
Received August 14, 2020, accepted August 31, 2020, date of publication September 4, 2020, date of current version September 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021758

Effective Emotion Transplantation in an
End-to-End Text-to-Speech System
YOUNG-SUN JOO 1,2, (Member, IEEE), HANBIN BAE1, YOUNG-IK KIM1,
HOON-YOUNG CHO1, AND HONG-GOO KANG 2, (Member, IEEE)
1Speech AI Lab., NCSOFT Corporation, Gyeonggi-do 13494, South Korea
2Department of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, South Korea

Corresponding author: Hong-Goo Kang (hgkang@yonsei.ac.kr)

ABSTRACT In this paper, we propose an effective technique to transplant a source speaker’s emotional
expression to a new target speaker’s voice within an end-to-end text-to-speech (TTS) framework. We modify
an expressive TTS model pre-trained using a source speaker’s emotional speech database to reflect the
voice characteristics of a target speaker for which only a neutral speech database is available. We set two
adaptation criteria to achieve this. One criterion is to minimize the reconstruction loss between the target
speaker’s recorded and synthesized speech, such that the synthesized speech has the target speaker’s voice
characteristics. The other criterion is to minimize the emotion loss between the emotion embedding vectors
extracted from the reference expressive speech and the target speaker’s synthesized expressive speech,
which is essential to preserve expressiveness. Since the two criteria are applied alternately in the adaptation
process, we are able to avoid the kind of bias issues frequently encountered in similar tasks. The proposed
adaptation technique demonstrates more effective performance compared to conventional approaches in both
quantitative and qualitative evaluations.

INDEX TERMS End-to-end text-to-speech, expressive TTS, adaptation.

I. INTRODUCTION
The task of generating natural speech from the input text,
i.e., text-to-speech (TTS), is becoming increasingly impor-
tant, as it is a key module in building human-computer
interaction systems. Thanks to the powerful modeling capa-
bilities of deep learning technologies, the sound quality
and naturalness of synthesized speech have substantially
improved in recent years [1]–[6]. In particular, end-to-end
framework-based TTS models that infer acoustic features
directly from input character sequences without laborious
feature-engineering tasks have shown great success [6]–[8].

Because of the success of end-to-end text-to-speech
(E2E-TTS) models, researchers have been trying to
expand this framework to synthesize more expressive
speech [9]–[13]. Unlike emotionally neutral speech (narrative
speech) which has monotonic prosody, expressive speech
has many variations in prosody. Thus, a key challenge in
synthesizing expressive speech lies in determining distinctive
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characteristics of different expressions and representing them
using condition vectors to control the expressive TTS model.

Condition vectors can either be handcrafted or learned
in the TTS model’s training stage. An E2E-TTS frame-
work mainly uses learned vectors, so-called embedding vec-
tors or latent variables. These are jointly trained with the
weights of the TTS model using backpropagation [14]. For
example, [10] and [11] trained embedding vectors in a super-
vised manner using emotion labels. Recently, several studies
have adopted an unsupervised method in which embedding
vectors are trained in a deep learning framework, but with-
out annotated labels [12], [13], [15]. This method is useful
when it is difficult to obtain labeled data or when the speech
data contains ambiguous styles that are difficult to classify.
In [12] and [13], networks were trained to directly extract
embedding vectors from a reference speech waveform during
the overall training process, and the style of synthesized
speech was controlled using the embedding vectors.

Although E2E-TTS models with condition vectors are
very effective, it is often difficult to deploy them in
real-world applications because of database issues. In such
applications, high-quality expressive speech databases with
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multiple voice identities are required. This means that expres-
sive speech databases recorded by many professional voice
actors and actresses are required. However, it is expensive and
time-consuming to construct these kinds of expressive speech
databases. In addition, it is difficult to utter expressive speech
while maintaining consistent expressiveness.

An effective way to solve this problem is to use a technique
like speaker adaptation [16]–[20], in which a baseline model
is trained using a large database, then adjusted to a target
speaker using only a small amount of data. This approach
can similarly be applied to expressiveness tasks through emo-
tion transplantation, i.e. training an expressive TTS model
using available other speaker’s expressive speech database
and adjusting the pre-trained model to the target speaker’s
voice [21]–[24]. Even when there is only a small amount
of expressive speech data of the target speaker, a target
speaker’s expressive TTS model can be obtained fairly easily
by adapting the pre-trained model to minimize reconstruction
loss, which is an error between recorded and synthesized
expressive-speech of the target speaker.

In this paper, we deal with the case in which the target
speaker has only neutral speech data. We experimentally
found that the style of synthesized speech becomes ambigu-
ous as the model adaptation progresses; eventually, the output
synthesized speech does not faithfully present the expres-
siveness style. Because the model is adapted to reconstruct
the target speaker’s voice using neutral speech, the model’s
capability for generating expressive speech is impaired.
To deal with this, we propose an effective emotion transplan-
tation technique that guides the pre-trained model to preserve
expressiveness characteristics during the adaptation process.
The model update procedure has two alternating steps:
(1) modifying the voice characteristics of the pre-trained
model to match those for the target speaker and (2) preserving
its capability for generating expressive speech. More specif-
ically, when adapting the TTS model to minimize the recon-
struction loss for the target speaker’s neutral-style speech,
the proposed technique synthesizes expressive speech with
the target speaker’s voice from the adapted TTS model and
updates the model to minimize a metric we call the emotion
loss. The emotion loss is the distance between the expressive
condition vector extracted from the target speaker’s syn-
thesized expressive-speech and the input expressive condi-
tion vector used to synthesize speech expressively. That is,
the model is updated so that the emotional style of synthe-
sized expressive-speechmatches the emotional style included
in the input expressiveness condition vector. Here, the condi-
tion vector is extracted from the source speaker’s expressive
speech because the target speaker does not have expressive
speech data. For the same reason, the emotion loss function
compares the expressiveness condition vectors instead of the
target speaker’s expressive speech data. The condition vectors
extracted from the synthesized target speaker’s expressive
speech should have an emotional style identical to that of
the input condition vector. These two steps are repeated alter-
nately until the model converges.

The remainder of this paper is organized as fol-
lows. In Section II, we describe the end-to-end expres-
sive TTS model architecture to understand our proposed
approach. In Section III, we explain the proposed effec-
tive emotion transplantation approach. Section IV provides
objective and subjective experimental results, and Section V
summarizes and concludes the paper.

II. MODEL ARCHITECTURE
The end-to-end expressive TTS model used in this paper
consists of two components: (1) an emotion encoder which
outputs an expressiveness condition vector based on a ref-
erence expressive speech input, and (2) an E2E-TTS model
which synthesizes expressive speech using text input and
expressiveness condition vectors.

A. EMOTION ENCODER
To obtain the expressiveness condition vector, we adopt the
global style token (GST) approach [13], which derives the
expressiveness condition vector on the fly by passing ref-
erence speech. Figure 1 illustrates the GST architecture.
The GST, which consists of a reference encoder [12] and
a style token layer [13], is jointly trained while training
a TTS model as follows. The reference encoder outputs a
prosody embedding vector based on a reference speech input,
typically having a mel-scale spectrogram (mel-spectrogram)
format. The prosody embedding vector is used as the input
to the style token layer, comprising an attention module
and a set of token embeddings [13]. The style of the given
reference speech is then presented as the weighted sum of
each token, where the weights are the contributions of each
token to the prosody embedding vector. The style can be
defined in various meanings such as voice characteristics,
speaking style, emotions, etc. For this study, we focus on
emotions and use the term emotion embedding vector rather
than expressiveness condition vector for the remainder of this
paper.

FIGURE 1. Global style token (GST) model diagram. The mel-spectrogram
of the reference speech is fed to the reference encoder followed by a
style token layer.

B. END-TO-END TTS MODEL
Among various E2E-TTS frameworks, we use the deep con-
volutional TTS (DCTTS) framework because of its fast train-
ing speed and stable alignment [8]. The DCTTS framework
consists of a text-to-mel-spectrogram network (Text2Mel)
and a spectrogram super-resolution network (SSRN). The
Text2Mel module predicts a coarse mel-spectrogram, that is,
a down-sampled mel-spectrogram in the time axis, based on
input texts and the predicted mel-spectrogram at the previous
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time step, in an auto regressive manner. The SSRN mod-
ule predicts a linear-scale spectrogram (spectrogram), that
is up-sampled in time and frequency axis, from the coarse
mel-spectrogram.

More specifically, text embedding and audio embedding
sequences are extracted from text and audio encoders, respec-
tively. Here, the mel-spectrogram predicted at the previous
time step (i.e., the audio decoder output) enters the audio
encoder input. Attention values between these are multiplied
to the text embedding vectors, after which the attended text
embedding vectors are concatenated to audio embedding vec-
tors. In this paper, the emotion embedding vector inferred by
the emotion encoder is also concatenated. The audio decoder
then autoregressively infers the mel-spectrogram from these
combined embeddings. Finally, the spectrogram predicted by
the SSRN module is converted into a time-domain speech
waveform using either the Griffin-Lim algorithm [25] or any
type of generative model such as WaveNet [5], [26].

III. PROPOSED EMOTION TRANSPLANTATION
APPROACH
In this section, we describe an effective adaptation method
that successfully transplants the emotional expressiveness of
a pre-trained model to the target speaker’s voice.

Assume that we have an expressive TTS model pre-trained
with a source speaker’s expressive speech database, but
only a neutral speech database is available for the target
speaker. A simple idea is to adapt the pre-trained source
speaker’s expressive TTS model with the target speaker’s
neutral speech database. However, in a preliminary experi-
ment, we found that this simple adaptation approach could
not maintain the TTS model’s ability to express appropriate
emotions in the synthesized speech. Therefore, we designed
the proposed approach by considering two aspects: generat-
ing the target speaker’s voice characteristics and expressing
appropriate emotions. During the process of adapting the TTS
model based on a target speaker’s neutral speech, we syn-
thesize expressive speech with the target speaker’s voice by
inputting an emotion embedding vector extracted from the
source speaker’s expressive speech to the adapted TTSmodel.
We then update the model by minimizing the emotion loss
between the input emotion embedding vector and the emotion
embedding vector extracted from the synthesized expressive-
speech. The detailed procedure is described in Algorithm 1.

A. BUILDING A SOURCE SPEAKER’S EXPRESSIVE
TTS MODEL
Figure 2 and Phase 1 of Algorithm 1 describe the procedure
for training a baseline expressive TTS model using a source
speaker’s expressive speech database.

Training the expressive TTS model requires input text X,
output expressive speech Ssrc,emo, and input reference expres-
sive speech Ssrc,emo

ref from a source speaker’s expressive
speech databaseDsrc,emo. In this work, we chose the reference
speech to be non-parallel with the input text so that the emo-
tion encoder is robust to the reference speech signal content;

FIGURE 2. Baseline expressive TTS model training step.

this maximizes expressive information and minimizes the
influence of the reference speech signal content.

The emotion encoderMemo and the TTS modelMTTS are
trained jointly. First, Memo outputs the emotion embedding
vector e from Ssrc,emo

ref . Then, e is passed as input to MTTS
with X. The training process is identical to conventional TTS
models in that it minimizes a reconstruction loss between
recorded and synthesized expressive-speech, namely Ssrc,emo

and Ŝsrc,emo. We define the loss function of MTTS, LTTS,
as the sum of L1 loss L1 and a binary divergence function
Dbd following the DCTTS system [8], namely,

LTTS(S, Ŝ) = L1(S, Ŝ)+Dbd(Ŝ|S), (1)

where S and Ŝ are recorded and synthesized speech, respec-
tively, in mel-spectrogram format. In this study, we do not
use the guided attention loss introduced in [8]. This guided
attention loss prompts the attention matrix to be nearly diag-
onal, but it is not effective when there are many variations
in the attention pattern caused by various speaking speeds
dependent on the emotion classes.

B. ADAPTING VOICE CHARACTERISTICS WHILE
MAINTAINING EXPRESSIVENESS CHARACTERISTICS
Figure 3 and Phase 2 of Algorithm 1 describe the emotion
transplantation procedure. The pre-trained source-speaker’s
TTS model is modified to have the target speaker’s voice
characteristics while maintaining its own expressiveness
characteristics. The model is updated in two steps. In the
first step, only MTTS, excluding Memo, is adapted for an
epoch of the target speaker’s neutral speech databaseDtgt,neu.

FIGURE 3. Proposed emotion transplantation approach, showing the
pre-trained expressive TTS model adaptation step (solid line: flows
related to neutral speech; dashed line: flows related to expressive
speech).
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Algorithm 1 The Emotion Transplantation Approach

Phase 1 - Training of a baseline expressive TTS model

Require:
Training data (X,Ssrc,emo,Ssrc,emo

ref ) ∈ Dsrc,emo

1: whileMemo,MTTS are not converged do
2: e←Memo(S

src,emo
ref )

3: Ŝsrc,emo
←MTTS(X, e)

4: LTTS← LTTS(Ssrc,emo, Ŝsrc,emo)
5: UpdateMemo,MTTS jointly with regard to LTTS
6: end while

Phase 2 - Emotion transplantation

Require:
Training data (X,Stgt,neu,Stgt,neuref ) ∈ Dtgt,neu
Training data (X,Stgt,neu) ∈ Dtgt,neu and Ssrc,emo

ref ∈

Dsrc,emo
Pre-trained

modelsMemo andMTTS

7: whileMTTS is not converged do
8: for i← 1,Ntgt do
9: e←Memo(S

tgt,neu
ref )

10: Ŝtgt,neu←MTTS(X, e)
11: Lvoice← LTTS(Stgt,neu, Ŝtgt,neu)
12: UpdateMTTS with regard to Lvoice
13: end for

14: for i← 1,Nsrc do
15: e←Memo(S

src,emo
ref )

16: Ŝtgt,emo
←MTTS(X, e)

17: ê←Memo(Ŝtgt,emo)
18: Lemo← Dist(e, ê)
19: UpdateMTTS with regard to Lemo
20: end for
21: end while

The loss function for voice Lvoice follows Eq. (1). In the sec-
ond step, the adapted MTTS is updated by optimizing the
emotion loss function,

Lemo = Dist(e, ê), (2)

where e and ê are emotion embedding vectors extracted from
recorded and synthesized expressive speech, respectively.
We use L1 as a distance metric Dist. In our preliminary exper-
iments, other distance metrics such as cosine distance also
showed similar results. In this work, ê is extracted from a syn-
thesized expressive speech of a target speaker’s voice Ŝtgt,emo.
e, which is an input ofMTTS for synthesizing speech expres-
sively, is extracted from Ssrc,emo

ref , since the target speaker’s
speech database does not contain expressive speech. By com-
paring the emotion embedding vectors, the TTSmodel can be

updated even when there is no expressive speech of the target
speaker.

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL SETUP
We prepared two Korean speech databases: one expressive
and one neutral style speech. The expressive speech database
for the source speaker consists of four emotion classes,
namely neutral (NEU), joyful (JOY), angry (ANG), and sad
(SAD), recorded by a single professional voice actress. The
total amount of speech is about 11 hours. The scripts for
each emotion class were different from the others. The target
speaker’s neutral speech database was recorded by another
professional actress and consisted of approximately 1 hour of
speech. Both databases were recorded at a 16 kHz sampling
rate. The amounts of data for the training, validation, and test
sets were set to 90%, 5%, and 5%, respectively. To enhance
trainability, we excluded speech data longer than 10 seconds
and trimmed the silence regions at the beginning and end of
each sentence.

The network architectures and hyperparameters of the
E2E-TTS module and the emotion encoder module were set
to follow the original papers [8], [13], except that the emotion
embedding vector was concatenated with the text embedding
vectors. Consequently, the dimension of the audio embedding
vectors was also adjusted to match that of the concatenated
embedding vector. 80-dimensional mel-spectrograms were
extracted at 12.5 ms frame intervals with 50 ms frame lengths
from speech segments. All networks were trained using
the Adam optimization algorithm [27] with a learning rate
of 0.001 when training the baseline expressive TTS model,
and 0.0001 when performing adaptations to obtain the target
speaker’s expressive TTS model.

B. EXPERIMENTAL RESULTS
To quantitatively verify the effectiveness of the proposed
approach, we measured the equal error rate (EER) for
speaker verification and the emotion classification accuracy
for the target speaker’s synthesized expressive-speech sam-
ples: lower EER indicates higher speaker similarity, and
high classification accuracy indicates that the synthesized
speech faithfully expresses emotion corresponding to the
expressiveness style of the input emotion embedding vec-
tor. For the speaker verification task, we utilized the Kaldi
toolkit [28]. We built a universal background model with
data from 100 Korean speakers and enrolled an additional
11 speakers including the target speaker. For the emotion
classification task, we used the naïve Bayes classification
method [29]. The model parameters, such as the mean and
variance of each class, were obtained from emotion embed-
ding vectors extracted from the source speaker’s recorded
expressive speech. The emotion classification accuracy for
the expressive speech synthesized by the source speaker’s
expressive TTS model was 93.5% (baseline).
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Figure 4 shows evaluation results for the conventional
and proposed methods as the adaptation progresses, where
emoTgtConv and emoTgtProp are the target speaker’s
expressive speech synthesized from the TTS model
adapted by the conventional (w/o emotion loss) and pro-
posed approaches (w/ emotion loss), respectively. In both
approaches, the synthesized speech became more similar to
the target speaker’s voice until the 40-th epoch, and emotion
classification accuracy decreased. However, emoTgtProp
maintained expressiveness characteristics with much higher
accuracy than emoTgtConv, even though it changed voice
characteristics slowly.

FIGURE 4. Speaker verification results (top) and emotion classification
accuracy (bottom) with respect to number of epochs.

In Figure 5, emotion embedding vectors, extracted from
expressive speech synthesized from emoTgtConv and
emoTgtProp, were plotted using the t-distributed Stochas-
tic Neighbor Embedding (t-SNE) algorithm [30]. Emotion
embedding vectors of the same class grouped were more con-
densed for emoTgtProp, which means that much more dis-
tinct expressive speech was synthesized. On the other hand,
the emotion embedding vectors for emoTgtConv showed an
ambiguous boundary between emotions, especially NEU and
ANG. This means that the synthesized expressive-speech did

FIGURE 5. T-SNE plots of emotion embedded vectors. These were
extracted from two types of synthesized expressive speech.
(a) emoTgtConv (b) emoTgtProp.

not faithfully express the emotion corresponding to the given
input emotion embedded vector.

C. SUBJECTIVE LISTENING TESTS
Weconductedmean opinion score (MOS) tests on expressive-
ness, speaker similarity, sound quality, and naturalness for
the synthesized speech1 to evaluate the performance of the
proposed approach. 20 native Korean speakers participated
in the tests. A total of 20 sentences were randomly selected
from the test set and speech samples were generated using
each method identified above. Considering the variation of
LTTS and Lemo, we chose the TTS model trained up to the
50-th epoch. For the MOS tests, speech samples were syn-
thesized using a neural vocoder,WaveGlow [31], [32], trained
using both source and target speakers’ speech databases.

To evaluate expressiveness, we asked participants to rate
the expressiveness degree of a speech signal given the emo-
tion label, using the following five responses: 1=Absolutely
different from the annotated emotion label; 2 = Ambiguous
to the annotated emotion label; 3 = Slightly expressive;
4 = Very expressive; 5 = Extremely expressive. The source
speaker’s recorded expressive speech (emoSrcRec) was also
compared to provide an upper bound. The top of Figure 6
shows that emoTgtProp scored slightly worse than
emoSrcRec but was much more expressive than
emoTgtConv, confirming the superiority of the proposed
approach over the conventional one.

FIGURE 6. MOS test results for expressiveness in speech (top) and for
speaker similarity (bottom).

To evaluate speaker similarity, participants were asked to
rate voice similarity for the synthesized speech with the target
speaker’s voice, using a scale from 1 to 5: 1 = Dissimilar;
2 = Slightly dissimilar; 3 = Similar; 4 = Very similar;
5 = Absolutely the same speaker. Each synthesized speech
sample was compared to recorded speech samples randomly
selected from the target speaker’s neutral speech database.
We asked listeners to focus only on the degree of expres-
siveness and voice similarity, excluding speech content or

1https://nc-ai.github.io/speech/publications/emotion-tts/
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emotional state differences. The bottom of Figure 6 shows
that there were no significant differences between emoTgt-
Prop and emoTgtConv except for ANG. In the case of ANG,
because angry speech generated by emoTgtConv sounded
like neutral speech, listeners felt that it was similar to the
target speaker’s voice. Both approaches received low scores
for SAD. Sad speech has a low pitch and trembling char-
acteristics, which results in missing speaker characteristics.
Although we asked listeners to evaluate only voice similarity,
excluding emotional state and content differences between
speech samples, they were still somewhat influenced by the
features of emotion.

Participants also rated the naturalness and sound quality
of the synthesized speech samples. Table 1 shows that there
were no significant differences between the two approaches.

TABLE 1. MOS test result for naturalness and sound quality with 95%
confidence intervals.

V. CONCLUSION
This paper proposed an effective emotion transplantation
approach within an E2E-TTS framework for generating
expressive speech for a target speaker whose speech database
includes only neutral style speech. By alternately updating a
pre-trained expressive TTS model in two directions, we not
only generated the target speaker’s voice characteristics but
also successfully maintained the expressiveness character-
istics of the pre-trained model. Thus, the proposed method
successfully transplanted the ability to express appropriate
emotions in the target speaker’s voice. We verified the supe-
rior performance of the proposed approach through various
quantitative and qualitative evaluations.
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