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ABSTRACT Proton Exchange Membrane Fuel Cells (PEMFC) is considered a propitious solution for
an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its
polarization curve and an in-depth understanding of all its operating characteristics attracted the interest of
many researchers. In this paper, recent meta-heuristic optimization methods have been successfully applied
to evaluate the unknown parameters of PEMFC models, particularly Marine Predators Algorithm (MPA)
and Political Optimizer (PO) techniques. The proposed optimization algorithms have been tested on three
different commercial PEMFC stacks, namely BCS 500-W, SR-12PEM500W, and 250W stack under various
operating conditions. The sum of square errors (SSE) between the results obtained by the application of
the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as
the objective function of the optimization problem. In order to validate the effectiveness of the proposed
methods, the results are compared with those obtained in the literature. Moreover, the I/V curves obtained
by the application of MPA and PO showed a clear matching with datasheet curves for all the studied cases.
Statistical analysis has been performed to evaluate the robustness of the MPA and PO techniques. Finally,
the PEMFC model based on the MPA technique surpasses all compared algorithms in terms of the solution
accuracy and the convergence speed. The obtained results confirmed the superiority and reliability of the
applied approach of theMPA algorithm. The results prove that theMPA algorithm has a superior performance
based on its reliability.

INDEX TERMS Fuel cell modeling, parameter estimation, metaheuristic algorithms.

I. INTRODUCTION
The greenhouse gases and the depletion of fossil fuels have
provoked the governments and industries to invest more in
renewable energy sources (RES) such as PV, Wind, Tidal,
Wave . . . etc. Utilizing such new RES into power grids takes
new trends. It can be harnessed as a smart micro-grid or can
be integrated as an isolated standaloneAC-DC power grid [1].
However, due to its stochastic nature and during load peak-
hours, back-up supports are needed. Fuel cells are an elegant
choice that can play an important role in such upcoming
power grids.

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

A reliable on-site emergency power supply is one of the
most important systems used to assure the safety of nuclear
reactors, which fulfills the safe shutdown, remove the heat
after shutdown and plant confinement. In the case of Loss of
Off-site Power Supply (LOPS) or plant blackout the reliable
on-site emergency plays the main role in safe the plant and to
protect the public and environment against radiation hazards
as a consequence of LOPS. At the current situation, most of
the nuclear reactors utilize independent diesel generator sets
as on-site emergency power supply to act as a reliable electric
source to guarantee the safety functions of the plant [2]. In the
last decade the green energy resources became attractive to
minimize the global warming and protect the environment
from the effect of the burned of fossil fuel, that produced
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FIGURE 1. Electrode reactions and flow of charge in fuel cell.

CO2 [3], [4]. Fuel cells system can be used to improve the
backup power system performance in nuclear reactors. This
will feed the reactor the emergency cooling system in cases of
LOPS, Loss of Flow Accident and Loss of Coolant Accident
(LOCA) and continue cooling the reactor core to prevent the
core melting down and mitigate the consequences as a part of
the defense in depth philosophy [2], [3].

Fuel cells can be categorized into numerous types such
as Proton-Exchange Membrane Fuel Cells, from Perfluo-
rosulfonic Acid (PFSA) to Hydrocarbon Ionomers, Direct
Hydrocarbon Solid Oxide Fuel Cells, Solid Oxide Fuel Cells,
Polybenzimidazole Fuel Cells, etc. [3]. On the other hand,
there is a great work has been done in the last decade to use
the hydrogen fuel cells in nuclear sites because nuclear energy
can be used as the primary energy source for hydrogen pro-
duction. Moreover, it is attractive because of the greenhouse
gas emissions associated with nuclear energy production are
much lower than those with conventional fossil fuel com-
bustion. Nuclear energy is adaptable to large-scale hydrogen
production [2]. Generally using fuel cells as a part of the
electrical resources in the design, operation, and maintenance
of nuclear power plants will enhance the reliability of on-site
emergency power sources and save the plant against LOPS
and plant blackout accidents.

Since 1990, fuel cell development has progressed rapidly.
Car manufactures, and heating firms have discovered the
technology and aim to benefit from its positive image. Fuel
cell operation is based on the chemical reaction that occurs
under controlled conditions. A Fuel cell consists of an elec-
trode and a cathode with an electrolyte between them. The
anode is fed by pure hydrogen (H2) or a flamed gas containing
hydrogen, while oxygen (O2) or air is fed to the cathode.
Depending on electrolyte, gases used as a fuel and the operat-
ing temperature, there are various classifications for the fuel
cells. The polymer electrolyte fuel cell (PEFC) and proton
exchange membrane fuel cell (PEMFC) are the most com-
monly used types. Its operating temperature is around 800C,
and it can run on with normal air and reformed hydrogen as
a fuel [5].

The mathematical model of the fuel cell is considered
as the milestone on which the designing and testing of the
fuel cell can be performed in an appropriate way. Moreover,
a good mathematical model is essential to move forward the
integration of the fuel cell besides supporting the design-
ers with more information about the physical phenomena
occurring inside it. The electrochemical model of the fuel
cell has essential empirical and semi-empirical equations that
depend on a combination set of unknown parameters. The
inherited coupled parameters make the modeling of a fuel cell
more difficult, which motivates the researcher to search for a
suitable solution. Due to its sufficient way to obtain optimum
solutions for complicated problems, Meta-heuristics can be
adapted to provide robust parameter estimation for fuel cell
modeling. From this fact, the no-free-lunch theorem hasmade
a cogent remark that is employed by several optimization
techniques to solve various engineering optimization prob-
lems [6], [7].

The adaptive differential evolution algorithm (ADE) is
one of the competitive methods which have been used for
solving the parameter estimation for PEMFC [8]. The main
contribution of the proposed ADE method is to decrease pre-
mature convergence and increase search efficiency. Hybrid
adaptive differential evolution is introduced in [9]. It is
a combination set between biological genetic strategy and
bee colony foraging method. The first method enhances
the parametric scaling for dynamic cross-over probability,
while the former method improves the weak local search.
Hence, the ADE enhances the performance of the optimiza-
tion techniques. A grouping-based global harmony search
algorithm (GGHS) has been adopted for obtaining a precise
estimation for PEMFC parameters, as reported in [10]. The
algorithm performance was compared with different methods
such as particle swarm optimization (PSO) and seeker opti-
mization algorithm (SOA). From the comparison, it had been
concluded that the GGHS platform exhibits better perfor-
mance than other algorithms [10]. The genetic algorithm has
been applied for parameter estimation of PEMFC [11]–[13].
In [11], a new formulation based on a genetic algorithm

VOLUME 8, 2020 166999



A. A. Z. Diab et al.: Fuel Cell Parameters Estimation via MP and POs

FIGURE 2. Flowchart of MPA optimization technique.

(GA) is used to deal with fuel cell parameter evaluation.
The main advantage of this method is lower complexity,
less time consumption, enhancing accuracy and ease of
implementation. A hybrid combination set between teaching
learning-based optimizationmethod (TLBO) andDifferential
Evaluation Algorithm (DE) is introduced in [14] to obtain a
proper estimation for the parameter model of PEMFC. The
(TLBO-DE) performance is compared with different opti-
mization algorithms. The TLBO-DE proves its accuracy and
robustness, besides its ability to obtain an optimum solution

with lesser computation time. The Grey Wolfe Optimiza-
tion (GWO) algorithm is used for identifying the PEMFC
model parameters [15]. An experimental test is performed
to prove a superior performance for GWO to other opti-
mization methods such as Antlion Optimizer (ALO), and
Dragonfly Algorithm (DA). New meta-heuristic approaches
have been employed to adapt the PEMFC model param-
eter such as Grasshopper Optimization Algorithm (GOH),
Slap Swarm Optimizer (SSO) and Shark Smell Optimizer
(SSO) [16]–[18]. The advantages of these methods are better
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FIGURE 3. Flowchart of PO optimization technique.

convergence to an optimum solution, tuning its controlling
parameters with the low effort of computation, and faster
process execution. In [19], JAYA algorithm was deployed
to estimate the PEMFC parameters effectively. Compared to
other optimization techniques, JAYA has better convergence
time, accuracy, and stability. In [20], the Cuckoo Search (CS)
algorithm is used to obtain the parameters of the PEMFC.
The author has proposed an explosion operator to fine-tune
the step size of the CS. The Cuckoo Search Algorithm with
Explosion Operator (CS-EO) proves its ability to avoid pre-
cipitate convergence and enhances the overall performance
of the CS. According to [21], the hybrid optimizer based

on the vortex search algorithm (VSA) and differential evo-
lution (DE) has been developed to evaluate the optimum
uncertain parameters of the PEMFC. Both VSA and DE had
been incorporated to increase the attitude of VSA preventing
its local-optima by promoting the operating of exploitation
followed in VSA based on DE. From [22], it has been
applied prepared and utilized the Modified Artificial Ecosys-
tem Optimization (MAEO) to estimate the parameters of
PEMFC. In this technique, the MAEO was very effective
to increase the attitude of AEO for introducing a very fast
process of convergence to avoid the local optima. In [23],
the authors proposed and utilized the Hybrid Grey Wolf
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FIGURE 4. Global parameter estimation representation.

FIGURE 5. Convergence curve of MPA and PO optimization algorithms.

Optimizer (HGWO) to solve the problems of the parame-
ters extraction of PEMFC. The HGWO has been used to
combine the �crossover and mutation operators� during
the optimization evaluation to enhance the ability of the
search potential avoiding the trapping in local-optima. More-
over, Harris Hawks Optimization (HHO) algorithm has been
applied for extracting the parameters of the PEMFC model
in Refs. [31]–[34]. The obtained results in the reported refer-
ences [31]–[34] prove the ability of the HHO to estimate the
parameters of PEMFC. A comparison between the reported
results from references [31]–[34] and those of the MPA and
PO algorithms will be presented in the results section to eval-
uate the effectiveness of each algorithm. All these algorithms
are presented and applied for estimating the parameters of the
PEMFC Model for improving the estimation accuracy. How-
ever, most of these works could not strengthen the estimation
accuracy. Therefore, it is necessary to present and validate
recent methods that have the ability to accurately estimate
the parameters of the PEMFC Model with good convergence
characteristics.

Recently one of the outstanding optimization techniques
that have been discovered not a long time ago is theMPA [24].
It has a superior performance to act with global optimiza-
tion problems rather than the other optimization techniques.
It possesses a better exploration of the optimum solution
without getting stacked to the local search. Moreover, a con-
temporary optimization method has been proposed to solve
complicated problems; this method is the PO method [25].
It is a simple structure method. Its advantages underlying,
fewer controlling parameters, self-adaption to its parameters,
can be adapted easily with other methods to obtain better
convergence for optimal solutions. However, this method is
not deeply applied to solve electrical engineering problems.

In this paper, MPA and PO have been used for estimating
the parameters of a number of commercial proton exchange
membrane fuel cells. To validate the effectiveness of the
MPA and PO methods, comparisons and different operating
scenarios have been studied. The contribution of this work
includes the implementation of two unprecedented optimiza-
tion algorithms, namely MPA and PO, for defining the equiv-
ocal parameters of the fuel cell model and comprehensive
comparison with other competitive techniques that have been
provided in the literature.

II. PROBLEM FORMULATION
A. BASIC PHYSICAL OPERATION
Fuel cells are considered a direct method of converting
chemical energy into electrical energy. The construction of
a typical proton exchange membrane (PEM) fuel cell is
described in Fig. 1. As seen from the figure, the PEM fuel
cell model comprises two electrodes (anode and cathode),
between which a catalyst and membrane layers are stacked.
In addition, at the anode and cathode sides, two channels are
used for supplying hydrogen and air, which will be diffused
through the electrodes.

A simple way of understanding the base operation of the
fuel cell is to say that the hydrogen gas is being ‘burnt’
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FIGURE 6. a) The I/V and I/P curve characteristics and b) Squared error
between the estimated and measured data of BCS 500W based on MPA
and PO optimization algorithms.

or combusted in the simple chemical reaction described as
follows [26]:

2H2 + O2→ 2H2O (1)

However, in this case, instead of heat energy being
released, electrical energy is generated. The reaction takes
place at the anode and cathode and can be declared as follows:

2H2→ 4H+ + 4e− (2)

At the anode of the fuel cell, the hydrogen gas ionizes,
releasing electrons and creating H+ ions (or protons).

This reaction releases electrical energy presented by the
negative electrons e−. At the cathode side, oxygen reacts
with the electrons which are taken from the injected air at
the electrode and the H+ ions produced from the electrolyte,
to finally form water, and it can be expressed as:

O2 + 4e−→ 2H2O (3)

B. MATHEMATICAL MODEL OF PEMFC
An electrochemical-based model for PEMFC has been
adopted by Amphlett et al. [27], which considered a number
of fuel cells N cells connected in series to form a fuel cell
stack system. This model is a helpful tool for engineers
interested in evaluating the performance of PEMFC and opti-
mizing the system parameters. The output voltage across the
terminals of the fuel cell stack can be presented as follows [9]:

VFc = Ncells × (ENernst − Vact − Vohmic − Vcon) (4)

where Vact presents the activation voltage drop caused by
the kinetics of the chemical reactions around the surface of
the electrodes, which causes a sharp drop in the I/V polar-
ization curve of the fuel cell stack at lower currents [12].
Vohmic presents the ohmic voltage drop, which results from
the resistance of transferring the protons and electrons in
the electrolyte. For intermediate currents, the ohmic voltage
drops smoothly and linearly as a result of the ohmic losses.
Vcon is the concentration voltage drop, which appears due
to the sophisticated processes of transport, and which lets
the output voltage of the fuel cell fall sharply another time
at higher currents [28]. The ENernst represents the fuel cell
reversible voltage in an open circuit electrodynamic balance
and is calculated using (5) [9]–[11]:

ENernst = 1.229− 0.85× 10−3 (T − 298.15)

+ 4.3085×10−5×T
[
ln
(
PH2

)
−
1
2
ln
(
PO2

)]
(5)

where T is the operating temperature of the fuel cell in
Kelvin; PH2 and PO2 denote for the partial pressures of
hydrogen and oxygen, respectively. The partial pressure of
the gases depends on the nature of the components of the
chemical reaction. If the components of the chemical reaction
are air and hydrogen, then according to [15], [29], the partial
pressure of each reactant can be estimated by the following
formulas:

PN2 =
0.79
0.21

PO2 (6)

where:

PO2 = Pc − RHcPsatH2O − PN2 × exp

0.291
(
Ifc
/
A
)

T 0.832

 (7)

The saturation pressure of the water vapor PsatH2O is estimated
by the following expression:

log10
(
PsatH2O

)
= 2.95× 10−2 (T − 273.15)

− 9.18× 10−5 × (T − 273.15)2

+ 1.44× 10−7 (T − 273.15)3 − 2.18 (8)

when the reactants are oxygen and hydrogen, then the
formula (8) can be as follows:

PO2=RHcP
sat
H2O

×


exp

4.192
(
Ifc
/
A
)

T 1.334

×RHcPsatH2O

Pa

−1−1
 (9)
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FIGURE 7. Characteristics of BCS 500W with the variation of the Temperature and pressure based on MPA optimization algorithm.

The partial pressure of hydrogen PH2 in both conditions
can be calculated from the following expression:

PH2=0.5RHaP
sat
H2O

×


exp

1.635
(
Ifc
/
A
)

T 1.334

×RHaPsatH2O

Pa

−1−1
 (10)

where RHc and RHa are the relative humidity of vapor at
the cathode and anode, respectively. While Pa and Pc are the
channel pressure (atm) at the anode and cathode, respectively;

PN2 is the partial pressure of nitrogen at the flow channel of
gas at the cathode (atm) and A is the active surface area of the
membrane.

The activation voltage drop Vact can be determined as
follows [11]:

Vact = −
[
ξ1 + ξ2T + ξ3T ln

(
CO2

)
+ ξ4T ln

(
Ifc
)]

(11)

where ξ1, ξ2, ξ3, ξ4 present semi-empirical coefficients; Ifc is
the output current from the fuel cell stack; CO2 is the concen-
tration of oxygen at the surface of the cathode (mol.cm−3)
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FIGURE 8. Convergence trends of the fitness function over the 30 runs for application a) MPA and b) PO with the case of BCS 500W.

FIGURE 9. Convergence curve of MPA and PO optimization algorithms for
the second case of SR-12PEM 500 W.

and is calculated as [11], [15], [29]:

CO2 =
PO2

5.08× 106 × e
−

(
498/T

) (12)

The ohmic loss Vohmic is calculated depending on the fun-
damentals of Ohm’s law and directly depends on the current

density, and it can be written as the following:

Vohmic = Ifc (RM + RC ) (13)

where RM and Rc present the resistance of the membrane
and the equivalent resistance that the protons face when
transported through the membrane and it is considered as a
constant value. Accordingly, the resistance of the membrane
surface can be given from the following expression:

RM =
ρM l
A

(14)

where l denotes the effective thickness of the membrane
surface (cm), A is the area of the membrane surface
(cm2), and ρM denotes the resistivity of the membrane
against the flow of electrons (�.cm) and is calculated
empirically for Nafion membrane from the following
expression [12], [27], [28]:

ρM =

181.6
[
1+ 0.03

(
Ifc
A

)
+ 0.062

( T
303

)2 ( Ifc
A

)2.5]
[
λ− 0.634− 3

(
Ifc
A

)]
× exp

[
4.18

(
T−303
T

)] (15)

FIGURE 10. Convergence trends of the fitness function over the 30 runs for application a) MPA and b) PO with case of SR-12PEM 500 W.
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FIGURE 11. a) The I/V and I/P curve characteristics and b) Squared error
between the estimated and measured data of SR-12PEM 500W based on
MPA optimization algorithm.

where λ denotes to an adjustable parameter, which indicates
the water content of the membrane material. The value of λ
can be adjusted between 13 and 24 [9], [10].

The last part of these losses is the concentration voltage
drop Vcon, which appears due to the changes in the con-
centration of hydrogen and oxygen or fuel crossover and is
calculated according to the following expression:

Vcon = −β ln
(
1−

J
Jmax

)
(16)

where β denotes the adjusting parametric coefficient; J and
Jmax denote the current density and the maximum current
density (A cm−2), respectively.

C. OBJECTIVE FUNCTION
From the mathematical expressions described by equations
(4-16), it is obviously noticed that the operation and per-
formance characteristics of the PEMFC stack system are
originally depended on a number of parameters. A part of
these parameters are not available in the datasheet of the
manufacturer and have to be carefully estimated to guarantee
an accurate representation of the PEMFC, which gives results
that match with experimental data. After the closer study
of the above-mentioned equations, it is found that a set of
parameters (ξ1, ξ2, ξ3, ξ4, β, Rc and λ) are not recognized
in the datasheet and have to be extracted. The degree of
matching between the model of the PEMFC and the experi-
mental data is obtained by calculating the differences between
the output voltage of the proposed model and that measured
experimentally under different operating currents. In this
paper, the sum of squared errors (SSE) between the measured
values of voltage and the values of the output voltage of the
PEMFC model is considered as the objective function (OF).
The objective function to minimize the SSE is commonly
used in many works of literature [8], [9], [14] is expressed
by the following:

OF = min SSE(X ) =
N∑
i=1

(Vmeas − Vest)2 (17)

The objective function of (17) is ruled by the following
constraints:

ξk min ≤ ξk ≤ ξk max, k = 1 : 4

βmin ≤ β ≤ βmax

RC min ≤ RC ≤ RC max

λmin ≤ λ ≤ λmax (18)

where X is a vector of the seven unknown parameters that
have to be determined, Vmeas is the output voltage obtained
experimentally from actual PEMFC,Vest is the output voltage
obtained from the proposed model and N is the length of
the experimental data series used for validation. MPA and
PO methods are proposed for determining the optimal values
of these parameters of the PEMFC model to give a high
agreement with the results of the actual fuel cell stacks.

III. MPA
The proposed Marine Predators Algorithm (MPA) has been
introduced by Faramarzi et al. [24]. TheMPA has been imple-
mented to imitate the strategy of foraging optimally for the
Marine Predators (MP) to detect their Prey as the following:
In the case of a low concentration of prey, the MP follow the
Lévy behavior. In the case of abundant Prey, the MP follow
the Brownian movements’ behavior [24], [30]. According to
the environmental effects, the velocity-ratio v from the Prey
to MPA can be changed based on the behaviors of Lévy and
Brownian as follows:
• In the low velocity-ratio v < 0.1, the most suitable
behavior for MP is Lévy. On the other hand, the Prey
is proceeding in Brownian/Lévy behavior;
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FIGURE 12. Characteristics of SR-12PEM 500 W with the variation of the Temperature and pressure based on MPA optimization algorithm.

• In the low velocity-ratio v = 1, in the case of the Prey
can move in Lévy behavior, therefore the MP have to
follow the Brownian behavior;

• In the high velocity-ratio v > 10, the most suitable
behavior for MP is to be without moving. On the
other hands, the Prey is proceeding in Brownian/Lévy
behavior.

The scheme of the MPA methodology can be proposed in
the following steps:

Firstly, the Prey in a group can be initiated through a
search-space based on formula (19):

X0 = Xmin + rand(Xmax − Xmin) (19)
where Xmin and Xmax represent the lower & upper boundaries
and rand is a random number that take a range from 0 to 1.
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FIGURE 13. Convergence curve of MPA and PO optimization algorithms
for the third case of study of 250 W stack.

Then, the fitness of MP can be determined. According to
�the survival of the fittest theory�, the fittest solution is
considered as a top MP to structure a matrix that can be
defined as Elite.

The Elite matrix can be represented in the following form:

Elite =


X I1,1 X I1,2 . . . X I1,d
X I2,1 X I2,2 . . . X I2,d
: : : :

X In,1 X In,2 . . . X In,d

 (20)

where
−→
X I introduces the top MP vector, in addition, it is

reproduced n times to construct an n×d Elite matrix. n is the
agents’ number and d is the dimensions’ number.
The MP can update their locations based on the Prey

metrics with the same dimensions as Elite. The Prey metrics
is as follows:

prey =


X I1,1 X I1,2 . . . X I1,d
X I2,1 X I2,2 . . . X I2,d
: : : :

X In,1 X In,2 . . . X In,d

 (21)

The main iteration-loop of the MPA can be provided into
three-phases depending on the velocity-ratio that are pre-
sented as follows:

A. EXPLORATION-PHASE
This phase occurs in high velocity-ratio, and it can be written
as follows:

while Iter <
1
3
·Max_Iter

−−−−−→
stepsizei=

−→
RB ⊗ (

−−→
Elitei −

−→
RB ⊗

−−→
Preyi), i = 1, .., n (22)

−−→
Preyi =

−−→
Preyi + P ·

−→
R ⊗
−−−−−→
stepsizei (23)

where RB is a vector of random numbers and it depends on the
nominal distribution introducing the Brownian movement.
‘‘⊗’’ provides the entry wise multiplications. P = 0.5 and it
is constant. R is a random numbers vector that takes a range
[0, 1]. This phase takes place in the one-third of iterations

when the step-size or the velocity of motion is high for high
exploration ability. ‘‘Iter’’ is the present iteration.

B. INTERMEDIATE-PHASE
This phase occurs in unit velocity-ratio. The exploration
is gradually changed to exploitation and it is proposed as
follows:

while
1
3
·Max_Iter < Iter <

2
3
·Max_Iter

-In the first-half of the population:
−−−−−→
stepsizei =

−→
RL ⊗ (

−−→
Elitei −

−→
RL ⊗

−−→
Preyi), i = 1, .., n/2

(24)
−−→
Preyi =

−−→
Preyi + P ·

−→
R ⊗
−−−−−→
stepsizei (25)

-In the second-half of the population:
−−−−−→
stepsizei =

−→
RB ⊗ (

−→
RB ⊗

−−→
Elitei −

−−→
Preyi), i = 1, .., n/2, n

(26)
−−→
Preyi =

−−→
Elitei + P · CF ⊗

−−−−−→
stepsizei (27)

where
−→
RL is proposed based on the Lévy-flight behavior.

In the intermediate-phase, the first half of Prey can proceed
with Lévy steps. On the other hand, the second half utilizes
Brownian steps. The CF is considered as an adaptive param-
eter to control the step-size of MP motions. The CF can be
determined by the following Eq. (28):

CF = (1−
Iter

Max_Iter
)(2

Iter
Max_Iter ) (28)

C. EXPLOITATION-PHASE
This phase occurs in low velocity-ratio and it is prepared as
follows:

while Iter >
2
3
·Max_Iter

−−−−−→
stepsizei=

−→
RL ⊗ (

−→
RL ⊗

−−→
Elitei −

−−→
Preyi), i = 1, .., n (29)

−−→
Preyi =

−−→
Elitei + P · CF ⊗

−−−−−→
stepsizei (30)

One of the critical points that can be taken into consider-
ation is the manner of the MP can be affected by environ-
mental problems like the eddy formation or Fish Aggregating
Devices (FADs). According to [24], the MP consume 80% of
their time in the vicinity of FADs looking for the Prey. The
rest of MP time is consumed in another environment to find
their Prey. In search space, the FADs effects are considered
as trapping. Thereby, the FADs are deemed as local optima.
The FADs process is formulated as follows:
If r < FADs
−−→
Preyi=

−−→
Preyi+CF[

−→
X min+

−→
R · (
−→
X max−

−→
X min)]⊗

−→
U (31)

If r > FADs
−−→
Preyi =

−−→
Preyi + [FADs(1− r)+ r](

−−→
Preyr1 −

−−→
Preyr2) (32)

where FADs= 0.2 is the impact of FADs on the optimization
process.

−→
U is the binary with the arrays having 0 and 1. r is
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FIGURE 14. Convergence trends of the fitness function over the 30 runs for application a) MPA and b) PO with case of 250 W stack.

a random number in [0,1].
−→
X max and

−→
X min are including

the lower and upper boundaries of the dimensions. r1 and r2
are random indexes of Prey matrix. MPA has a well memory
that can be useful to remember the old positions of the Prey.
Therefore, based on the fitness values, each present and old
solutions can be compared, and the best one can be saved at
each iteration.

TheMPA implementation procedure can be summarized in
the flowchart shown in Fig. 2.

IV. PO
The proposed PO technique is considered as a physics-based
algorithm combined with swarm-based characteristics which
are concerned mainly with finding global optima. The PO
has been implemented by Q. Askari et al. [25], and it has
been inspired by the different phases of the Politics process.
Politics process can be divided into two main attitudes: every
individual optimizes its good-will to win the election, and
every party attempt to find the maximum number of seats in
parliament to form a government. However, the PO is created
as a consequence of five-phases involving party formation
and constituency allocation, election campaign, party switch-
ing, inter-party election, and parliamentary affairs [25].

The scheme of the PO methodology can be proposed in
the following process using the variables that defined in
Table 1 [25]:

Firstly, the phase of party formation and constituency allo-
cation executes only once for the purpose of initialization and
the others of the four-phases perform in a loop.

A. PARTY FORMATION AND CONSTITUENCY ALLOCATION
The β is sectioned into n political parties. Every party βi
is composed of n members. Every jth member pji is deemed
as a potential solution. This potential solution can represent
as an election candidate. It is supposed n constituencies,
and jth member of every party contests election from the jth

constituency Cj.
The fittest member of a party is expressed as the party

leader. The election of the party leader is determined
using (33) as follows:

q = argmin
1≤j≤n

f (pji), i = 1, . . . , n

and, p∗i = pqi (33)

Therefore, all the party leaders’ β∗ can be introduced
by (34) as the following expression:

β∗ =
{
p∗1, p

∗

2, p
∗

3, ...., p
∗
n
}

(34)

pji,k (t + 1) =


m∗ + r

(
m∗ − pji,k (t)

)
, if pji,k (t − 1) ≤ pji,k (t) ≤ m

∗ or pji,k (t − 1) ≥ pji,k (t) ≥ m
∗

m∗ + (2r − 1)
∣∣∣m∗ − pji,k (t)∣∣∣, if pji,k (t − 1) ≤ m∗ ≤ pji,k (t) or p

j
i,k (t − 1) ≥ m∗ ≥ pji,k (t)

m∗ + (2r − 1)
∣∣∣m∗ − pji,k (t − 1)

∣∣∣, if m∗ ≤ pji,k (t − 1) ≤ pji,k (t) or m
∗
≥ pji,k (t − 1) ≥ pji,k (t)

(36)

pji,k (t + 1) =


m′ + (2r − 1)

∣∣∣m′ − pji,k ∣∣∣, if pji,k (t − 1) ≤ pji,k (t) ≤ m
∗ or pji,k (t − 1) ≥ pji,k (t) ≥ m

′

pji,k (t − 1)+ r
(
pji,k (t)− p

j
i,k (t − 1)

)
, if pji,k (t − 1) ≤ m∗ ≤ pji,k (t) or p

j
i,k (t − 1) ≥ m∗ ≥ pji,k (t)

m∗ + (2r − 1)
∣∣∣m∗ − pji,k (t − 1)

∣∣∣, if m∗ ≤ pji,k (t − 1) ≤ pji,k (t) or m
∗
≥ pji,k (t − 1) ≥ pji,k (t)

(37)
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FIGURE 15. a) The I/V and I/P curve characteristics and b) Squared error
between the estimated and measured data of 250 W stack based on MPA
and PO algorithms with case of 250 W stack.

After selection, the winners from all the constituencies
become the parliamentarians C∗ as shown in (35) as the
following formula:

C∗ =
{
c∗1, c

∗

2, c
∗

3, ...., c
∗
n
}

(35)

B. ELECTION CAMPAIGN ‘‘EXPLORATION AND
EXPLOITATION’’
This phase-step assists nominees to make their performance
better in the election. In this regard, there are three parts in
this phase as following:

- A new position updating strategy called �recent
past-based position updating strategy (RPPUS)� that
can produce a suitable learn from the previous election.
This strategy can be written by (36) and (37), as shown
at the bottom of the previous page.

- The impact of the vote-bank of the party leader is delin-
eated by updating the members’ position.

TABLE 1. The variables definitions of the political-phases process.

- The comprehensive analysis with the constituency win-
ner is proposed mathematically based on the updating of
the candidate position.

C. PARTY SWITCHING (BALANCING EXPLORATION AND
EXPLOITATION)
In this phase, an adaptive factor λ�party switching rate� is
decreased in linear form from its maximum value to 0 during
the iterations process. The probabilistic selection of pji is
turned to few randomly elected party βr that can be changed
with the least fit pqr of that party. The calculation of q index
of βr can be written as follows:

q = argmax
1≤j≤n

f (pjr ) (38)

D. ELECTION (FITNESS DETERMINATION)
The election is imitated by estimating the fitness of all the
candidates contesting in a constituency and proclaiming the
winner. In this process, c∗j indicates the winner of jth con-
stituency (Cj). This phase can be modeled mathematically
by (39) as the following expression:

q = argmin
1≤i≤n

f (pji)

c∗j = pjq (39)

E. PARLIAMENTARY AFFAIRS (EXPLOITATION AND
CONVERGENCE)
The government is created, in accordance with an inter-party
election. The party leaders and the constituency winners are
made a decision by applying (33) and (39). Every winner
c∗j renews its position with reference to a randomly selected
winner c∗r and if it causes any modification in fitness of c∗j
thereafter the situation and fitness of c∗j are renewed.

The PO implementation procedure can be summarized in
the flowchart shown in Fig. 3 [25].

V. RESULTS
The simulation tests have been carried out to validate the
applied optimization algorithms (MPA and PO). Both algo-
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FIGURE 16. Characteristics of 250 W stack with the variation of the temperature and pressure based on MPA optimization algorithm.

rithms have been applied for estimating the parameters of
PEM fuel cells. The two algorithms have been tested for
estimating the parameters of three different modules of fuel
cells, namely BCS 500W, SRR_12 modular, and 250W stack.
The datasheet parameters of these commercial PEMFC stacks
are obtained from [9]–[11], [14], [15], [22] and are presented

in Table 2. Moreover, the estimated model parameters are ξ1,
ξ2, ξ3, ξ4, β, RC , and λ in PEMFC, as shown in Fig. 4.
The upper and lower limits of the unknown param-

eters for all case studies are given in [8], [10], [18],
and [19] and presented in Table 2 (last three columns in the
right).
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TABLE 2. Parameters of the commercial PEMFC stacks and the search range of the unknown parameters.

TABLE 3. Parameter fitting results of BCS 500W based on PO and MPA optimization techniques; the bold Results are the best for MPA.

The results of the two algorithms have been compared with
each other and with those obtained using other techniques
from the literature. Moreover, the optimized parameters using
MPA and PO methods have been used to estimate the perfor-
mance and characteristics of the PEMFC at different oper-
ating conditions. Furthermore, the characteristics have been
compared with the measured data of each module.

For the simulation, a dedicated software program for fuel
cell parameter extraction problem is developed in MATLAB
forMPA and PO based upon their theories of operation which
are described before. Simulations are performed using an
Intel R© coreTM i5-4210U CPU, 1.7 GHz, 8 GB RAMLaptop.

A. PEMFC OF BCS 500W
To test and validate the proposed optimization algorithms,
the proposed algorithms have been applied with the problem
formulation PEM fuel cell of BCS 500W. The selected BCS
500W is studied because several studies have been introduced
earlier for this purpose, but the majority have failed in achiev-
ing an accurate estimation for the parameters. The results
of applying the MPA and PO algorithms to estimate the
finest values of BCS 500W stack parameters are illustrated
in Table 3. As shown from the table, the results gained by
the MPA are better than those obtained by the PO technique
and also are better than the other methods from literature. The
convergence curves of the MPA and PO have been shown in
Fig. 5, which reports that the MPA has the best convergence
curve with respect to the speed of convergence and reaches
the best minimum value of the objective function. From this
figure, the MPA optimization algorithm reaches a minimum
value of 0.011556305 while the PO reaches its minimum,
which equal to 0.0115564179. It should be noted that the

small difference between the results of the two algorithms.
Table 3 shows the comparison between the estimated param-
eters of the PEMFC model using MPA and PO and other
techniques. The results of MPA is the best one as compared
with the latest published papers in the literature [22].

To validate more the effectiveness of MPA and PO opti-
mization algorithms, the obtained results have been used to
estimate the characteristics of the PEMFC by estimating the
voltage and power curves versus the current. Furthermore,
the estimated characteristics have been compared with the
measured one for both models of MPA and PO as shown
in Fig. 6. Figure 6.a) shows a very good match between the
estimated and measured characteristics. It should be noted
that the coincidence of the two curves of the estimatedmodels
of MPA and PO with the measured one because the values of
SSE for MPA and PO are 0.0115564179 and 0.011556305,
respectively. Additionally, figure 6.b) shows the squared error
for both models based on MPA and PO techniques. Also,
Table 4 listed the squared error between the estimated and
measured performance of BCS 500w based on PO and MPA.
Table 4 listed the obtained results of the estimated voltage
using models based on MPA and PO algorithms and the
squared error at each current value. Moreover, the character-
istics of the PEMFC have been plotted at different operating
condition of the pressure of PH2 /PO2 of 1.000/ 0.2075bar,
1.5/1.0bar, 2.0/1.25 and 2.5/1.5bar; and temperature of 303K,
313K, 323K and 333K as shown from Fig. 7 for only the
MPA-based model.

As known, the performance of these algorithms is based
on randomness and the sole best fitness value (SSE) in one
of the runs cannot assure the acceptable performance of the
optimization algorithms. As mentioned earlier, there is no
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TABLE 4. Squared error between the estimated and measured performance of BCS 500W based on PO and MPA.

guarantee that the algorithms can repeat the same results
overruns. In order to appreciate the stability and accurateness
as well as give a clear assessment of the proposed MPA
and PO in obtaining the exact values of PEMFC unknown
parameters, sensitivity and statistical analysis is studied for
all tested PEMFC stacks. Fig. 8 shows the convergence curve
of 30 independent runs. From the figure, over the 30 runs;
the MPA reached the same optimized solution while the
PO algorithm results are varying each run around its best
solution. The results are very essential which prove that the
MPA is stability and reliability of the MPA.

Statistical analysis is completed for assurance and valua-
tion the robustness concert of the optimization algorithms.
So, MPA and PO algorithms are performed 30 individual
runs. The finest objective function is logged and stated.
Furthermore, statistical indices of Mean, Standard deviation
(SD), relative Error (RE), root mean square error (RMSE),
the minimum and maximum over 30 runs are calculated. The
results of MPA and PO algorithms are recorded in Table 5.
The listed results of the table demonstrate that the MPA
technique has the best performance during this test while
the value of SD, RE and RMSE of the PO algorithm is
relatively high as shown from the table because it fails to
optimize the problem in number of runs. So, the MPA is an
effective algorithm for solving the optimization problem of
parameters’ identification of various mathematical models of
BCS 500W.

Furthermore, the Wilcoxon signed-rank test is performed
to validate the MPA and PO algorithms. The reported results
are listed in Table 5. The results show that P-value for both

TABLE 5. Statistical measurement of the proposed MPA and PO methods
for BCS 500W based on 30 individual runs.

algorithms MPA and PO are 1.6869e-06 and 1.7344e-06,
respectively. Moreover, Ranke is 1 both algorithms. At the
default 5% significance level, the value h = 1 designates
that the test rejects the null hypothesis of zero medians.
P-values in Table 8 which are produced based on Wilcoxon
test demonstrate that the results of MPA and PO algorithms
are statistically significant.

B. SR-12PEM 500 W
The second case of study is applied to estimate the model
parameters of the SR-12PEM500W. The parameters and data
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TABLE 6. Parameter fitting results of SR-12PEM 500 W based on PO and MPA optimization techniques; the bold Results are the best for MPA.

TABLE 7. Squared error between the estimated and measured performance of SR-12PEM 500W based on PO and MPA.

specification of the SR-12PEM 500 W are listed in Table 2.
The results of the estimated parameters have been listed in
Table 6. Also, Table 4 consists of a comparison between the
PO and MPA algorithms and with the obtained results by
other researchers. From the table, the best solution has been
reached by the MPA and equals 1.056628334025551 while
the best optimal value with the PO is 1.056628334030994.
Moreover, the table shows that the other researchers with
other optimization techniques could not reach the same solu-
tion. Furthermore, a comparison between PO and MPA with
respect to the convergence characteristics has been shown in
Fig. 9. The figure shows that the convergence speed of the
MPA is better than that of the PO.

The simulation tests have been done to test and evalu-
ate the robustness of the MPA and PO optimization tech-
niques with this case of study. The MPA and PO have been
applied for 30 runs. The convergence curves of the 30 runs
have been shown in Fig. 10 for both algorithms. The figure
shows that the MPA has the ability to reach the same best

solution over 30 runs while figure10.b) shows the PO algo-
rithm reaches to different values of the best solution in
the number of runs. This concludes that the MPA is the
best choice for estimating the parameters of the PEMFC
model.

The results of the characteristics of SR-12PEM 500 W
based on the estimated parameters using MPA and PO and
the experimental data have been shown in Fig. 11.a). The
figure shows that the obtained characteristics from the pro-
posed MPA optimization algorithm introduce a high match-
ing degree with the experimental data. Furthermore, the
squared error between the measured voltages and the esti-
mated based on MPA and Po algorithms have been illustrated
in figure 11.b) and table 7. Moreover, due to the Exploration
and exploitation characteristics of MPA, which is related
to global search; the MPA keeps improving a longer time
than PO.

Statistical results of the applied MPA and PO methods for
SR-12PEM 500 W based on 30 individual runs have been
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TABLE 8. Statistical measurement of the proposed MPA and PO methods
for SR-12PEM 500W based on 30 individual runs.

listed in table 8. The results show that the MPA and PO has
good performance with an example SD of 1.2715e-13 and
0.5074 respectively, which confirms that the superior of MPA
with the good performance of PO algorithm. Furthermore, the
Wilcoxon signed-rank test is performed to validate the MPA
and PO algorithms. The reported results are listed in Table 8.
The results show that P-value for both algorithms MPA and
PO are 1.6805e-06 and 1.7333e-06, respectively. Moreover,
Ranke is 1 of both algorithms. At the default 5% significance
level, the value h = 1 designates that the test rejects the null
hypothesis of zero medians. P-values in Table 8 which are
produced based on the Wilcoxon test demonstrate that the
results ofMPA and PO algorithms are statistically significant.

For more validating, the estimated model based on the
MPA is used for plotting the characteristics at different oper-
ating conditions such as the variation of temperature and
pressure, as shown in Fig. 12.

C. 250 W STACK
For more justification, the two algorithms of MPA and PO
have been applied for extracting the model parameters of
the 250 W stack. The data specifications of the 250 W
stack have been listed in Table 2. The results of the
estimated parameters have been concluded in Table 9. From
the table; it is revealed that the MPA algorithm has the
best result concerning reaching the minimum value of the

objective function. The best optimal value of MPA is equal
to 0.5940499653, while the best value with PO equals
0.644205811. Also, the table presents a comparison with
other techniques from the literature. From the comparison,
the optimal values of the objective function obtained by the
MPA and PO are better than the other techniques.

In order to analyze the convergence characteristics of the
two algorithms, the convergence curves of the PO and MPA
algorithms via iterations have been shown in Fig. 13. The
figure shows that the MPA has a better convergence speed
of solving the optimization problem compared with the PO
technique.

Another time, the robustness and probability of finding
the optimal answer by the MPA and PO algorithms have
been tested by finding the best solution of 30 independent
runs. The results of these runs have been shown in Fig. 14.
Figure 14.a) proves the robustness of the MPA optimization
algorithm for finding the best parameters of the PEMFC
model. While figure 14.b) shows the results of PO algorithm
which confirms the results have been varied each run around
the best one.

The validation of the results has been proved by plotting
the voltage and power characteristics versus the current for
both models of MPA and PO, as shown in Fig. 15. From
the figure, the precise matching between the estimated char-
acteristics and the experimental data of the fuel cell can be
easily investigated. Table 10 shows the squared error between
the estimated and measured performance of 250 W stack
based on PO and MPA. Furthermore, Table 11 shows the
statistical measurement of the planned MPA and PO methods
for 250 W stack based on 30 individual runs. The statistical
results prove that the both algorithms of MPA and PO have
robust performance with consideration of superiority of the
MPA algorithm. Furthermore, the characteristics of the mod-
ule with the variation of the temperature and pressure have
been shown through Fig. 16.

D. RESULTS DISCUSSION
In the previous sub-sections, the results of the application
of both MPA and PO algorithms have been presented. The
two algorithms have been applied to estimate three various
cases of the PEMFC. The results started with the convergence

TABLE 9. Parameter fitting results of 250 W stack based on PO and MPA optimization techniques; the bold results are the best for MPA.
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TABLE 10. Squared error between the estimated and measured performance of 250 W stack based on PO and MPA.

curves of the two algorithms to solve the optimization prob-
lem. Then theminimum value of each algorithm has been pre-
sented and compared with those of other reported optimiza-
tion algorithms. Considering the convergence characteristics,
theMPA algorithm has the best one as confirmed fromfigures
of the convergence curves. Moreover, MPA can reach in all
studied cases to the finest value of the objective function as
confirmed from tables 3, 4 and 5. While, the results of the PO
are better than those of the other reported methods as shown
from table 3, 4 and 5 but its results are the second ones after
those of theMPA algorithms. So, theMPA and PO algorithms
have the ability to solve the presented optimization problem
to estimate the parameters of PEMFC with the superiority of
the MPA algorithm.

Furthermore, the obtained optimized parameters have been
used to estimate the V/I and P/I characteristics of the studied
PEMFC cases. The obtained results based on the MPA and
PO estimated parameters confirm the coincide of the esti-
mated PEMFC characteristics with those of the measured and
datasheet.

The merits of the MPA can be shown by focusing on
the MPA flowchart of figure 2. The MPA algorithm has
three phases that improve its characteristics of global solu-
tion (exploration) w.r.t the first and second phases and local
solution (exploitation) considering the third phase which
enhances its characteristics when MPA applied 30 individual
runs with the same obtained results. Although its limitation
can be well-thought-out in the future work once it applies for
more complex optimization problems with large a variable.

TABLE 11. Statistical measurement of the proposed MPA and PO
methods for 250 W stack based on 30 individual runs.

PO optimization problem has the merits of the global solu-
tion (exploration) characteristics; this phase gives it the abil-
ity to reach the finest solution. However; its ability to locate
the local solution (exploitation) is not very accurate based on
its fifth phase. So, the PO algorithm can reach acceptable
results with respect to those of the reported references as
listed in table 3, 4, and 5.

Statistical analysis for both algorithms of MPA and PO
have been performed. The results prove the robustness of the
two algorithms with the superiority of the MPA algorithm as

167016 VOLUME 8, 2020



A. A. Z. Diab et al.: Fuel Cell Parameters Estimation via MP and POs

proved from table 5, 6, and 7. Also, the same results can be
investigated from figures 8, 10 and 14. It should be noted
that the main reason is the good exploration and exploitation
performance of the MPA.

VI. CONCLUSION AND FUTURE DIRECTIONS
APEMFC is a nonlinear complicated dynamic system, which
involves many interrelated parameters. This paper comprises
the formulation of an optimization problem, which is devoted
to optimal identification of the seven unknown parameters
of the PEMFC. The MPA and PO optimization techniques
have been utilized for solving the optimization problem,
while the fitness function is presented by the sum of square
errors (SSE) between the actual and estimated models. The
proposedmethods introduced the high performance with high
matching degree respecting the measured data of different
fuel cell stacks. The MPA and PO proved their effectiveness
in reaching the optimal solution in a better way compared
with the results in the literature. Moreover, the statistical
tests have been performed to validate the robustness of the
two algorithms. From the comparison, it is concluded that
the MPA is an accurate method which can precisely extract
the parameters of the PEMFC with different cases of study.
Therefore, it is recommended that the MPA algorithm can
be implemented for solving sophisticated highly integrated
optimization problems. From a practical point of view, the
estimated model can be used online with PEMFC for fault
diagnosis and condition monitoring. Moreover, the estimated
model also may be helpful in designing the real-time control
PEMFC systems as well as system analysis. The future work,
the analysis of the parameter’s variations of the PEMFC
model far from the standard operating conditions considering
the presence of measuring noise should be studied. Fur-
thermore, the application of other recent optimization algo-
rithms such as Slime Mould Algorithm (SMA) and hybrid
techniques to enhance the estimation process is one of the
future directions. Additionally, more interest will be focused
to enhance the performance of the PEMFC in the microgrid
operation.
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