
may affect only certain assets in financial markets, due to their clustering within countries, asset classes,
or sector classifications. In this paper we consider high-dimensional financial time series with pervasive
and cluster-specific latent factors, and propose a clustering and latent factor estimation method. We also
develop a model selection algorithm, based on the spectral properties of asset correlation matrices and asset
graphs. A simulation study with known data generating processes demonstrates that the proposed method
outperforms other clustering methods and provides estimates with a high degree of accuracy. Moreover,
the model selection procedure is also shown to provide stable and accurate estimates for the number of
clusters and latent factors. We apply the proposed methods to datasets of asset returns from global financial
markets using a backtesting approach. The results demonstrate that the clustering approach and estimated
latent factors yield relevant information, improve risk modelling and reduce volatility in optimal minimum
variance portfolios.

INDEX TERMS Latent factor models, high-dimensional data analysis, financial risk modeling.

I. INTRODUCTION
With the rise of data driven decision making in risk manage-
ment, statistical and machine learning methods are becoming
increasingly important as their ability to uncover meaningful
information and perform well out-of-sample is put to the test
in real world scenarios. This field has recently attracted a
fair amount of interdisciplinary research, bringing together
mathematical, physical, econometric and computer science
approaches [1]–[3]. These methods are of critical impor-
tance in financial risk modelling, where the dynamics of
asset return time series are driven by underlying risk fac-
tors [4]. To estimate the effects that these underlying fac-
tors have on observed asset returns, traditional modelling
approaches use observable macroeconomic time series (such
as GDP growth, interest rates, or market returns) as model
inputs [5], while others focus on finding proxies for unob-
servable factors (known as size, value, or momentum) using
economic firm-level data [6], [7]. However, this information
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is not always available for every security (i.e. derivatives
or certain ETFs or indices), meaning that these standard
approaches may not be universally applicable [8]. More-
over, recent empirical results have been challenging some of
these models, giving advantage to more agnostic statistical
approaches [9].

Today, with the advances in financial technology and the
globalization of financial markets, the number of investable
securities and their diversity in terms of asset classes and
country of origin is larger than ever. Throughout the past
decades, these developments motivated the increased focus
on statistical and unsupervised learning techniques for uncov-
ering latent risk factors in asset return data [10], [11].
However, even though the number of assets continues to grow,
the observable time period used to estimate thesemodelsmust
remain short. This is due to the fact that financial markets are
known to exhibit sudden changes in dynamics and stationarity
can not be assumed over long time periods – asset return
volatilities and correlations change over time, especially
in the presence of financial bubbles and crashes [12]–[14].
Therefore, these unsupervised learning methods must be
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able to perform well on high-dimensional datasets when the
number of time series N is commensurate or even larger
than their length T [15]. The out-of-sample performance of
these estimates is crucial for many portfolio optimization or
risk management applications [1], [16]. Since deep learn-
ing techniques (such as autoencoders, restricted Boltzmann
machines, or GANs) use nonlinear models with a large num-
ber of parameters, they require large amounts of data for
training [17] and may perform poorly in high-dimensional
settings - instead, more restricted and parsimonious methods
are required [18].

FIGURE 1. A grid view of a setting with time series X1, . . . ,X7 affected by
factors F1, . . . , F5, such that F1 and F2 are pervasive factors, F3 is specific
to time series X1, . . . ,X4, while F4 and F5 are specific to time series
X5, . . . ,X7.

In this search for tractable and plausible latent factor
estimation methods, it is crucial to take advantage of the
structural specifics and statistical stylized facts of financial
markets [19]. Since global markets consist of assets from dif-
ferent exchanges and various asset classes, certain risk factors
will be specific only to a subset of assets [20]. For instance,
in a global set of financial assets, pervasive global factors
may affect all time series (such as the global macroeconomic
and market shocks), and cluster-specific factor related to
certain countries will affect only specific clusters of assets
(for instance, European stocks will be affected by their own
set of factors and may not be affected by some Asian mar-
ket factors, after controlling for the common global compo-
nent). Such a setting is shown in Figure 1, where the assets
X1, . . . ,X7 are exposed to pervasive factors F1 and F2 and
only certain clusters of assets are exposed to the cluster
specific factors F3 (affecting cluster of assets X1, . . . ,X4)
and F4,F5 (affecting cluster of assets X5, . . . ,X7). However,
the majority of modelling approaches consider only perva-
sive latent factors, decomposing the asset return variability
into the variability explained by pervasive factors (affecting
all assets) and idiosyncratic components (individual asset
risk) [5], [21]. In this paper we consider the existence of
cluster-specific latent factors, and propose a clustering and
latent factor estimation method which simultaneously esti-
mates the unknown cluster structures with the pervasive and
cluster-specific latent factors. We consider an approximate

factor model1 which belongs to a class of models pro-
posed by Ando and Bai [22], [23], who consider panel data
with observable pervasive and unobserved pervasive and
cluster-specific factors. The variability of asset returns is
decomposed into the variability explained by pervasive fac-
tors, cluster-specific factors and idiosyncratic components.
The pervasive factors affect all asset return time series, and
these assets are divided into clusters in which a certain num-
ber of cluster-specific latent factors (the number of which
may vary between clusters) affect the assets within that clus-
ter. Since the clustering procedure may be biased towards the
clusters with a larger number of cluster-specific factors (due
to the fact that more factors will always be able to explain
more variability in the data), the algorithm is divided into two
main phases: the clustering phase which uses a fixed num-
ber of cluster-specific factors for all clusters, and the latent
factor estimation phase based on the estimated asset clusters.
We also propose a computational approach to model selection
which detects the number of pervasive factors, the number
of clusters and the number of cluster-specific factors in each
cluster.
The main contributions of this paper are: (i) a new method

for clustering and estimation of pervasive and cluster-specific
latent factors in high-dimensional financial time series;
(ii) a new model selection procedure based on spectral prop-
erties of the time series correlations and asset graphs. Since
there is no ‘‘ground truth’’ in financial data (the number
of factors, the factors themselves, as well as the clusters
are all unknown), we also develop a simulation framework
based on data generating processes (DGPs) which feature
heavy-tailed distributed returns and correlated residuals (thus
replicating statistical properties of asset returns), in which
the ground truth is known - allowing us to measure the
performance of the estimation procedure and themodel selec-
tion method. Furthermore, we consider two datasets covering
global financial markets, and apply the proposed method to
the weekly return data. To measure the quality of the esti-
mates, we develop a backtesting framework which enables
us to obtain cross-validation results for the out-of-sample
performance of the estimated models. We also construct
a portfolio optimization scenario based on mean-variance
optimization and perform backtests on financial market data
to demonstrate the value of the proposed approach and the
ability of the method to reduce risk in portfolio optimization
scenarios.
The rest of the paper is organized as follows. In Section II

we provide a deeper look into the latent factor model
approach and its relation with dimensionality reduction tech-
niques. Section III defines the clustering and latent fac-
tor estimation algorithm, as well as the model selection
approach. In Section IV a detailed description of the DGPs
used to obtain simulation results is given. Section V provides

1Approximate factor models, as opposed to strict factor modes, allow for
correlated residuals, thus relaxing the strict assumption of a diagonal residual
covariance and allowing for off-diagonal non-zero covariance elements,
providing a more realistic assumption on the data.

164366 VOLUME 8, 2020



S. Begušić, Z. Kostanjčar: Cluster-Specific Latent Factor Estimation in High-Dimensional Financial Time Series

our results on both simulation data and financial market data,
and Section VI ends with a conclusion.

II. LATENT FACTORS IN HIGH-DIMENSIONAL FINANCIAL
TIME SERIES
Dimensionality reduction techniques are commonly applied
to obtain lower-dimensional representations of high-
dimensional data, such that these representations maintain
some key properties of the original data [24], [25]. This
is a crucial step in coping with the so-called curse of
dimensionality which manifests itself through computational
issues, such as sparse samples in high dimensions [26] or
the rank deficiency of sample covariance estimates and the
difficulties in estimating sample distributions [15]. Feature
selection algorithms primarily focus on finding a function
z = g(x) transforming the original high-dimensional data
x (which may have irrelevant or redundant information) to
a lower-dimensional set of variables z which aggregate the
relevant information for a certain modelling task [27]. The
function g is found by optimization of certain properties,
which may be assisted by the class labels or target variables,
depending on the modelling task. When the class labels or
target variables are not available, unsupervised feature selec-
tion techniques focus on finding features which best preserve
the clusters in the data [28], remove redundancy [29], [30]
or optimize certain spectral properties of the underlying data
graphs [31], [32] – either in the original data space or new
subspaces [33]. Generally, unsupervised feature selection
approaches have been found to yield relevant results in
many machine learning tasks, including sequence analysis
in bioinformatics [34], text classification [35], and other
applications [36].

As opposed to feature selection, the latent factor model
approach is focused primarily on finding a function x = h(f )
which explains the high-dimensional observed data x by a
lower-dimensional set of factors f . The task of estimating
factor models in high-dimensional data may be reduced to a
regression task when these factors are known and observed
– such cases may be common in biometric, psychometric
or economic applications, where factor models are used to
investigate the driving factors underlying the dynamics of
some phenomena or processes [37]. However, these factors
can often be unknown and unobserved, meaning that they
must be estimated as latent variables from the data [38],
requiring an unsupervised learning approach. The primary
task is still to estimate the function x = h(f ), but now the
factors need to be estimated from the data f = g(x). Evi-
dently, autoencoder-type approaches can be used to estimate
the encoder (f = g(x)) and decoder (x = h(f )) parts of
the model, offering a large range of architectures and the
ability to model non-linear relationships [39], [40]. However,
in the presence of high-dimensional data with the number
of samples being small in comparison to the number of fea-
tures/variables, nonlinear models often fail to generalize due
to the large number of parameters – this turns the attention of

recent research to high-dimensional latent factor estimation
based on robust and regularized statistical methods [18], [41].

In this paper we consider high-dimensional financial time
series of asset returns, with the goal of modelling the
asset return time series by associating the assets with a
lower-dimensional set of underlying factors. Since risk in
finance is most commonly proxied by the variability of asset
returns, the goal is to explain the variability of asset return
time series by their exposure to latent factors. In addition
to explaining risk, the estimated latent factor models are
often used to obtain better estimates of the high-dimensional
covariance matrices, which are ultimately a key component in
portfolio optimization [15]. Traditionally, latent factor mod-
els in finance assume that the factors are pervasive (they
affect all assets) and thus can be found as common compo-
nents in high-dimensional asset return time series [18], [21].
On the other hand, some recent results suggest that assets
indeed tend to form clusters and communities which can be
observed in their dependence network structures (modelled
either by correlation or other measures of connectedness)
[42], [43]. Assuming a strict hierarchical clustering structure,
Tumminello et al. [44] form a hierarchical latent factor model
and propose an estimation method based on the minimum
spanning tree of the underlying assets. Clusters of assets
are also known to emerge in stocks of single equity mar-
kets (for instance, clusters of stocks belonging to the same
sectors) - Kakushadze et al. [45] consider clustering tech-
niques for estimating these groups from the asset return time
series. Verma et al. [20] proposed a cluster-specific factor
model for the log-volatility with the goal of studying the het-
eroskedastic properties of volatility in financial assets returns.
Other clustering approaches were also shown to improve
high-dimensional covariance matrix estimates, which ulti-
mately reduces risk in optimized portfolios [46]–[49]. How-
ever, while the evidence on the existence of asset clusters
is compelling, certain latent factors may still be pervasive
and affect all assets - for instance, global macroeconomic
shocks or the market factor [50], [51]. These may not be
omitted in the search for asset clusters. To fully exploit the
structural properties and obtain better latent factor models,
both the asset clustering as well as latent pervasive and
clusters-specific factors need to be estimated from the data.

III. METHODOLOGY
A. MODEL
Let Xti denote the return2 of asset i at time step t , calculated
as the percentage change in prices between periods t − 1
and t . Each asset i is associated with one of K clusters where
gi ∈ {1, . . . ,K } denotes the cluster index for asset i. We
assume a latent factor model in which asset returns depend
on the realizations of pervasive (common) factors ftp and

2In this paper we consider the periodic (also known as arithmetic) returns
Xt = (St − St−1)/St−1, where St is the asset price at time t . Even
though log-returns may have more elegant statistical properties, periodic
returns allow for efficient matrix operations to be used in cross-sectional and
portfolio return calculations. For more details on this topic see [52].
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cluster-specific factors φtq:

Xti =
P∑
p=1

ftpbip +
Ck∑
q=1

φtqλ
(k)
iq + eti, gi = k, (1)

where t = 1, . . . ,T is the time index, i = 1, . . . ,N is
the asset index, p = 1, . . . ,P is the pervasive factor index,
and q = 1, . . . ,Ck is the cluster-specific factor index for
cluster k = 1, . . . ,K . Each of the K clusters is allowed a
different number of factors Ck - thus, the total number of
cluster-specific factors is Q =

∑
k Ck . The residual term

eti (also called the idiosyncratic component) represents the
sources of risk which are individual to each asset and are not
explained by the common factors. The model (1) can also be
written in matrix notation as:

X = FBᵀ
+83ᵀ

+ e, (2)

where X ∈ RT×N contains N asset return time series of
length T , F ∈ RT×P are the realizations and B ∈ RN×P

are the loadings for P pervasive factors. The realizations
of Q cluster-specific factors for all K clusters are 8 =[
8(1), . . . ,8(K )] and the cluster-specific factor loadings are
3 =

[
3(1), . . . ,3(K )], where 8(k)

∈ RT×Ck and 3(k)
∈

RN×Ck denote the Ck columns of 8 and 3 corresponding to
factor realizations and loadings associated with cluster k . The
term e ∈ RT×N contains all of the N individual idiosyncratic
components.

Since the pervasive factors affect all time series, the per-
vasive factor loading matrix B is full, whereas the
cluster-specific loading matrix 3 is non-zero only for the
elements which correspond to assets and factors associated
with the same cluster:

3
(k)
i = 0, gi 6= k. (3)

The pervasive and cluster-specific factors are assumed to be
uncorrelated: Cov(f p,φq) = 0, ∀p, q. The factor covari-
ance matrices Cov(F) and Cov(8) are assumed to be pos-
itive definite, thus allowing for some correlations between
cluster-specific factors.

The assumed factor model is approximate, meaning that
the error terms e, also known as idiosyncratic components
(since they represent individual sources of risk for each asset),
are zero-mean but are allowed cross-sectional correlations
and heteroskedasticity. This implies that residual covariance
Cov(e) is not necessarily diagonal, but it needs to be sparse
(the cross-correlations in the idiosyncratic components can
not be a consequence of common factors in the data) [18].

The factors are latent (unobservable), the clustering is
unknown, as well as the numbers of factors, clusters, and
cluster-specific factors - all of these need to be estimated
from the data. Given the model (2) and the assumptions,
in the following we propose an approach to estimate all of the
above. First an iterative method clusters the data assuming
a fixed number of cluster-specific factors in each cluster.
Then the numbers of cluster-specific factors inferred from the
data using the estimated clusters. To estimate the number of

pervasive factors and clusters, we propose a model selection
method based on the spectral properties of the asset correla-
tion matrix and the asset graph estimated from the return time
series.

B. CLUSTERING AND LATENT FACTOR ESTIMATION
Let ||A||2F =

∑
i
∑

j A
2
ij denote the Frobenius norm of a

matrix A. Given a data matrix X, and assuming a known
number of pervasive factors P, number of clusters K and
number of cluster-specific factors in each clusterCk , consider
the following loss function:

l(X;F,B,8,3) =
1
NT
||X− FBᵀ

−83ᵀ
||
2
F . (4)

The loss function is the error of unexplained variation in
the data. According to the Eckart–Young–Mirsky theorem,
if all factors are pervasive the optimal low-rank approxi-
mation is given by the principal components (PC) estima-
tor [5], [18], [53], based on the eigenvalue decomposition
of the matrix 1

T X
ᵀX = UDUᵀ. The pervasive factors and

loadings are then estimated as:

B̂ = UP
√
DP,

F̂ = XB̂D−1P , (5)

where UP are the P eigenvectors corresponding to the largest
P eigenvalues, contained in the diagonal matrix DP. The
principal components estimator is in the focus of many
high-dimensional statistical applications [18], [21] - however,
it is not applicable in the presence of cluster-specific fac-
tors. Moreover, for the assumed model, such a direct ana-
lytic estimation is not obtainable, since the loss function (4)
needs to be optimized subject to the cluster-specific factor
condition (3), given the clustering G = [g1, . . . , gN ]. The
estimates of the pervasive factors, cluster memberships, and
cluster-specific factors all depend on each other, and thus
require an iterative approach - in which the PC estimator will
prove useful.

1) CLUSTER ASSIGNMENT
If the pervasive factors F with loadings B and cluster spe-
cific factors 8 are known, each asset can be assigned to the
cluster which minimizes its value of the loss function (4).
To do so, we define Y = X − FBᵀ and find the candidate
cluster-specific loadings for cluster k as:

3̃
(k)
= Yᵀ8(k)(8(k)ᵀ8(k))−1, (6)

where8(k) are the cluster-specific factor realizations for clus-
ter k , as defined previously. Using the estimates we calculate
the loss matrix Lik = l(Xi;F,B,8(k), 3̃

(k)
) for each combi-

nation of assets i = 1, . . . ,N and clusters k = 1, . . . ,K . The
clusters are then directly assigned as:

ĝi = argmin
k

Lik , (7)

meaning that each asset belongs to the cluster whose factors
minimize the loss function (4) for that asset. This step can
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also be interpreted as a generalization of the assignment
step in Lloyd’s algorithm for k-means clustering, with Ck
cluster-specific factors instead of centroids, and the loss func-
tion (4) instead of the Euclidean distance.

2) ESTIMATION OF CLUSTER-SPECIFIC FACTORS
For a given clustering g = [g1, . . . , gN ] and known per-
vasive factors F with loadings B, all assets within cluster
k are exposed to the cluster-specific factors 8(k) – for that
subset of assets, these factors could be considered pervasive.
This enables the estimation of the factors using the subset
of asset return time series Y(k)

∈ RT×Nk containing only
the Nk time series in cluster k . Following the logic in (5),
the factor loadings 3̂

(k)
for cluster k are then estimated from

the eigenvectors of the largest Ck eigenvalues of the Nk ×Nk
matrix 1

T Y
(k)ᵀY(k). The cluster-specific factor realizations

are calculated as 8̂
(k)
= Y(k)3̂

(k)
.

3) ESTIMATION OF PERVASIVE FACTORS
Given the clustering g and cluster-specific factors 8 with
loadings 3, we define Z = X − 83ᵀ. The pervasive
factor loadings B̂ are estimated from the eigenvectors of the
largest P eigenvalues of 1

T Z
ᵀZ, and the factor realizations are

F̂ = ZB̂(B̂ᵀB̂)−1.

C. MODEL SELECTION
1) ESTIMATING THE NUMBER OF PERVASIVE
FACTORS AND CLUSTERS
To estimate the number of pervasive factors P and the number
of clusters K from the data, we apply the Ahn-Horenstein
eigenvalue ratio (ER) test [54] and propose a method for
estimating the number of clusters using a graph (network) of
assets. Since the estimates depend on each other, we propose
a method in which P and K are estimated from several
considered candidates, based on a joint criterion.

The ER approach sorts the eigenvalues of the data correla-
tion matrix in a descending order and defines the eigenvalue
ratio:

η
(p)
i = ξi/ξi+1, (8)

where ξi is the i-th largest eigenvalue. The test detects the
shift from the common factor part of the spectrum to the
idiosyncratic part [54], as seen in Figure 2. The larger the ER
ratio η(p)i , the more evidence in favor of i being the correct
number of pervasive factors. Therefore, in the ER test the
estimated number of factors is P̂ = argmaxiη

(p)
i . However,

in this case, the shift will be between the pervasive factor part
and the cluster-specific factor part (since the cluster-specific
factors affect less assets, the eigenvalues corresponding to
them will be lower than those representing pervasive factors).
Moreover, instead of just picking the maximum value of ER,
to obtain a more robust final estimate and avoid discarding
potentially better solutions, we select a number of candidates
for the the number of pervasive factors P̃1, . . . , P̃n, corre-
sponding to the n largest ratios η̃(p)1 , . . . , η̃

(p)
n .

FIGURE 2. The first 100 eigenvalues and eigenvalue ratios of a sample
correlation matrix. The best candidates for P in this case are 5 and 6,
as seen in the eigenvalue ratios.

To detect the clusters of data, for each P̃i we form an
asset graph from the time series Y = X − F̂B̂ᵀ, where F̂
and B̂ are estimated from the data using the PC estimator.
Each of the N nodes in the graph represents an asset and the
edges between them depend on a similarity measure wij =
|ρ(Yi,Yj)|. In order to obtain accurate and robust estimates,
the asset graph needs to reflect the following properties:

i) assets which are very close (having a high wij) should
be connected,

ii) assets in the same cluster should have a short path
between them (high connectivity clusters),

iii) the spectral properties of the graph need to be sta-
ble, since the estimation depends on the Laplacian
spectrum.

The first property is found in the ε-neighborhood (ε-N) graph,
constructed simply by keeping only the edges wij > ε which
are above a certain threshold ε. The second property is found
in the k-nearest neighbors (kNN) graph constructed by keep-
ing the k edges with highest values of wij for each node i =
1, . . .N , commonly used in spectral clustering [55]. Finally,
since the ε-N and kNN graphs may not always be connected
graphs (they may contain multiple connected components),
their spectral properties may differ depending on the number
of connected components, we also consider the maximum
spanning tree (MST) graph, which always consists of one
connected component. To obtain the maximum spanning tree,
the edges wij are multiplied by −1 and Kruskal’s algorithm
for minimum spanning tree construction is applied. The final
asset graph is a combination of the three approaches:

W =W(εN )
∪W(kNN )

∪W(MST ), (9)

withW(εN ),W(kNN ), andW(MST ) being the adjacency matri-
ces of the ε-N, kNN and MST graphs. The asset graph has
favorable properties from all three methods combined, result-
ing in a structure shown in Figure 3.
Given the graph adjacency matrix W, the number of clus-

ters can be estimated based on the spectral properties of the
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FIGURE 3. An example of the asset graph containing N = 1000 nodes,
estimated from a sample with exactly 5 clusters – all of which are clearly
visible in the graph structure.

asset graph Laplacian:

L = D−W, (10)

where D is the diagonal node degree matrix D =

diag(d1, . . . , dN ). The number of zero valued eigenvalues in
the spectrum of the Laplacian matrix is equal to the number
of connected components in the graph. Since the proposed
graphW contains theMST, it will always have one connected
component – thus the Laplacian L will have exactly one
eigenvalue equal to zero. The K − 1 eigenvalues ψ2, . . . , ψK
will be close to zero for a graph containing K clusters (the
end case being a graph divided into K connected components
which will have exactly K eigenvalues equal to zero).3 To
find the number of clusters in the graph, eigenvalues ψi of
the Laplacian are sorted in an ascending order and, in analogy
with (8), we define the the Laplacian eigenvalue ratio (LER)
η
(c)
i = ψi/ψi+1, as seen in Figure 4. Just like in the ER test,

the number of clusters is estimated as the i which maximizes
the LER: K̂ = argmaxiη

(c)
i .

Combining the two approaches, for each P̃i with its corre-
sponding ER η̃(p)i , we have a K̃i with its LER η̃(c)i . To decide
between the candidate numbers of pervasive factors and clus-
ters, we focus on the ER and LER values - the higher the ER
and LER, the more evidence towards them representing the
correct P and K . Thus, taking both into account, we propose
a heuristic rule to select P̂ = P̃j and K̂ = K̃j, where j =
argmaxi η̃

(c)
i · η̃

(p)
i . By doing so, among the similar candi-

dates for P, we select those which yield better resolution for

3In spectral graph theory, the second smallest eigenvalue of the Laplacian
(also called the Fiedler eigenvalue), and the corresponding eigenvector (also
called the algebraic connectivity) are in the focus of research on the bisection
of graphs – here instead of bisecting graphs into two components, we con-
sider dividing graphs into a number of clusters, and thus consider the K − 1
smallest non-zero eigenvalues.

FIGURE 4. The first 100 eigenvalues and Laplacian eigenvalue ratios (LER)
of the Laplacian matrix of a sample asset graph. The first eigenvalue and
LER are omitted since the first eigenvalue is zero (the graph has one
connected component). The best candidate for K in this case is 5, as seen
by the LER.

Algorithm 1Model Selection

estimate candidates P̃ and η̃(p) from X
foreach P̃i do

estimate P̃i factors F̂ and loadings B̂ from X
construct the asset graph from Y = X− F̂B̂ᵀ

estimate K̃i and η̃
(c)
i from the graph Laplacian

end
j← argmaxi η̃

(c)
i · η̃

(p)
i

P̂← P̃j
K̂ ← K̃j

selecting K . The overview of the proposed model selection
algorithm is given in Algorithm 1.

2) ESTIMATING THE NUMBER OF CLUSTER-SPECIFIC
FACTORS
During the cluster assignment step, the clusters with a larger
number of cluster-specific factors Ck will naturally attract
more assets (since the time series in clusters with more
cluster-specific factors will tend to have a lower value of Lik ),
and the cluster membership estimates will be biased towards
them. Even knowing the right number of cluster-specific
factors in each cluster will not guarantee that the assets
will be associated with the correct clusters. Our algorithm
resolves this issue by having the number of clusters equal
for all clusters Ck = C0,∀k during the entire iterative
clustering procedure. Given the estimated clustering ĝ, theNk
time series Y(k)

= X(k)
− FB(k)ᵀ will have a pure factor

structure, containing Ck factors, and Ck can be estimated
using the ER estimator. After Ck is estimated for each cluster,
another phase of the iterative procedure is run, containing
only the update step for the cluster-specific factor estimates
and the pervasive factor estimates. An overview of the entire
procedure, including clustering, factor estimation and the
estimation of the number of cluster-specific factors is given
in Algorithm 2.
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Algorithm 2 Clustering and Estimation of Pervasive and
Cluster-Specific Factors

initialize F̂, B̂, 8̂, 3̂, ĝ
set Ck = C0 for all clusters k = 1, . . . ,K
while clustering convergence criteria not met do

update cluster membership:
given F̂, B̂, 8̂, estimate 3̃ from Y = X− F̂B̂ᵀ

calculate Lik = l(Xi; F̂, B̂, 8̂
(k)
, 3̃

(k)
)

set ĝi← argmin
k

Lik

update cluster-specific factors:
given F̂, B̂, ĝ, calculate Y(k)

= X(k)
− F̂B̂(k)ᵀ

estimate 8̂
(k)
, 3̂

(k)
for all clusters k = 1, . . . ,K

set 8̂← [8̂
(1)
, . . . , 8̂

(K )
],

3̂← [3̂
(1)
, . . . , 3̂

(K )
]

update pervasive factors:
given 8̂, 3̂, calculate Z = X− 8̂3̂

ᵀ

estimate and set F̂, B̂ from Z
end
given F̂, B̂, ĝ update Ck for all clusters k = 1, . . . ,K
while error convergence criteria not met do

update cluster-specific factors:
given F̂, B̂, ĝ, calculate Y(k)

= X(k)
− F̂B̂(k)ᵀ

estimate 8̂
(k)
, 3̂

(k)
for all clusters k = 1, . . . ,K

set 8̂← [8̂
(1)
, . . . , 8̂

(K )
], 3̂← [3̂

(1)
, . . . , 3̂

(K )
]

update pervasive factors:
given 8̂, 3̂, calculate Z = X− 8̂3̂

ᵀ

estimate and set F̂, B̂ from Z
end

D. INITIALIZATION AND CONVERGENCE CRITERION
For the initialization, the P pervasive factors F and loadings
B are estimated from the data X first, then the asset graph is
constructed from Y = X − FBᵀ, based on which a spectral
clustering method is used to obtain the initial clustering.
Finally, for the given clustering g and pervasive factors F
with loadingsB, we estimate the cluster-specific factors using
the data Y(k), for each cluster k = 1, . . . ,K . In both phases
(the clustering and the cluster-specific factor estimation),
the algorithm stops when there are no cluster changes and the
reduction in the loss function l(i)−l(i−1) is less than 10−5 ·σ 2

m,
where σ 2

m is the median variance of all time series X.

IV. SIMULATIONS AND DATA
To verify the validity of our proposed approach and test the
estimation algorithm, we define several data-generating pro-
cesses (DGP) which correspond to the assumed factor model
structures. To obtain a model in the form of 2, we generate
random factor loadings. The elements of the pervasive load-
ings matrix B are drawn from a uniform random distribution
with mean 0 and variance 1. For the cluster-specific loadings
matrix 3, the elements 3(k)

i are random (also uniform with
mean 0 and variance 1) if asset i belongs to cluster k , and are

zero otherwise. We form clusters which are all of equal size
Nk = N/K . Since the approximate factor model allows for
some off-diagonal elements in the covariance of residuals,
we also generate random sparse covariance matrices with
a given idiosyncratic variance σ 2

e on the diagonal (for the
details on the procedure for generating positive semi-definite
sparse covariance matrices, see the Appendix VI). Given the
factor loadings and the idiosyncratic components, the asset
mean and covariance can then be calculated as

µX = µFB
ᵀ
+ µ83

ᵀ,

6X = B6FBᵀ
+3683

ᵀ
+6e, (11)

where µF are the means 6F is the covariance of P pervasive
factors, while µ8 are the means and 68 is the covariance of
Q cluster-specific factors. In our simulations, the means are
all zero, and the covariances are both diagonal matrices with
equal variances σ 2

F and σ 2
8 on the diagonal. The full set of

simulation parameters is given in Table 1.

TABLE 1. Simulation parameters.

To simulate asset returns, we use the asset mean and covari-
ance (11) to simulate T returns, drawing from the Gaussian
distributionN (µX ,6X) and the Student’s t-distribution, with
6 degrees of freedom t5(µX ,6X) and 4 degrees of freedom
t3(µX ,6X). Although such models and estimation methods
are often tested using simulations of normally distributed
data [18], [22], we additionally use the heavy-tailed Student’s
distribution, since they replicate the properties of financial
returns, as seen in Figure 5.

FIGURE 5. The normalized pdfs of the three considered theoretical
distributions, together with the empirical histogram of the weekly returns
of NASDAQ global equity indices between 2005 and 2020.
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In addition, we also use two dataset containing weekly
financial return time series. Firstly we use a dataset of NAS-
DAQ global equity indices between 2005 and 2020 [56]. The
original dataset contains a large number of redundant time
series, from which we select only the total return NASDAQ
indices available in the considered period, leaving us with
N = 797 assets. We also consider a dataset of N = 621
ETFs4 available between 2010 and 2020. The data for this
dataset is obtained by downloading historical return data
using Yahoo Finance for the ETF tickers available on etf.com,
and then again selecting only those time series which have
price data for the entire considered period. Both of these
datasets cover a wide range of exchanges, countries and
specific sectors, and can be used to represent and study the
latent risk factors in global financial markets.

V. RESULTS
A. SIMULATION RESULTS
We verify the proposed algorithm and measure the accuracy
of the clustering and model selection methods using the
proposed simulation scenario. Using the parameters defined
in Table 1), we randomly generate models and for each ran-
dom model we simulate time series of length T .

We apply the proposed method given the correct P and K ,
and measure the quality of clustering and the accuracy of the
detected number of cluster-specific factors C . The estimated
clustering ĝ and ground truth clustering g are compared using
the Rand statistic and Jaccard coefficient (see Appendix C).
Moreover, for both of these cluster validation measures and
any pair of clustering methods we define a paired statistical
test5 in order to test the hypothesis H0: There is no difference
between two clustering methods, with a one-sided alternative
H1: Method 2 outperforms Method 1. For each randomly
generated model m = 1, . . . ,mmax, the considered cluster-
ing methods are applied and the cluster validation measure
is calculated for both results (for instance Rand1(m) and
Rand2(m)), then the p-value is calculated as the fraction of
pairs for which Method 2 outperforms Method 1 (in this
example, the fraction of samples for which Rand2(m) >

Rand1(m)). We repeat this procedure for the both cluster val-
idation measures, pairing our proposed model-based method
with several commonly used clustering approaches (k-means
algorithm, spectral clustering [55], and the Ando-Bai estima-
tion procedure [23]). The k-means method uses 1− |ρij| as a
distancemeasure, and the spectral clusteringmethod employs
the proposed asset graph estimated directly from X. The
Ando-Bai procedure iteratively estimates clusters and latent
factors, but using a procedure which does not account for

4ETF stands for exchange-traded fund – these are relatively novel assets
which mostly follow certain known index methodologies and offer exposure
to certain asset classes such as equities, commodities, bonds, while reducing
costs for investors and increasing transparency.

5Since the models are randomly generated, each model realization
presents different conditions for the considered clustering methods, which
need to be taken into account in a paired fashion.

the bias in clusters with different numbers of cluster-specific
factors.

We generate a number of mmax = 1000 models and for
each we simulate time series realizations of length T =
1000, 500, 250, and apply the considered clustering methods
and tests. The average Rand and Jaccard statistics, as well
as the p-values of the paired resampling tests (comparing the
proposed model-based method with each of the other consid-
ered clustering methods) are shown in Table 2. These results
demonstrate the advantage of the proposed model-based
approach, as well as the fact that the existence of pervasive
factors may severely hinder clustering accuracy when they
are not taken into account. Moreover, in the paired tests,
the proposed method outperformed the considered methods
for virtually all of the 1000 resampled model realizations (the
p-values of< 0.001 mean that in themmax = 1000 simulated
models, none were found for which the considered method
outperformed our algorithm). To better visualize the paired
comparison for these two methods across the simulations,
we show the Rand statistic for the Ando-Bai and the proposed
model-based method across all 1000 simulations in Figure 6.

In order to look into the bias in clustering when the number
of cluster-specific factors differ between clusters, in Figure 7
we also look into the average number of assets in clusters with
different numbers of cluster-specific factors, given by two dif-
ferent approaches. The first uses the real Ck as the number of
cluster-specific factors in each cluster (corresponding to the
Ando-Bai method [23]), while the second uses the fixed C0
in each cluster during the clustering phase. The bias towards
the clusters with a larger Ck is evident and might be a large
source of inaccuracy in the clustering procedure, while our
method with C0 seems to provide accurate clustering without
any evident bias in the cluster sizes. These results are obtained
for the T = 500 window and the t4 distribution, but hold for
all of the considered combinations.

We also evaluate the performance of the model selec-
tion method, using the same simulation environment and
the simulated time series lengths. In addition to measuring
the percentage of correctly estimated number of pervasive
factors, clusters and cluster-specific factors, we also measure
the mean absolute deviation for each of these. The results
are shown in Table 3. The accuracy of the proposed model
selection method is remarkably high, even when presented
with heavy tailed data and short time window length. Only
the number of pervasive factors seems to suffer a bit in case of
the t4 distribution and T = 250 – nevertheless, the accuracy
of 90% achieved for this case is high.

B. FINANCIAL MARKET DATA
The simulation results confirm the ability of the proposed
method to provide accurate estimates, even in the presence
of correlated residuals, heavy tails, and high-dimensional
sample data. However, in real financial market data, such as
the NASDAQ global equity indices and ETF data, the latent
factors are unknown, as well as the clustering and the number
of clusters and latent factors. The proposed method allows us
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TABLE 2. Clustering performance on simulation data for the proposed method and other considered clustering techniques, using different simulation
time window lengths and data distributions. The brackets below each value contain the p-value of the paired resampling test of the considered method
compared to the proposed model-based algorithm. All of the values are obtained using simulation parameters given in Table 1.

FIGURE 6. The Rand statistic for all the 1000 simulations and T = 500,
given for the Ando-Bai and our proposed method. The two statistics for
each simulation are connected with a transparent blue line if our method
outperforms the Ando-Bai method, and a red line otherwise (only
3 samples in this case). The dashed lines represent the average values of
the statistics, corresponding to the values in Table 2.

to study and estimate these from the data directly. We first
focus on two distinct periods in the NASDAQ dataset:
Figure 8 shows the asset graph for the period 2007-2009

FIGURE 7. The sizes of clusters (number of assets Nk for different
numbers of cluster-specific factors Ck , given by two estimation methods.
The real number of assets in each cluster is known in the simulation and
is equal to Nk = 200 for each k .

around the global recession, and Figure 9 show the graph
for the subsequent period 2010-2020 which corresponds
to one of the strongest and longest bull markets in the
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TABLE 3. Model selection accuracy on simulation data over different
simulation time window lengths.

FIGURE 8. The asset graph for NASDAQ indices between 2007 and 2009.

history of financial markets. In both graphs, some common
clusters emerge (shown in same colors on both graphs):
European markets (pink), Brazil and Latin America (purple),
North America and global developed market indices (blue),
Asian emerging markets (teal), Middle East and Africa
(darker green), Asian developed markets (light green). The
2007-2009 graph contains another cluster for India and New
Zealand (yellow), and European emerging markets (red) -
both of which are encapsulated within other clusters in the
2010-2020 graph. The clusters found in the ETF dataset
reflect different asset classes, rather than geographic origin,
mainly because of the assets within – they mostly follow
broad indices from various countries, but differ between
stocks, bonds, commodities and others (to remain concise in

FIGURE 9. The asset graph for NASDAQ indices between 2010 and 2020.

this section, we do not display them additionally). In addition
to serving as a sanity check for the meaning behind the
estimated clusters, these results suggest that the clusters and
latent factor structures in the data may change through time.
This is why, in the rest of our analysis, we focus on rolling
time window estimates of the latent factors and clusters, and
use out-of-sample data from subsequent future windows to
measure the quality of our estimates.

To validate our approach on the available financial market
data, we propose a backtesting framework in which the model
is estimated on return time seriesX on look-back windows of
fixed length T . Using the estimated model (mainly, the factor
loadings Â = [B̂, 3̂]), a reconstruction of any time series
X′ can be obtained using the N × N filtering matrix of rank
P + Q: M̂ = Â(ÂᵀÂ)−1Âᵀ. This enables us to obtain a
reconstruction of any out-of-sample time series X′ using the
in-sample loadings estimates from which M̂ is calculated:

X̂′ = X′M̂. (12)

Using the reconstructed time series X̂, we can calculate the
unexplained variance in each asset (either for the in-sample
or out-of-sample data):

Vi =

∑T
t (Xti − X̂ti)2∑T
t (Xti − X i)2

, (13)

where Xti is the realization of time series i at time t , X̂ti is
the model reconstruction given by (12), and X i is the sample
mean of time series i. This framework enables us to apply
cross-validation principles for estimating the out-of-sample
model performance. Specifically, the model estimates from
a look-back window of length T are used to reconstruct
the future out-of-sample returns on a look-ahead window of
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TABLE 4. Unexplained variances of the model estimates compared to the PC estimator given different lengths of the look-back windows, on both
considered datasets.

length T ′ – using these we can measure the average unex-
plained variance V = 1

N

∑N
i Vi both in-sample and out-

of-sample (denoted Vi and V ′i , respectively).
In addition, to measure the decline in out-of-sample model

performance, we calculate the average percentage deterio-
ration in out-of-sample vs. in-sample unexplained variance:
d = 1/N

∑N
i V
′
i /Vi. We compare the proposed estimation

method with the PC estimator, where the number of compo-
nents for the PC estimator is selected so that it explains at least
the amount of variance explained by the proposed model.

The results in Table 4 demonstrate that the proposed
approach finds relevant estimates of latent factors in the data
which outperform the PC estimates in out-of-sample data,
for both considered datasets. Even though the PC estimator
yields the lowest in-sample unexplained variance V , the PC
estimates deteriorate much more than the proposed model,
as seen in the out-of-sample unexplained variance V ′ and
the average deterioration d . Moreover, all of these results
are in line with other econometric and unsupervised learning
studies which find that approximately 30-50% of variance
in financial data corresponds to idiosyncratic compon-
ents [37], [51]. In addition, we find that the model perfor-
mance in terms of unexplained variance deteriorates fairly
less than the PC estimates, suggesting that the proposed
estimation method finds more persistent and relevant latent
factors in high-dimensional financial time series. In other
words, the proposed model-based estimation method gener-
alizes very well to out-of-sample data. This result is expected
since the proposed method utilizes the assumed clustering
structures within the markets to reduce the number of param-
eters, thus providing a type of structural regularization of the
estimates.

To demonstrate the applicability of the proposed method
to risk modelling and portfolio optimization, we consider
global minimum variance (GMV) portfolios [51], obtained

by solving the following problem:

min
w

wᵀ6w

s. t. wᵀ1 = 1, (14)

where 6 is the asset covariance matrix. Since the estimation
procedure only depends on the covariance, it is a suitable
way to demonstrate the ability of the proposed method to
provide reliable estimates of asset risk, and is often used to
benchmark covariance estimation methods [21]. The covari-
ance matrix is obtained using the expression (11), based on
latent factors estimated on a look-back window of length T .
The idiosyncratic covariance 6e is estimated using a thresh-
olding approach, as described in the Appendix VI. At each
time step, the estimated GMV portfolios w are held on a
look-ahead window of length T ′ and their risks are mea-
sured as the realized volatility:

√
wᵀ6′w. We compare the

volatilities GMV portfolios estimated using the empirical
covariance and the covariances calculated using the latent
factors estimated by PC and the proposed method. We also
use all of the out-of-sample returns of the portfolios built
using the PC estimator based covariance and the model based
covariance, and apply a test for the equality of their variances.
Since these data are paired (measured at same timesteps and
thus dependent on some common market factors), and may
exhibit heavy tails, we apply a non-parametric version of the
Morgan-Pitman test for the equality of variances with paired
data, proposed byMcCulloch [57]. This test forH0 : σ

2
x = σ

2
y

uses variables u = x + y and v = x − y, and H0 is rejected
if the Spearman correlation coefficient between u and v is
significant. The out-of-sample GMVportfolio volatilities and
the p-value for the equality of variance tests (comparing our
method with the PC estimator) are given in Table 5.
The results demonstrate that not only the out-of-sample

portfolio risk is reduced by implementing latent factormodels
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TABLE 5. Out-of-sample GMV portfolio volatilities for the portfolios
estimated using the covariance matrices obtained by the considered
estimators. The p-values of the McCulloch non-parametric version of the
Morgan-Pitman test are given in brackets.

as opposed to empirical estimates, but also that the proposed
method works best at reducing out-of-sample portfolio risk.
All of the out-of-sample portfolio variances are significantly
reduced in comparison to the PC estimator, except for the
T = 4 years case in the ETF dataset, where the variance is
still reduced but the statistical evidence is not strong enough
to reject the equality of variances. Moreover, these results
suggest that the empirical covariance based portfolios dete-
riorate with reducing the look-back time window length, but
the model-based covariance estimates yield portfolios which
perform very well in short time windows. Evidently, accurate
estimates of latent factors allow for the usage of shorter
time windows for estimation, which in turn may improve the
properties of optimal portfolios since they adapt more quickly
to new market conditions.

The results presented in this section demonstrate that the
proposed method yields relevant and robust estimates of
latent pervasive and cluster-specific factors, which can be
applied to global equity market data with the goal of mod-
elling and managing financial risk.

VI. CONCLUSION
In this paper we consider latent factor models of high-
dimensional financial time series with pervasive and
cluster-specific factors. We propose an estimation method
which performs time series clustering and estimates latent
pervasive and cluster-specific factors iteratively. In order to
estimate the unknown number of clusters and latent pervasive
and cluster-specific factors, we also propose a model selec-
tion method based on the asset correlation matrices and asset
graphs.

We test the method using several data generating processes
under the approximate factor model assumptions, featuring
heavy tailed returns with some off-diagonal correlations of
residuals. The simulation study shows that the proposed
method yields very accurate clustering results, even for the
most severe high-dimensional setting and heavy-tailed dis-
tributions. Moreover, we show that the proposed two-phase
model-based method estimates clusters which are not biased

towards those clusters with a larger number of cluster-specific
factors, as is the case with other clustering methods using
cluster-specific factors. In addition, the simulation study
results suggest that the proposedmodel selection method pro-
vides stable and accurate estimates of the number of clusters,
latent pervasive, and latent cluster-specific factors.

We also apply our methods to datasets of return time
series of NASDAQ indices and ETFs in a backtesting
approach which allows us to use in-sample model estimates
to reconstruct out-of-sample return data. By doing so we
cross-validate the unexplained variance, and find that the pro-
posed model-based estimation method, although explaining
less variance in-sample than the PC estimator, explains more
variance out-of-sample, meaning that it generalizes better
and provides more robust estimates. In addition, we apply
the method for estimating the asset covariance matrix, based
on which we build optimized minimum variance portfolios.
The results demonstrate the ability of the proposed method
to reduce risk in the minimum variance portfolios, which
outperform the portfolios built on empirical and PC esti-
mates of the covariance matrix. Moreover, we find that,
whereas the empirical covariances deteriorate with the shorter
look-back windows, the model-based estimates thrive in
these high-dimensional situations, allowing one to use short
look-back windows and thus beingmore adaptive to changing
market conditions.

The results presented in this paper suggest that the cluster-
ing assumption in high-dimensional financial time series data
holds, and that the model-based estimation method indeed
extracts useful information about the latent factor structure.
These findings affirm and refine asset pricing theories based
on multi-factor models, providing evidence on the clustering
structures of latent risk factors. This approach may help shed
more light on the intricate latent factor structures in global
financial markets, as is demonstrated in our results. Ulti-
mately, the robust estimates of pervasive and cluster-specific
factors may be used to improve risk assessment and enhance
the out-of-sample performance of portfolios built on the
estimated models.

APPENDIX A
SPARSE COVARIANCE ESTIMATION
To estimate a sparse covariance matrix 6(sp.)

e we start from a
full sample covariance estimate 6(est.)

e and apply an adaptive
thresholding technique [58], [59]. A specific threshold is
set for each element of the matrix 6(est.)

e , so that the scale
(the variance of each time series) is taken into account. The
simplest way to do this is to consider the sample correlation
matrix R(est.)

e , and apply a fixed threshold εr to all elements:

R(sp.)
e = (r (sp.)ij )N×N , r (sp.)ij =

{
0, if |r (est.)ij |<εr

r (est.)ij , if |r (est.)ij |≥εr .
(15)

The sparse correlation matrix R(sp.)
e thus contains only ele-

ments larger than εr or smaller than −εr . However, this
simple hard thresholding rule does not always produce
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positive-definite matrices R(sp.)
e , since certain elements r (sp.)ik

and r (sp.)jk may be non-zero (pass above the threshold εr , but

the element r (sp.)ij may be zero (fall under εr ). This case may
be generalized in the term of graphs - the sparse correla-
tion matrix defines a graph where the edges are only those
pairwise correlations which pass the threshold value εr . This
graph is actually a very sparse graph with a relatively large
number of connected components - however each component
may not necessarily be fully connected, and as long as they
are not, the resulting correlation matrix will not necessarily
be positive-definite. Thus, in order to correct this, we iterate
over all connected components defined by matrix R(sp.)

e , and
assure that all links in those components are non-zero - thus
adding additional non-zero elements r (sp.)ij (if r (sp.)ik and r (sp.)jk

exist). The resulting new matrix R(sp.)
e is still sparse, but will

be positive-definite. Finally, the sparse covariance matrix is
reconstructed from the sparse correlation matrix:

6
(sp.)
e =

√
diag(6(est.)

e )R(sp.)
e

√
diag(6(est.)

e ). (16)

In our simulations, to generate random sparse correlation
matrices, we first generate N × N random matrices U where
each element is drawn from a uniform distribution U(0, 1),
and then define the simulated full correlation matrixR(est.)

e =√
UUᵀUUᵀ

√
UUᵀ. Based on this correlation matrix and the

procedure proposed above, we obtain the sparse correlation
matrix R(est.)

e - the threshold in simulations is set so that
approximately 10% of off-diagonal elements are kept non-
zero. Finally, the sparse covariance 6(est.)

e is calculated sim-
ilarly as in (16) so that the diagonals are the idiosyncratic
component variance σ 2

e . In the estimation procedure on the
NASDAQ equity indices dataset, we set the threshold equal
to the ε-neighborhood graph threshold used in the model
selection procedure.

APPENDIX B
HYPERPARAMETER SELECTION
The proposed estimation method depends on a handful of
hyperparameters: the fixed number of cluster-specific factors
C0 in the clustering phase, number of neighbors k in the
kNN graph, and the neighborhood threshold ε in the ε-N
graph. Although the algorithm is not too sensitive to small
changes in these hyperparameters, here we provide some
quick guidelines on how to select them. Firstly, the algo-
rithm in its clustering phase will not depend too much on
the selection of C0 since the cluster-specific factors in clus-
ters where Ck < C0 will model the Ck latent factors and
the rest will be noise, while for clusters where Ck > C0,
all C0 latent factors will be relevant. Nevertheless, we find
that a balanced C0 which is not too large but encapsulates
most of the cluster-specific factors will be best, thus we use
C0 = 4 in all of our simulations and results. Furthermore,
the number of neighbors k in the kNN graph should primar-
ily reflect the size of the clusters we want to detect in the
data. These are naturally dependent on the number of time

series N - we find that as a rule of thumb, a good choice will
be somewhere between logN and

√
N . In our simulations

and results we use: k = d(logN +
√
N )/2e. Finally, for

the selection of the neighborhood threshold in the ε in the
ε-N graph, we suggest that both the length of the time series
T and their number N are taken into account. Since longer
time series will provide smaller estimation error and more
accurate correlations between asserts ρij, the standard error in
the estimates will be reduced and the thresholdmay be lower -
however, the threshold still needs to be above a certain level
ρ0 above which we wish the pairs of assets to be connected
in the graph. To account for the statistical uncertainty in the
estimation, we propose to set the threshold to the critical value
of the approximate Pearson correlation test for the hypothesis
H0 : ρij = ρ0:

ε =
1+ ρ0
1− ρ0

exp
(

2z
√
T − 3

)
, (17)

where we set ρ0 = 0.4, T is the time window length, and
z is the 1 − α quantile of the standard normal distribution
N (0, 1). To account for the fact that the test is applied to all
pairwise coefficients ρij, we use to Bonferroni correction and
set α = 0.05/

(N
2

)
. These values are used in our simulations

and results for all different lengths of time windows.

APPENDIX C
CLUSTER VALIDATION
To measure the clustering performance of the proposed
method, we calculate the Rand statistic and Jaccard coef-
ficient, both of which are commonly used techniques to
measure the agreement between different partitions of the
same set and can be used even when there are no class
labels available [60]. Given the estimated clustering ĝ and the
ground truth clustering g, define the following variables:

SS =
N∑
i

N∑
j=i+1

1[(ĝi = ĝj) ∧ (gi = gj)],

SD =
N∑
i

N∑
j=i+1

1[(ĝi = ĝj) ∧ (gi 6= gj)],

DS =
N∑
i

N∑
j=i+1

1[(ĝi 6= ĝj) ∧ (gi = gj)],

DD =
N∑
i

N∑
j=i+1

1[(ĝi 6= ĝj) ∧ (gi 6= gj)], (18)

where 1[c] is an indicator function with value 1 if the condi-
tion c in the brackets holds, and 0 otherwise. The variable SS
simply counts the number of pairs of assets which belong to
the same cluster in both clusterings ĝ and g; SD counts the
number of pairs belonging to the same cluster in ĝ and differ-
ent clusters in g; DS counts the number of pairs belonging to
different clusters in ĝ and the same cluster in g; DD counts
the number of pairs belonging to different clusters in both
clusterings ĝ and g. Given these variables, the Rand statistic
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and the Jaccard coefficient can be calculated:

Rand =
SS + DD

SS + SD+ DS + DD
,

Jaccard =
SS

SS + SD+ DS
. (19)

Following the above expression, in our case the Rand statistic
simply measures the proportion of pairs which are correctly
clustered together or apart, and the Jaccard coefficient mea-
sures the intersection of the correctly clustered pairs in pro-
portion to the union of all the pairs of assets. Both of these
can be interpreted as focusing on the sets of pairs, rather than
the original set of assets, and look into whether the pairwise
clustering properties match in the two given clusterings.
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