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ABSTRACT A fully connected layer is essential for a CNN, i.e., convolutional neural network, which
has been shown to be successful in classifying images in several related applications. A CNN begins
with convolution and pooling operations for decomposing an input image into features. The result of
this process is then fed into a fully connected neural network, driving the final classification decision for
the input image. However, it has been found that the learned feature maps in a CNN are sometimes not
good enough for being fed into the fully connected layers to get good classification results. In this article,
a visual attention learning module is proposed to enhance the classification capability of the fully connected
layers in a CNN. By learning better feature maps to emphasize salient regions and weaken meaningless
regions, better classification performance can be obtained with integrating the proposedmodule into the fully
connected layers. The proposed visual attention learning module can be imposed on any existed CNN-based
image classification models to achieve incremental improvements with negligible overhead. Based on our
experiments, the proposedmethod achieves the top-1 accuracies of 95.32%, 92.73%, and 66.50% on average,
respectively, obtained on our collectedUnderwater Fish dataset, the public Animals-10 dataset, and the public
Stanford Cars dataset.

INDEX TERMS Salient feature learning, deep learning, convolutional neural networks, image classification,
object recognition.

I. INTRODUCTION
Image classification or visual object recognition is a fun-
damental problem [1]–[3] in several computer vision-based
applications, such as fish species recognition for underwater
exploration [4] and visual understanding-based autonomous
driving [5]. Conventional image classification approaches
usually apply the extraction of handcrafted features, e.g., [6],
to analyze images. For example, a novel image retrieval
framework was presented in [7] to retrieve digital images
from huge databases based on texture analysis techniques for
extracting discriminant features, including color and shape
features. However, in recent years, based on the rapid devel-
opment of deep learning techniques [8] with great success in
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numerous perceptual tasks, e.g., image classification [9]–[14]
and image restoration [15]–[18], several CNN-based deep
neural networks were presented for image classification. For
example, a deep CNN, called AlexNet [9], was presented
to perform image classification for the ImageNet dataset
of 1.2 million high-resolution images into the 1000 different
classes. In addition, a very deep CNN, called VGGNet [10],
was proposed for large-scale image recognition. Its main
contribution is to evaluate the network performance with
increasing depth using an architecture with very small con-
volution filters. Moreover, a deep CNN architecture, called
Inception or GoogleNet [11], was also presented for large
scale visual recognition. The key is to allow for increasing
the depth and width of the network while keeping the com-
putational budget constant. Furthermore, a residual learn-
ing framework, call ResNet [12], was proposed to ease the
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training of deeper networks for image recognition. It explic-
itly reformulates the layers as learning residual functions with
reference to the layer inputs, instead of learning unreferenced
functions. Moreover, an inverted residual network structure,
called MobileNetV2 [13], was presented to improve the state
of the art performance of mobile models on multiple tasks,
including ImageNet classification.

On the other hand, to strengthen the representational power
of a CNN, several approaches were presented recently by
enhancing the quality of spatial encodings and/or recalibrat-
ing channel-wise feature responses. For example, an archi-
tectural unit, termed squeeze-and-excitation (SE) block [19],
was proposed to model interdependencies between chan-
nels. The building blocks can be stacked and easily embed-
ded into any CNN architectures, e.g., by insertion after the
non-linearity operation following each convolution, for per-
formance improvement. Furthermore, a convolutional block
attention module (CBAM) [20] was presented by sequen-
tially inferring attentionmaps along two separate dimensions,
i.e., channel and spatial. CBAM can be also integrated into
any CNN architectures for achieving better performance. For
other recently developed deep attention models, a non-local
neural model inspired by the classical non-local means
methodwas presented in [21] for capturing long-range depen-
dencies, e.g., successive video frames. In addition, a residual
attention network built by stacking attention modules which
can generate attention-aware features was proposed in [22].
Moreover, an efficient channel attention (ECA) module for
deep CNNs was presented in [23], which captures cross-
channel interaction in an efficient way.

For advanced applications of visual attention modules,
a deep model was presented in [24] to consider the leaf spot
attention mechanism. In addition, a deep architecture denoted
by region-of-interest-aware deep CNN was proposed in [25]
for making deep features more discriminative to increase
classification performance.

In addition, by visualizing the process of a CNN [26],
it has been shown that the final convolutional layer of a CNN
usually dominates the decision resulted by the CNN [27].
That is, the last convolutional layer can produce a feature map
or a coarse localizationmap highlighting the important spatial
regions in the input image for predicting the concept. There-
fore, in this article, we propose to only embed an enhanced
visual attention layer after the final convolutional layer of a
CNN for learning better feature maps to compromise between
high-level semantics and detailed spatial information.

The main features and contributions of this article are
three-fold: (i) the proposed enhanced visual attention module
directly improves the last fully connected layer by enhancing
the learned last feature maps of a CNN for better classifica-
tion capability without needing extra convolutional layers;
(ii) the proposed method uses the Huber loss func-
tion [28], [29] to guide the last learned feature map toward
the corresponding ground truth, instead of using the MSE
loss to avoid the effects from possible outlier samples; and
(iii) the proposed module just needs to be embedded into a

CNN only once and can fit any CNN architecture for image
classification purpose with almost negligible extra overhead.

The rest of this article is organized as follows. Sec. II
presents the proposed enhanced visual attention-guided
deep neural networks for image classification. Experimental
results are demonstrated in Sec. III, followed by concluding
this article in Sec. IV.

II. PROPOSED ENHANCED VISUAL ATTENTION-GUIDED
DEEP NEURAL NETWORKS FOR IMAGE CLASSIFICATION
A. OVERVIEW OF THE PROPOSED ENHANCED VISUAL
ATTENTION MODULE
To strengthen the salient region feature maps and suppress
the insignificant feature maps for an input image for image
classification, we propose to separate the learned feature
maps into one channel or map and the rest channels in the last
convolutional layer. As illustrated in Fig. 1, through the chan-
nel separation process, the learned C feature maps of a CNN
are split into the feature map of the C-th channel and the rest
(C – 1) feature maps from the first to the (C – 1)-th channels.
The selected map from the C-th channel is then fed into the
leaned enhanced visual attention module (described later) for
refining the feature map. The output enhanced feature map
from the proposed enhanced visual attention module can be
viewed as a weighting coefficient map used for refining all of
the rest (C – 1) feature maps. The weighting coefficient map
is then used to enhance each of the rest (C – 1) feature maps
based on the element-wise multiplication. The refined feature
maps can better capture the salient region or the main object
region of the input image. The feature maps are then fed into
the final fully connected layer of the CNN for generating the
image classification result.

More specifically, for each c-th, c = 1, 2, . . . , C, learned
feature map Xc ∈ RH×W from the last convolutional layer in
a CNN, the weighting coefficient map ω ∈ RH×W learned by
the proposed enhanced visual attention module from enhanc-
ing the last channel Xc will be used to refine each Xc, c = 1,
2, . . . , C − 1. The refined version Fc is expressed as:

Fc = Xc � abs(ω), (1)

where Fc ∈ RH×W is the refined version of Xc, and H
and W denote the height and the width of the feature map,
respectively. The function abs( ) is used to set each coefficient
of ω to its absolute value. The operation ‘‘�’’ means the
element-wise multiplication. In our method, ω is used to
highlight significant region in the input image and suppress
insignificant information for image classification, as illus-
trated in Fig. 2.

B. TRAINING CONVOLUTIONAL NEURAL NETWORKS
WITH THE PROPOSED ENHANCED VISUAL
ATTENTION MODULE
The motivation for enhancing the last learned feature maps
of a CNN in this article is mainly inspired by the fact that the
final convolutional layer (immediately before the final fully
connected layer) of a CNN usually captures higher sematic
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FIGURE 1. Illustration of the proposed enhanced visual attention module.

FIGURE 2. Illustration of the refinement for the feature maps based on the weighting coefficient map learned by the
proposed enhanced visual attention module. The term Xc, c = 1, 2, . . . , C-1, denotes the original learned feature map and ω

denotes the weighting coefficient map (refined version of Xc, i.e., the C-th channel) learned by the proposed enhanced
visual attention module, which is used to refine each Xc, c = 1, 2, . . . , C-1, where Fc=Xc � abs(ω) and the abs() operation is
omitted in this.

features for final decision output of the CNN. Moreover,
based on the visualization of a CNN for classification pur-
pose [27], the output can be semantically visualized by the
weighted combination of the feature maps learned by the last
convolutional layer, as illustrated in Fig. 3. Therefore, it is
reasonable to refine the representational power of the feature
maps learned from the last convolutional layer of a CNN
for capturing richer semantic information and obtaining the
better prediction result.

To realize this idea, this article proposes to embed an
additional layer, called the enhanced visual attention mod-
ule, into any existed CNN. This module will immediately
follow the last convolutional layer of the CNN called the
host CNN and enhances the feature maps generated from
the last convolutional layer. To train the host CNN with
the proposed enhanced visual attention module embedded,

as shown in Fig. 4, we first simply split the C learned feature
maps from the last convolutional layer of the host CNN into
the C-th feature map and the rest (C – 1) feature maps. Our
main goal is to refine the C-th feature map to enrich the sig-
nificant information for image classification and suppress the
insignificant information. Therefore, we calculate the feature
loss between the C-th feature map and the corresponding
ground truth (described later). On the other hand, the rest
(C – 1) feature maps are also connected to the original fully
connected layer called the 1st fully connected layer of the host
CNN.Moreover, to guide the refined feature maps toward the
correct prediction output, all of the refined feature maps are
also connected to a fully connected layer called the 2nd fully
connected layer, exactly the same as the 1st one.

To guide the selected feature map from the C-th channel to
the corresponding ground truth map, the Huber loss [28], [29]
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FIGURE 3. Illustration of the semantically visualized feature maps and their weighted combination for output prediction,
where ‘‘Conv’’ means a convolutional layer, ‘‘GAP’’ means the global average pooling operation, and w1, w2, . . . , wC−1,
mean the weighting coefficients for the corresponding feature maps. The term Fc, c = 1, 2, . . . , C-1, denotes the refined
version of the original learned feature map Xc.

FIGURE 4. Illustration of the training process for the proposed framework.

is used as the loss function. The Huber loss function has
been shown to be more robust to outlier than the generally
used MSE (mean squared error) function. The Huber loss
function for each pair of the selected feature map Xc and its
corresponding ground truth Yc is expressed as:

H (Xc,Yc) =
1

H×W

H∑
a=1

W∑
b=1

Huber
(
Xc,a,b,Yc,a,b

)
(2)

where

Huber
(
Xc,a,b,Yc,a,b

)

=


1
2

(
Xc,a,b − Yc,a,b

)2 if
∣∣Xc,a,b − Yc,a,b

∣∣ ≤ δ,
δ
∣∣Xc,a,b − Yc,a,b

∣∣− 1
2
δ2 otherwise,

(3)

where Xc,a,b and Yc,a,b denote the (a, b)-th element of Xc
and Yc, respectively. H and W are the height and the width of
each featuremap, respectively. The parameter δ is a threshold,
empirically set to 0.7. During the training process, all of the
element values of the feature maps are first normalized using
the min-max normalization method [30], [31].
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FIGURE 5. Illustration of the testing process for the proposed framework.

On the other hand, the loss functions used to guide the
image classification outputs from the two fully connected
layers to the corresponding ground truths are the generally
used cross entropy functions. The used cross entropy loss
functions for the 1st and 2nd fully connected layers are,
respectively, expressed as:

CE1 = −

N∑
i=1

C∑
j=1

Y1,i,jlog
(
P1,i,j

)
, (4)

CE2 = −

N∑
i=1

C∑
j=1

Y2,i,jlog
(
P2,i,j

)
, (5)

where i, j, N, and C denote the serial number of the i-th
training image, the serial number of the j-th class, the total
number of the training images, and the total number of classes
for image classification. The terms, Y1,i,j and Y2,i,j, are two
binary indicators (ground truths), respectively, for the 1st
and 2nd fully connected layers. If the class label j is the
correct prediction for the observation i, the indicator is 1.
Otherwise, the indicator is 0. P1,i,j and P2,i,j are two predicted
probabilities, respectively, generated by the 1st and 2nd fully
connected layers for indicating the observation i belongs
to the class j. The two fully connected layers used in the
proposed training process are exactly the same and also with
the same training data.

Based on the Huber loss defined in Eq. (2) and the cross
entropy losses defined in Eqs. (4) and (5), the total loss func-
tion for training the host CNN with the proposed enhanced
visual attention module embedded is expressed as:

losstotal = λ1 × CE1 + λ2 × CE2 + λ3 ×H, (6)

where λ1, λ2, and λ3 are the weighting coefficients to con-
trol the weight for each respective loss. Our guideline for
empirically tuning the weighting coefficients are addressed as
follows. The term CE1 is used for guiding the original feature
maps before refinement to the final results, and therefore
its weighting coefficient λ1 is set to be smaller. In addition,
the term CE2 is used for guiding the refined feature maps to
the final results, and therefore its weighting coefficient λ2 is
set to be larger. Moreover, the term H is used to guide the

selected feature map to the corresponding ground truth map
for further feature refinement, and therefore, its weighting
coefficient λ3 is also set to be larger. As a result, based on the
guideline, the three weighting coefficients λ1, λ2, and λ3 are
empirically set to 0.2, 0.4, and 0.4, respectively, where λ1 +
λ2 + λ3 = 1.0. Based on the proposed loss function defined
in Eq. (6), in the training process, we aim at guiding both
of the original learned feature maps and the refined feature
maps toward the correct prediction output while guiding the
selected feature map toward its corresponding ground truth
salient map for refining the other feature maps. Therefore,
the learned deep model would usually generalize well and be
neither underfit nor overfit.

C. TESTING CONVOLUTIONAL NEURAL NETWORKS WITH
THE PROPOSED ENHANCED VISUAL ATTENTION MODULE
In the testing process of the proposed method, different from
the network structure used in the training stage, only one fully
connected layer (used in the host CNN) is used. As illustrated
in Fig. 5, in the testing stage, each input image for image
classification is fed into the host CNN and goes through the
deep network. After obtaining the feature maps generated
from the last convolutional layer of the CNN, the proposed
module splits the total C maps into the C-th map and the
rest (C − 1) maps. The selected C-th channel is re-mapped
to its refined version by our module, which is used as a
weighting coefficient map. Then the weighting coefficient
map is used to enhance each of the rest (C − 1) maps by
the element-wise multiplication operation via Eq. (1). The
enhanced feature maps are connected to the fully connected
layer, which generates the final prediction output.

III. EXPERIMENTAL RESULTS
A. NETWORK TRAINING AND PARAMETER SETTINGS
To evaluate the performance of the proposed enhanced
visual attention module, we selected four classic convolu-
tional neural networks to form our host CNNs and embed-
ded the proposed module into them. The four host CNNs
are VGG16 [10], ResNet-50 [12], MobileNet V2 [13], and
ShuffleNet V2 [14]. To train each host CNN with the pro-
posed module embedded, we used three image datasets for
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FIGURE 6. Some examples of our collected underwater fish dataset of 10 classes. Each column indicates one class, where the upper two images are
for training and the lower two images are for testing.

FIGURE 7. Some examples of the public Animals-10 dataset of 10 classes [33]. Each column indicates one class, where the upper two images are for
training and the lower two images are for testing.

image classification. The used three datasets are our collected
Underwater Fish dataset, where some images in this dataset
are collected from [32] of 10 classes (Fig. 6), the public
Animals-10 dataset of 10 classes (Fig. 7) [33], and the public
Stanford Cars dataset of 196 classes (Fig. 8) [34]. In all our
experiments presented in this article, all used images are in
the RGB color space with the number of input channels set
to 3. Moreover, based on the fact that it is not easy to get
the ground truths of the feature maps learned by the last
convolutional layer of a CNN, in our experiments, we applied
the PoolNet [35] and BASNet [36] to generate the ground
truths of feature maps for our training images, as examples
shown in Fig. 9. Both of the two deep networks [35], [36]
are mainly designed for salient object detection with the cor-
responding salient map generated. The numbers of training

images, testing images, and ground truth salient maps for the
three datasets are summarized in Table 1.

It should be noted that using the ground truths of saliency
maps to guide the last learned feature map of a CNN in the
training process indeed introduces richer information than
only using the classification labels for network learning.
However, the applied existed saliency detection mod-
els [35], [36] may generate wrong saliency maps, and there-
fore, we applied the Huber loss function to reduce the effects
of possible outliers. On the other hand, we also introduced the
other two terms based on the classification labels for guiding
the two fully connected layers into our total loss function.

In addition, to train each host CNN with embedding all the
evaluated attention modules, we used the RMSprop, i.e., root
mean square propagation, optimizer [37] with the momentum
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FIGURE 8. Some examples of the public stanford cars of 196 classes [34]. Each column indicates one class (only 10 classes are shown), where the
upper two images are for training and the lower two images are for testing.

FIGURE 9. Some examples of the ground truths of the feature/saliency maps and the generated feature/saliency maps by our method. The former
five columns are training images (upper) and the corresponding ground truths of the feature/saliency maps (lower). The latter five columns are
testing images (upper) and the corresponding feature/saliency maps (the enlarged versions for the original size of 7× 7) obtained by our method.

TABLE 1. Numbers of training images, testing images, and ground truth
salient maps for the three used datasets.

set to 0.9, the learning rate decay set to 0.98 per epoch, and
the input image size set to 224 × 224. All the evaluated
attention modules denote the four compared state-of-the-art
modules [19], [20], [22], [23], descried in Sec. III.B, and the
proposed module. The other parameter settings are summa-
rized in Table 2. In Table 2, for each host CNN trained on a
dataset, all the parameters are the same as those used for this
host CNN with embedding each attention module.

Moreover, the selection of the datasets used for model
training and testing in our experiments mainly depends on
the following three principles. First, the proposed framework
focuses on image classification for images with dominated

TABLE 2. Parameter settings.

objects inside, and therefore, prefers to datasets consisting
of images with clear objects and suitable labels. Second,
the selected datasets should be representative and popular
in the image processing and computer vision community.
Third, the selected datasets may be useful for our recently
executed project for the applications of unmanned underwater
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TABLE 3. Quantitative results in terms of the Top-1 and Top-5 accuracies, the number of parameters, denoted by params (in M or Mega), the FLOPs (in G
or Giga), and the average run time per image (in milliseconds) obtained by each host CNN with/without embedding the compared attention modules and
the proposed module conducted on our underwater fish dataset. For each term of params and FLOPs, only the increment from the corresponding value of
the corresponding host CNN is shown.

TABLE 4. Quantitative results in terms of the Top-1 and Top-5 accuracies, the number of parameters, denoted by params (in M or Mega), the FLOPs (in G
or Giga), and the average run time per image (in milliseconds) obtained by each host CNN with/without embedding the compared attention modules and
the proposed module conducted on the Animals-10 dataset [33]. For each term of params and FLOPs, only the increment from the corresponding value of
the corresponding host CNN is shown.

vehicles, i.e., UUVs. The selection for our collected Under-
water Fish dataset mainly depends on the first and the third
principles. In addition, one of our data sources [32] for form-
ing our Underwater Fish dataset is also popular in recently
related research works, e.g., [38], [39]. On the other hand,
the selections of both the public Animals-10 dataset [33], also
used in recent works, e.g., [40], [41], and the public Stanford
Cars dataset [34], also used in recent works, e.g., [42], [43],
are mainly based on the former two principles.

B. QUANTITATIVE RESULTS
To evaluate the image classification performance for each
selected host CNN with the proposed enhanced visual atten-
tion module embedded, we reported the top-1 and top-5
accuracies obtained on the respective dataset. Moreover,
we also compared the SE (squeeze-and-excitation) mod-
ule [19], CBAM (convolutional block attention module) [20],
RAN (residual attention network) module [22], and ECA
(efficient channel attention) module [23] with the proposed
module by embedding the respective attention module into

the four selected host CNNs. To get significant perfor-
mance improvement compared with each original host CNN,
the compared attention modules might be usually embed-
ded into the host CNN multiple times, for example, to be
embedded after each convolutional layer. Different from
these approaches, the proposed module just needs to be
embedded once after the last convolutional layer of each
host CNN. Tables 3-5, respectively, show the top-1 and top-
5 accuracies (suggested by [44]) obtained by the four host
CNNs, VGG16 [10], ResNet-50 [12], MobileNet V2 [13],
and ShuffleNet V2 [14], with and without embedding the
SE [19], CBAM [20], RAN [22], ECA [23], and the proposed
modules, respectively, on our Underwater Fish, the Animals-
10 [33], and the Stanford Cars [34] datasets. It can be found
from Tables 3-5, embedding the proposed module into the
host CNNs can significantly improve the top-1 and top-5
accuracies, compared with those obtained by the original host
CNNs and those obtained by the host CNNs with embed-
ding the compared attention modules. That is, the proposed
enhanced visual attention module can be widely embedded
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TABLE 5. Quantitative results in terms of the Top-1 and Top-5 accuracies, the number of parameters, denoted by params (in M or Mega), the FLOPs (in G
or Giga), and the average run time per image (in milliseconds) obtained by each host CNN with/without embedding the compared attention modules and
the proposed module conducted on the stanford cars dataset [34]. For each term of params and FLOPs, only the increment from the corresponding value
of the corresponding host CNN is shown.

TABLE 6. The Top-1 and Top-5 image classification accuracies obtained by MobileNetV2 and MobileNetV2 with proposed module embedded (denoted by
+ proposed) on our collected underwater fish dataset in terms of input image sizes of 224× 224, 112× 112, and 56× 56.

into any existed CNN architectures, enhance the features
learned by the last convolutional layers, and be generalized
to many datasets for image classification.

On the other hand, to evaluate the image classification
accuracies obtained by the proposed method in terms of
different input image sizes, we reported the related results
in Table 6. Table 6 shows the top-1 and top-5 accu-
racies obtained by embedding the proposed module into
MobileNetV2 in terms of the image sizes of 224 × 224,
112 × 112, and 56 × 56, respectively. As shown in Table 6,
larger input image size will lead to better classification accu-
racy. However, even if the input image size is relatively small,
the proposed method still achieves acceptable results.

C. NETWORK COMPLEXITY ANALYSIS
The proposed method was implemented in Python program-
ming language with Pytorch [45] on a personal computer
equipped with Intel R©Core TMi7-4790 CPU, 3.6 GHz, 16 GB
memory, and NVIDIA GeForce RTX 2080 Ti GPU. To ana-
lyze the complexities of the evaluated host CNNs with the
proposed module embedded, we reported the numbers of
network parameters, the FLOPs (floating point operations)
for network testing, and the average run time per image
(in milliseconds). Tables 3-5 shows the numbers of network
parameters, the FLOPs for network testing, and the average
run time per image (in milliseconds) for the four evalu-
ated host CNNs with and without embedding the SE [19],

CBAM [20], RAN [22], ECA [23], and the proposed mod-
ules, respectively, conducted on the three datasets. Based
on Tables 3-5, the additional burden of network complexity
induced by embedding the proposed module is almost neg-
ligible. The main reason is that the proposed module is only
required to be embedded once into each host CNN, where
only one additional element-wise multiplication is required
for enhancing each feature map. It can be also observed from
Tables 3-5 that the run time for testing an image based on all
the host CNNs with embedding the proposed module is lower
than those obtained by embedding the compared state-of-the-
art deep attention modules [19], [20], [22], [23]. Therefore,
the proposed enhanced visual attention module can be easily
embedded into any CNN architectures with negligible extra
burden.

IV. CONCLUSION
In this article, we have proposed an enhanced visual atten-
tion module for being embedded into any existed CNNs
for image classification purpose. By enhancing the features
learned from the last convolutional layer, which can capture
richer semantic information for image classification while
suppressing insignificant information, of a CNN, the CNN
with the proposed module embedded achieves significant
improvement in classification performance with negligible
extra overhead. For future works, it is expected to extend our
module for enhancing CNNs of different purposes, such as
image regression.
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