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ABSTRACT This article presents a fuzzy system-based modeling approach to estimate the weld bead
geometry (WBG) from the welding process variables (WPVs) and to achieve a specific weld bead shape.
The bacterial memetic algorithm (BMA) is applied to solve these problems in two different roles, as a
supervised trainer, and as an optimizer. As a supervised trainer, the BMA is applied to tune two different
WBG models. The bead geometry properties (BGP) model follows a traditional approach providing the
WBG properties as outputs. The direct profile measurement (DPM) model describes the bead profiles points
by a non-linear function realized in the form of fuzzy rules. As an optimizer, the BMA utilizes the developed
fuzzy systems to find the solution sets of WPVs to acquire the desired WBG. The best performance is
achieved by applying six rules in the BGP model and eleven rules in the DPM model. The results indicate
that the normalized root means square error for the validation data set lies in the range of 0.40 − 1.56%
for the BGP model and 4.49 − 7.52% for the DPM model. The comparative analysis suggests that the
BGP model estimates the BWG in a superior manner when several WPVs are altered. The developed fuzzy
systems provide a tool for interpreting the effects of the WPVs. The developed optimizer provides multiple
valid set of WPVs to produce the desired WBG, thus supporting the selection of those process variables in
applications.

INDEX TERMS Bacterial memetic algorithm, fuzzy system, machine learning, TIG welding, weld bead
geometry.

I. INTRODUCTION
Most of the automated welding systems were developed and
used for mass production. Recently, the robotization of small
series production gained more attention, primarily by small
and medium-sized companies. The transition from manual
to robotized welding requires the adaptation of the welder’s
expertise to the automated system. However, this knowledge
is mostly not available in a quantified format as precisely as
needed to program the robotic welding system or estimate the
weld bead geometry (WBG).

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Xia .

The Tungsten Inert Gas (TIG)weldingmethod can produce
solid and high-quality joints for a wide range of regular and
more exotic types of metals [1]. Along with the welding
process’s non-linear characteristics, the weld bead formation
depends on the chemical compositions of the base and filler
materials [2], [3]. The sulfur and oxygen content could vary
in a wide range between the manufacturing batches, which
influence the surface tension of the melted metal, an impor-
tant factor defining the shape of the solidified surface [4], [5].
Furthermore, the deposition efficiency needs to be considered
besides the inconsistent evaporation of the filler metal [6].

Consequently, a model-based approach is needed to
achieve the requirements for the given material composition
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and environment; and support the activities during the design
and the execution of the welding process.

During the early 2000’s, optimization and modeling of
welding processes mostly consisted of numerical [7] and
statistical approaches [8]. However, in the last decade
computational intelligence and machine learning became
dominant [9], [10] due to the capability to solve com-
plex and non-linear problems. Now they are providing a
base for applications for future intelligent welding man-
ufacturing [11]. Recently, WBG models and the related
process controls gained attention in wire and arc additive
manufacturing (WAAM) [12]–[15] and multi-pass welding
(MPW) [16]–[18].

Most research studies of WBG modeling are focused on
consumable electrode welding methods [12], [19]–[23] and
flux activated TIG (A-TIG) without deposition [24]–[26].
Only a few study focus on TIG for stainless steel bead geom-
etry [27]–[30], because TIG was traditionally used without
deposition or on non-steel metals [31] to weld joints where
the reinforcement is not utilized.

Numerical models provide deep analysis on the mechan-
ical properties, residual stresses, distortion, and heat dis-
tribution beside other internal properties of the welded
workpiece [7], [32]–[34]. However, the bead shapes and the
welding process variables (WPVs) are not considered, since
they are provided as inputs to the finite element modeling and
adjusted manually. TheWPVs are adjusted until they provide
the final product’s required properties, while the weld bead
shapes are modeled by their simplified shape. The modeling
neglects the challenges connected to the precise execution
by including higher error margin and safety factors. The
shape of the weld beads is an important factor in WAAM
and MPW because controlled height and width are needed
to ensure stable deposition [35]–[37]. Analytical models
were developed to describe the bead shape [36], [38], [39],
but those models were discussing the type of the fit-
ting curve for the bead surface and its effect during
overlapping.

Statistical methods are often used in the literature to
provide the comparison base for different methods since
their linear behavior is usually outperformed by methods
capable of modeling the non-linear behavior [12], [21].
Computational intelligence (CI) techniques – such as arti-
ficial neural networks (ANN) [12], [22], [23], fuzzy infer-
ence systems (FS) [20], [24], [25], evolutionary algorithms
(EA) [40], [41], and genetic programming (GP) [42] – are
widely used to describe the WBG. However, due to their
limitations [26], several hybrid computing techniques were
developed [26], [32], including the adaptive neuro-fuzzy
inference systems (ANFIS) [25], [26], [43] and the evolu-
tionary fuzzy systems (EFS) [44], [45].

An important common feature of computational intelli-
gence techniques is that they aim at acceptably suboptimal,
usually, approximate solutions, while keeping the computa-
tional complexity at a tractable, usually low degree poly-
nomial level. CI methods such as fuzzy systems and neural

networks are universal approximators [46], [47]. They can be
transformed into each other, therefore any approach (or archi-
tecture) choice can be justified [48]–[50]. Kóczy showed that
the Takagi-Sugeno-Kang (TSK) FS is asymptotically equiv-
alent to the Mamdani FS model, and they can be transformed
into each other [49].

The main advantage of choosing FS is the infer-
ence base, compared to the black-box behavior of the
ANNs. Fuzzy systems provide human-like reasoning sys-
tems since their rule-based approach with a non-linear
mapping of inputs offers an easily interpretable method,
where the arguments leading to the conclusion can be
assessed.

The FS method’s main drawback is to find the optimal
definition of membership functions and define the sufficient
number of rules. The fewer number of fuzzy rules may
help understand the system’s decision-making, bringing the
developed inference model closer to the person applying it in
operation. Furthermore, the fuzzy inputs allow us to handle
some degree of uncertainty in the input parameters, which
happens in welding. In the overviewed literature, either high
number (above 20 rules) [25], [26], [51] or manually defined
fuzzy rules [24], [52] were applied to estimate one feature of
the weld bead.

The tuning of the membership function parameters can be
done by applying training algorithms [53], which allow the
fuzzy systems to learn from data. In many different fields,
the evolutionary algorithms are applied to design the fuzzy
systems [44], [45], [54].

Several evolutionary optimization algorithms were devel-
oped, with the ability to solve and quasi-optimize prob-
lems with non-linear and discontinuous characteristics [55],
[56]. The bacterial evolutionary algorithm (BEA) [57] is
one of the possibilities that mimic bacterial rather than
eukaryotic evolution among microbes. Each bacterium rep-
resents a solution to the original problem. In their mutation
and the gene transfer operations, bacteria share chunks of
their genes instead of performing neat crossover in chro-
mosomes, which is the characteristic of the eukaryotes.
The main disadvantage of the classical evolutionary algo-
rithms is the low convergence speed, thus long running
time. However, combining them with gradient-based local
search methods can utilize both methods’ advantages in the
optimization process. This hybridization leads to memetic
algorithms [58].

Bacterial Memetic Algorithm (BMA) [54] is a memetic
algorithm, in which the bacterial technique is used instead of
the classical genetic algorithm, and the Levenberg-Marquardt
(LM) method [59], [60] is applied as local search. The
BMA provides a competitive performance during opti-
mization [61], [62] and supervised machine learning [62]
against genetic algorithm (GA) and particle swarm opti-
mization (PSO) and their memetic versions. It has already
been applied in several combinatorial optimization prob-
lems [61], [63], in continuous optimization tasks [64], and
in supervised machine learning tasks such as fuzzy rule base
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extraction [54] and training fuzzy neural networks [65].
However, the capabilities of BMAwere not explored in weld-
ing or related technology yet.

II. PROBLEM DEFINITION
Precise positioning of weld beads is required to achieve a
desirable weld join in welding, which is influenced by the
weld bead shape during the deposition of multiple beads. The
weld bead geometry is directly related to the WPVs, and the
bead formation depends on the previously deposited beads’
shapes.

In small series productions, the tuning of the process could
take up a significant amount of time and be done by trial and
error method following internal standards; and carrying out
experiments and laboratory analysis of the test workpieces.
This approach can be enhanced by a bi-directional model to
describe the relationship between the process parameters and
the resulting WBG to support the automated operation and
the selection of the process variables.

Simulation and analytical models could also support the
manufacturing process, where the WPVs and WBG are pro-
vided as inputs to the finite element modeling. The target
WBG is modeled by simplified shapes and defined bymanual
calculations or numerical calculations to satisfy the criteria
of the mechanical loads and stresses of the workpiece. The
WBG and WPVs are adjusted until they provide the required
properties of the final product. Mishra and DebRoy [32]
showed that a specific WBG could be produced by multi-
ple combinations of the WPVs, even in the range qualified
by the Welding Procedure Specification. A provided list of
WPVs could allow to select the best combination fitting to
the desired workpiece properties.

However, numerical modeling neglects the challenges con-
nected to the precise execution by including higher error
margin and safety factors. Proposing a model to estimate the
bead geometry provides refined geometrical information to
further evaluation of the mechanical properties and residual
stresses in the workpiece. Therefore, such a model does not
compete with the numerical models but complements them to
define the WPVs and WBG.

As the industrial application aspect of the welding process
is considered, three control parameters were selected in our
approach, namely arc current (I ), torch travel speed (vt ),
and wire feed rate (vf ). Arc voltage (U ) was also recorded
and included in the model as input since it had small fluc-
tuation and a significant effect on the heat input. These
four parameters will be referred to as Welding Process Vari-
ables (WPVs). The examined parameters of the WBG were
chosen as width (w), height (h), and cross-sectional area (AB)
and later referred to as Weld Bead Profile Properties (BPPs).

To describe the weld bead profiles, the second-order poly-
nomial (parabola) fitting was chosen [36]. The parabola
curves are reconstructed from the w, h parameters using the
following equation:

y = −4
h
w2 x

2
+ h, (1)

where x is the abscissa- and y is the ordinate of the profile
points of the weld bead in the coordinate system in the cross
section, according to the definition shown in Fig. 2. The
parabola defined in Equation (1) does not contain the first
order x component since the coefficient is zero because the
origin of the coordinate system is in the focal point of the
parabola.

The theoretical AdB cross-sectional area of the weld beads
can be estimated according to Equation (2) by calculating the
amount of the deposited weld metal:

AdB = ηd
πD2

w

4
·
vf
60vt

, (2)

where ηd represents the deposition efficiency, and Dw is the
diameter of the feedingwire. The deposition efficiency is esti-
mated by comparing AdB calculated value with the measured
AmB value using the area under the curve on the measured
profile (Eq. (3)).

AmB =
∫ w/2

−w/2
f (w, h) dx =

2wh
3

(3)

During our preliminary study, we found that the value of
ηd is 0.955 with a standard deviation of 0.063 for the whole
sample population, which is similar to a generally accepted
(above 0.9) value [6]. Furthermore, the deposition efficiency
decreaseswith the increase of arc current, which is interpreted
as the result of a higher vaporization rate of the feed metal.
However, the sign and the degree of the deviations are not
consistent, causing error propagation in multi-pass welding
as the layered beads added on top of each other. On a given
workpiece, the error is usually reduced by on-site adjustment
of the torch position, and the welding parameters are set to
as constant across several layers. Thus, we expect that an
accurate model utilizing the measurement data can increase
the accuracy of estimation of the WBG.

Furthermore, the review conducted by Vasudevan con-
cluded that FSs are the best soft computing methods for con-
trol and monitoring of welding processes, and (GA) evolu-
tionary algorithm-based models for WPV optimization [27].
This provided a motivation to utilize our method since it
combines the advantages of both approaches.

The effectiveness of the BMA is emphasized by adapting
it to our application in two different ways – developing a
bead shape model and finding multiple optimal WPVs to
achieve the target bead geometry. This method is unique
since the BMA was not utilized in welding before or imple-
mented for one problem with two roles (supervised trainer
and optimizer). Furthermore, for the two separate tasks,
two different methods are usually applied in the overviewed
literature.

The specific aims of our study are to (i) provide a sufficient
estimation model of the WBG by adopting the BMA to the
welding application, where the FS-based model consists of a
low number of fuzzy rules; and (ii) provide a decision support
tool for selecting WPVs to achieve specific WBGs.
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III. PROPOSED METHODS
Our proposed method provides a bead geometry model on
single weld beads in a horizontal position using fuzzy sys-
tems, and an optimizer to retrieve a list of WPVs producing
a specified WBG. These support the decision to chose a
suitable set of WPV for simulation or execution. The devel-
oped FS provides a human-like reasoning system and a non-
linear mapping of inputs to assess the arguments leading to
the conclusion. The supervised training of the rule base and
the optimization task are carried out by the same Bacterial
Memetic Algorithm.

Our proposed method is capable of accepting not only the
conventional main welding parameters but also the profile
points of the weld beads directly, measured by a laser trian-
gulation sensor allowing a broader range of applications than
the traditional methods.

In the welding process modeling, BMA is used both as a
supervised trainer and as an optimizer. Our method (Fig. 1)
can be broken down into the following four steps:

1) Welding data generation by TIG welding on 304L
stainless steel

2) Welding data acquisition and preprocessing by the
data processing framework

3) Welding model generation by tuning the membership
functions of the fuzzy systems by BMA in order to infer
the bead profile properties from the welding process
variables

4) Welding design by BMA optimization of WPV in
order to achieve the desired BPP resulting in a multiple
set of WPV

The empirical model development is based on the welding
experiments (Step 1), whose design is covered in the Sec. III-
A, and utilize the second-order polynomial (parabola) fitting.
The generated data is preprocessed (Step 2) to provide the
profile property information of weld bead cross sections for
each trial, following the method described in Sec. III-B. The
output of the preprocessing is the training patterns for the
model development of the weld bead profile.

During the supervised training (Step 3, Sec. III-C),
the BMA is utilized to tune the membership functions of
the fuzzy systems. The bacterium’s chromosome encodes the
breakpoints of the trapezoidal membership functions, and the
evaluation of the bacteria is carried out by theMamdani infer-
ence model [66]. The bacterium’s chromosome is modified
to reduce the value of approximation error (Ei in Fig. 1),
which is the difference between the estimated and the desired
BPP value in the i-th training pattern. The correlation between
the WPVs and the BPPs is realized in two separate models.

The first approach, the Bead Geometry Properties (BGP)
model (Sec. III-D), is a more conventional method to model
a direct relation between the WPVs and the BPPs in three
parallel fuzzy rule bases. The second approach is the Direct
ProfileMeasurements (DPM)model (Sec. III-E), which is the
extension of the BGP model. It contains a single fuzzy rule
base to reconstruct the weld bead shape from profile points;

FIGURE 1. Overview of the proposed method’s structure.

then, the BPPs are acquired as the result of the postprocess-
ing.

As Step 4, the BMA is used again, now as an optimizer,
incorporating the BGP model to optimize the WPVs to
achieve the targeted weld bead geometry (Sec. III-F). Both
the fitness of the models and the results of the optimization
were validated through experiments.

The application of BMA in Step 3 and Step 4 differs in
a few details, such as the encoded information in the bac-
teria’s genes, the evaluation method, and the update process
in the Levenberg-Marquardt algorithm. In the optimizer role,
the bacterium encodes the WPVs, and the evaluation is based
on the value of the single objective function. According to
their gradient vector, the WPVs are modified with their direct
effect on the objective function in the iterations between the
generations. In comparison, in the supervised trainer role of
the BMA, the bacteria’s chromosomes encode a complete
set of fuzzy rules. The parameters of the rule’s membership
functions are tuned in the process. During the evaluation
of a bacterium, the estimated and the desired response of
the fuzzy system is calculated as provided in the training
patterns, giving the algorithm a multi-objective characteris-
tics which is transformed into a single-objective optimization
with uniform weights. Therefore, the gradient is represented
as a Jacobi matrix instead of a gradient vector. The detailed
discussion will be given of the implemented Levenberg-
Marquardt algorithm in both cases in the corresponding sec-
tions.

A. EXPERIMENT DESIGN AND EXECUTION
A bead-on-plate welding experiment was carried out to cre-
ate an estimation model of the weld bead profile (Step 1).
Figure 2 shows a measured cross-section of a weld bead,
incorporated visualization of the BPPs, and the expected
results of the proposed models.
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FIGURE 2. A weld bead cross-section as the result of the measurements
and the models.

The base metal is 20 mm thick 304L steel with 3 mm clad
welded with the same 1.2 mm diameter Böhler 13/4-IG filler
material as used to produce the weld bead. The experiment
was executed with a regulated constant 12 V , 2.4 mm arc
gap in PA welding position, 40◦C preheating temperature.
An E3 tungsten electrode with rare earth mixed oxides of
3.2 mm diameter and 60◦ cone angle was used. Pure Argon
gas with a flow rate of 12−14 L/min provided the shielding.
The experiment was carried out in the welding cell shown
in Figure 3 by aKuka KR-30-3 and aNACHIMZ-07 industrial
robot arms, using a MagicWave 5000 JOB welding power
source, and a custom controller software.

TABLE 1. Definition of input process parameters and their levels.

Taguchi design [67] was applied to design the experiment
using an L25(53) layout as shown in Table 1. Each trial was
carried out twice, and each produced a 100 mm long weld
bead. The WPVs’ minimum and maximum values of the
parameters were selected to comply with theWelding Process
Specification, provided by our industrial partner. Unfortu-
nately, not all samples provided usable data due to welding
failures. Our design considered non-optimal settings; thus,
high heat input was applied in the failed tests with a low
feed rate and vice versa; consequently, these settings are not
suitable for industrial applications. At the end of the model-
ing process, welding data from the Ntrial = 42 trials were
included for the training, which was the result of 21 different
WPV combinations (Training data sets in Table 2). A similar
experiment was carried out to prepare the weld beads for

FIGURE 3. Robotic welding cell, where the experiments were carried out.

the independent validation. Seven WPVs combinations were
selected arbitrarily from different regions of the parameter
window, and then each welding trial was performed twice
(Validation data sets in Table 2).

After each finished welding sequence, the weld beads’
surface was recorded by a M2DW 160/40 Line Laser Tri-
angulation Sensor (LTS). Each weld bead was measured by
0.1 mm increments along the weld line containing ca. 100
data points per profiles, which supplied the RSP raw scanned
profiles as cross-sectional data for further data processing.
The first and last fifth of the weld beads were neglected; thus,
only the stabilized cross-sectional area was considered with
an effective length of 60 mm.

B. WELD BEAD PROFILE DATA ACQUISITION AND
PREPROCESSING
The profile data of the weld beads were preprocessed
(Step 2. in Fig 1) in a framework developed in LabVIEWTM.
The pseudo-code of the whole process is shown in Algo-
rithm 1. The framework requires the measurement profile
data from the LTS sensor (SMP), the WPVs from each
trial, and the trajectory information of the welding robot
system (RSP). As the first step, the required information
was combined into weld bead profile data (CPD); thus,
each cross-section of the weld beads contained aligned
position information from the robot system with the cor-
responding actual welding parameters and measurement
points.

The weld bead measurements were taken before and after
the welding sections using the LTS scanner, producing the
cross-sectional measurements along the weld line with a
0.1 mm incremental steps. Five consecutive CPD cross-
section measurements were combined into one S profile for
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TABLE 2. Mean values of the measurements and the predicted values of the proposed models. Dimensions of the experiment design: I arc current [A], U
arc voltage [V ], vt torch travel speed [mm/s], vf wire feed rate [mm/min]. Dimensions of the weld bead geometry: w bead width [mm], h bead height
[mm], bead area [mm2].

each trial to reduce the noise of the LTS and the WPV
measurements. This resulted in S = 120 cross-sections for
each trial, containing ca. 100 data points per profile. How-
ever, five percent of the cross-sections were discarded due
to failed measurements caused by the material’s locally high
reflection.

During the data processing, each profile of each weld bead
was filtered for noise, aligned to the horizontal position,
and segmented to identify the weld bead. The segmentation
provided the data points for the weld bead profiles and
the substrate segment. In our case, the substrate segment
was the flat base metal, but profile sections from other tri-
als also appeared; however, they were discarded. The fit-
ting method was chosen as the second-order polynomial,
described in Eq. (1), to generate the BPP for the training and
validation.

After the analysis, two sets of training patterns were gen-
erated in the Multiple-Input-Single-Output format. The first
set was used for the BGP model tuning, consisting of three
separated sets for the weld bead profile parameters (w, h, AB)
with the input parameters of (U , I , vt , vf ) for each cross-
section, 4795 cross-sections altogether. The other set was
used for DPM model tuning, consisting of the weld bead
profile points (Y ) and the input parameters of (X , U , I , vt ,
vf ) creating the 487 286 training patterns.

The overall measurement process time depends on the
number of completed Opproc pre-processings of the bead

profiles calculated as:

Opproc = Ntrial · S (4)

The validation sets were processed in the same way as the
training patterns. The welding trials contained seven arbi-
trary WPV combinations with two parallel executions. The
weld beads’ length was 100 mm, and the first and last sec-
tions were discarded again. Altogether 1608 cross-sections
were used with the same amount of validation patterns for
the BGP model and 158 548 validation patterns for the
DPM model.

C. BACTERIAL MEMETIC ALGORITHM FOR TRAINING
FUZZY SYSTEMS
In order to define the fuzzy systems for the weld bead mod-
els, we applied the BMA as a supervised trainer (Step 3.
in Fig. 1) on the Npattern training patterns [54]. In this case,
the BMA minimizes the cumulative error between the output
of the training patterns and the output of the fuzzy rule
bases by adjusting the breakpoints of the fuzzy rules’ trape-
zoids, encoded into the bacterium’s chromosome [54]. The
evaluation of the bacteria is carried out by the Mamdani
Inference Model [66], and the result is given as the Sum
of Squared Error (SSE) between the model output and the
desired output of the patterns. This evaluation is used in all
steps of the BMA.
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The BMA consists of four main steps, first the random
generation of the initial population, then the three main
operations are performed in each generation. These three
operations are the bacterial mutation (BM), the local search
by the Levenberg-Marquardt method (LM), and the gene
transfer (GT). The pseudo-code of the BMAmethod is shown
in Algorithm 2, and the applied meta parameters are listed
in Table 3. These meta-parameters are selected according
to the problem’s size to provide the balance between the
required computational time and residual error of the estima-
tion. The parameter settings are deducted from the prelimi-
nary experiments, based on the experience gained from the
earlier application of the BMA on other problems [54], [64],
[65].

The Ri rules in the fuzzy system are given in the following
form:

Ri : IF x1 = Ai,1 and . . . and xn = Ai,n THEN y = Bi,

where x = (x1, . . . xn) is the input vector, y is the
output, Ai = (Ai,1 . . .Ai,n) is the antecedent param-
eter vector, and Bi is the consequent parts in the
i-th rule.

The rule base is defined to cover the whole interpretation
interval of the input variables to provide a valid inference
result. The trapezoidal membership functions can be written
as:

µAij(xj) =



xj − aij
bij − aij

, if aij < xj ≤ bij

1, if bij < xj ≤ cij
dij − xj
dij − cij

, if cij < xj ≤ dij

0, otherwise,

(5)

Algorithm 1 Processing of the Bead Profile Measurements
Require: RawScannedProfiles : RSP profile measurements
Require: WeldingProcessVariables : WPV parameters
Require: RobotSystemParameters : RSP parameters
Require: Ntrial , Nprofile[IDtrial]
Combine RSP, WPV , and RSP into CPD combined pro-
files data
for Each trial do

Combine five CPD profiles into one S profile
for Each S profile do

Filter measurement and correct errors
Profile Segmentation
Curve fitting
Acquire profile properties

end for
end for
Export P1 Training patterns (Weld Bead Profile Proper-
ties)
Export P2 Training patterns (Profile Points of the Bead
Segments)

where aij ≤ bij ≤ cij ≤ dij denote the four breakpoints of
the membership function of the i-th rule and the j-th input
variable. The ai, bi, ci, di values belong to the output mem-
bership function in the i-th rule. As in the original Mamdani
algorithm, the minimum operator is used as the t-norm in the
inference mechanism meaning that the degree of matching of
the i-th rule in the case of an Ninput -dimensional crisp x input
vector is:

wi =
Ninput
min
j=1

µAij (xj). (6)

The output of the fuzzy inference is defined as maximum
aggregation. The defuzzification is calculated by the Center
of Sums technique, which can be given in the explicit formula
as shown in Equation (7), where the number of rules is Nrule,
and Ninput is the number of the input dimensions.

The operation of the BMA starts with the generation of the
initial population, generating Nind random individuals with
the restriction to maintain the trapezoidal characteristics of
the membership functions in the fuzzy rules. The number
of rules (Nrule) is defined beforehand and set to a low num-
ber to avoid the model overfitting. The total number of the
created membership functions is Nind · (Ninput + 1) · Nrule
where Ninput = 4 is the number of input variables and each
membership function has four parameters. In the iteration
phase of the algorithm, the bacterial mutation, local search,
and gene transfer operations are performed until the number
of generations (Ngen) is reached.
Let us define k as the iteration variable, vector bk (the

bacterium) contains all the parameters of the membership
functions, and x(p) as the p-th training pattern’s input vector.
Here, the evaluation of the bacterium is carried out as

E(bk ) = ||ek ||22, (8)

the 2-norm sum of squared error of the desired and model’s
output values, where the elements of the ek vector are calcu-
lated as

ek =
[
e(p)k
]
=

[
d (p) − yk (bk , x(p))

]
, (9)

where d (p) is the desired value given in the p-th training
pattern, and yk (bk , x(p)) is the output value for the x(p) inputs
provided by fuzzy system encoded in the bk bacteria.

Algorithm 2 Bacterial Memetic Algorithm
Require: Patterns : Npattern patterns
Require: Parameters : Nind , Ngen, Nrule, Nclone, lbm, Munit ,
LMprob, LMiter , γinit , τ , Ninf , lgt , Iunit
Create initial population
for gen = 1 to Ngen do

for ind = 1 to Nind do
Bacterial mutation
Levenberg-Marquardt algorithm

end for
Gene transfer in the population

end for
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TABLE 3. Parameters of the BMA.

1) BACTERIAL MUTATION
The bacterial mutation is applied one by one to each bac-
terium (Algorithm 3). First, Nclone clones of the rule base
are generated, which are then subjects of random changes
in their genes according to the mutation unit (Munit ), which
can either be a breakpoint of the trapezoid, an entire trape-
zoid, or an entire rule. The number of modified genes during
this mutation is given by the mutation segment length (lbm)
parameter of the algorithm. All clones are evaluated, and
the best individual transfers the mutated part into the other
individuals. In the end, only the best rule base is kept. The
bacterial mutation is repeated Nsegment times, where Nsegment
depends onMunit and lbm, and its value is 4 · Nrule · (Ninput +
1)/lbm in the case of point mutation.
In each generation, the computational cost of the bacterial

mutation operator can be defined according to the OBM num-

Algorithm 3 Bacterial Mutation
Require: Parameters : Nind , Nclone, lbm, Munit

Create (Nclone + 1) clones of Bacterium
Set Nsegment = 4 · Nrule · (Ninput + 1)/lbm
for i = 1 to Nsegment do

Select lbm yet unmutated random gene
for j = 1 to Nclone doMutate selected gene in Clonej
end for
for j = 1 to Nclone+1 do Evaluate Clonej using Eq. (8)
end for
Select BestClone
Transfer best clone’s gene to all clones

end for
Set Bacterium = BestClone

ber of fitness function calls:

OBM = Nind · Nclone · Nsegment . (10)

2) LEVENBERG-MARQUARDT ALGORITHM
After the bacterial mutation step, the Levenberg-Marquardt
algorithm (Algorithm 4) is used for each individual to solve
the minimization problem.

The local search was carried out with a LMprob local search
probability for each individual, maximum LMiter number of
iteration steps until the τ terminal condition is met.

Let denote J(bk ), as the Jacobian matrix of bk bacterium:

J(bk ) =

[
∂yk (bk , x(p))

∂bTk

]
(11)

Equation (11) expresses, that each row of the J(bk ) matrix
contains the partial derivatives of the output calculated by
the Mamdani inference method for the given x(p) input pat-
tern according to the bk bacterium encoded parameters. The
detailed calculations of derivatives of the J(bk ), are given
in [54].

The calculation of the Levenberg-Marquardt sk update
vector is carried out as

sk = −(JT (bk )J(bk )+ γkI)−1JT (bk )ek , (12)

where γk is the bravery factor initially set to positive, and I is
the identity matrix. The value of γk controls both the search
direction and the magnitude of the update. If the value of γk
converges towards zero, then the algorithm applies the Gauss-
Newton method, if towards infinite, then the algorithm gives
the steepest descent approach.

Algorithm 4 Levenberg-Marquardt Algorithm
Require: Patterns : Npattern patterns
Require: Parameters : LMprob, LMiter , γinit , τ

if Random(probability) < LMprob then k = 1
while k < LMiter and τk > τ do

Calculate sk update vector as Eq. (12)
Calculate rk trust region as Eq. (14)
Calculate γk+1 bravery factor as Eq. (13)
Evaluate the update vector’s effect as Eq. (15)
Calculate τk stopping criteria
k = k + 1

end while
end if

y(x) =
1
3

Nrule∑
i=1

3wi(d2i − a
2
i )(1− wi)+ 3w2

i (cidi − aibi)+ w
3
i (ci − di + ai − bi)(ci − di − ai + bi)

Nrule∑
i=1

2wi(di − ai)+ w2
i (ci + ai − di − bi)

. (7)
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Algorithm 5 Gene Transfer
Require: Population : Nind Bacterium
Require: Parameters : Nind , Ninf , lgt , Iunit

for i = 1 to Ninf do
Ascending order of the population according to Eq. (8)
SrcBact = Random(0, . . . ,Nind/2− 1)
DestBact = Random(Nind/2, . . . ,Nind )
Select random lgt genes
Transfer the selected genes from SrcBact to DestBact

end for

The value of parameter γk is adjusted dynamically depend-
ing on the value of rk trust region:

γk+1 =


4γk , if rk < 0.25
γk/2, if rk > 0.75
γk , otherwise

(13)

The value of rk for the supervised training is calculated as:

rk =
E(bk )− E(bk + sk )

E(bk )− ||J(bk )sk + ek ||22
(14)

The evaluation of the local search success is verified as

bk+1 =

{
bk + sk , if Eval(bk + sk ) < Eval(bk )
bk , otherwise

(15)

Eval function means E as defined in Eq. (8) during the super-
vised training. Equation (15) is interpreted as if the update
vector modifies the bacterium towards the local minimum
then we carry on with the new value, otherwise it is left
unchanged. The iterations stops if maximum LMiter number
is reached or the τk < τ complex stopping criteria [54] is
fulfilled.

The average OLM computational cost describing the num-
ber of fitness calls of the Levenberg-Marquardt algorithm in
one generation is:

OLM = Nind · LMprob · LMiter , (16)

where an additional (4·Nrule ·(Ninput+1))3 computational cost
is required for each fitness function call, due to the pseudo-
inverse calculation of the J(bk ) Jacobian matrix.

3) GENE TRANSFER
The last operation in a generation is the horizontal gene
transfer (Algorithm 5), allowing the recombination of genetic
information between two bacteria. This operation is per-
formed Ninf (number of infections) times in one generation.
First, the population is split into two halves according to
the fitness values. Then, a randomly chosen, better bacteria
overwrites a randomly chosen, worse one’s gene with its own.
Here a gene (infection unit (Iunit )) means either a breakpoint
of the trapezoid, or an entire trapezoid, or an entire rule. The
lgt parameter means the infection segment length, i.e., the
number of overwritten genes.

The OGT computational cost of the gene transfer operator
in one generation is:

OGT = Nind · log(Nind )+ Ninf (17)

The total OBMA computational cost of the BMA can be
estimated as:

OBMA = (OBM + OLM + OGT ) · Ngen, (18)

which is the number of fitness function calls during run time.
The number of executions of the Mamdani inference pro-

cess (Eq. (7) is:

OFS = OBMA · Npattern. (19)

D. BEAD GEOMETRY PROPERTIES MODEL
The BGP model is following a classical approach for recon-
structing the weld bead shape. The model provides a direct
relation between the WPVs and BPPs, where a dedicated
fuzzy system is defined for each property. The w, h, and AB
parameters are depending on the fitting model applied during
the data preprocessing. The scheme of the model is shown
in Fig. 4. The bead profiles, as parabola curves are recon-
structed from the w, h parameters using the Equation (1).

FIGURE 4. Schematic structure of the bead geometry properties model.

The computational cost of building the BGPmodel is given
according to the cost of the utilized fuzzy systems:

OBGP = 3 · OFS (20)

Since the BPP parameters are detached from each other,
the BGP model’s fuzzy systems can be separately used to
estimate only the required BPPs in an application where the
full shape is not needed.

E. DIRECT PROFILE MEASUREMENTS MODEL
The DPM model (Fig. 5) is an extended version of the BGP
model and provides the y = f (x,WPVs) non-linear function.
The central part of the model is the single fuzzy system,
where theWPVs are extendedwith the bead profile’s abscissa
vector to estimate the corresponding ordinate directly for
each profile point. The training patterns are generated from
the measured Npoint profile points of the cross-sections after
preprocessing, following the process described in Sec. III-B.
The corresponding BPPs are extracted during the profile

postprocessing, using the same parabola fitting principles as
discussed in the BGP model development. Since the DPM
model enables us to maintain the curve fitting model outside
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the training, we can apply further fitting models and other
considered limitations. This could allow examining different
curve fitting functions such as cosine, arc, or ellipsoid, and
also extending the model beyond the flat plate experiments
as the subject of further research.

FIGURE 5. Schematic structure of the direct profile measurement model.

The computational cost of building the DPMmodel isOFS ,
but the Npattern number of patterns is much higher than in the
case of BGP model (see Table 3). However, the cost of the
utilization of the DPM model is:

ODPM = Npoint · OFS , (21)

where Npoint is defined by the required resolution of the
estimated bead profile, with an additional cost of curve fitting
to retract the BPPs.

F. OPTIMIZING THE WELDING PROCESS VARIABLES
It was previously shown how the BMA was used to tune the
fuzzy systems during the model development. In this section,
the BMA is utilized as an optimizer [64] (Step 4. Fig. 1) to
identify different sets of WPVs to achieve the desired BPP
by minimizing the value of the fobj objective function on
the predefined interpretation intervals. The evaluation of the
fobj includes the calculation of the fuzzy system response
for each BPP. The target BPPs are defined by manual cal-
culations or numerical calculations to satisfy the criteria of
the mechanical loads and stresses of the workpiece. The
bacteria encode the WPVs in their chromosomes. During the
evaluation of the bacteria – which is used in all BMA steps
– the bacteria’s response is calculated by the BGP model for
each target value, and the result is given as the value of the
fobj.

In our approach, the computational task involved the fol-
lowing three steps:

1) Selection of target weld geometry from the available
sets of values of w, h, AB

2) Running the optimization process to obtain multiple
combinations of WPVs (Algorithm 6)

3) Verification of the produced results for each target
value

It was shown in the literature [32] that multiple combi-
nations of welding process variables could be estimated to
achieve a target weld bead geometry. On the full range of the
search window, the BMA optimizer provided almost identi-
cal solutions at the global minimum. Therefore, each input
variable’s search window was segmented into Nsubint = 5

intervals, and the full range was left for the other inputs. For
each segmented search window, multipleNrun = 3 evaluation
runs were performed, then the averaged values of WPVs
contained in the best bacteria were given as the result of that
segment. Due to the overlapping search windows, multiple
identical WPV sets occurred and were unified to provide the
final list of solutions.

At the start of the BMA operation, an initial population
of 50 bacteria was defined. The meta parameters of the
algorithm are presented in Table 3. Each bacterium in the
population contains a set of randomly chosen WPVs. Values
of the welding process variables I , U , vt and vf were chosen
in the range of 160.0 − 280.0 A, 10.50 − 13.50 V , 1.80 −
3.40 mm/s, and 600 − 2100 mm/min, respectively. Since
in the application of BMA as an optimizer, no training sets
were applied, the course of the algorithm is different, and the
evaluations carried out on vectors instead of matrices. The
evaluation is replaced by calculating the value of the single-
objective fobj function for three weld bead profile properties:

fobj = λ1

(
wp

wt
–1
)2

+ λ2

(
hp

ht
–1
)2

+ λ3

(
ApB
AtB

–1

)2

, (22)

where λi are the weights of the objectives, set to constant
0.6, 0.3, 0.1, respectively, upper index p represents the
BPP value estimated by the BGP model, and t represents
the desired target BPP. The target BPP of the desired bead
geometry is obtained experimentally; thus, the target values
would maintain a realistic ratio to each other. The verification
of the computed solutions requires that the set of WPVs used
to produce the weld should appear with a small deviation in
the provided solutions.

Further modifications are applied in the Levenberg-
Marquardt algorithm, where the steps remain unchanged, but
the definitions of rk , and sk are updated. The update vector is
defined for a given bacterium at the k-th iteration as:

sk = −
(
g(bk )⊗ g(bk )T + γkI

)−1
g(bk ), (23)

Algorithm 6Welding Process Parameter Optimizer
Require: Optimizer Parameters : Intervals, Nrun,
RuleBases, BPPtarget , Nsubint , Ninput

Require: BMA Parameters : Nind , Ngen, Nclone, lbm, Munit ,
LMprob, LMiter , γinit , τ , Ninf , lgt
Define intervals and number of runs
for i = 1 to Ninput do

for sub = 1 to Nsubint do
Set recent sub-interval
for run = 1 to Nrun do

Bacterial memetic algorithm
end for

end for
end for
Remove duplicates and miss-matches
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where g = ∇fobj is the gradient vector, approximated by
second-order accurate, central finite differences;⊗ stands for
the dyadic product of two vectors, and the other parameters
are defined as in Eq. (12). The value of rk for the optimization
is calculated as:

rk =
fobj(bk + sk )− fobj(bk )

g(bk )T sk
(24)

Value of γk still depends on rk as given in Eq. (13). The
bacterium bk+1 is given according to Eq. (15), where theEval
function is calculated as the fobj. The iteration stops if the
stopping criteria τk = ||g(bk )||2 < τ is fulfilled or maximum
LMiter number is reached.
In the optimizer version of the BMA the additional com-

putational cost of OLM is decreased to (Ninput )3 due to the
different amount of calculations needed for the sk in the two
roles. The computation cost, i.e. the number of objective
function calls (Eq. (22)) in the BMA optimizer is:

Oopt = Ninput · Nsubint · Nrun · OBMA, (25)

due to the segmentation of the intervals of the input param-
eters. The WPV sets encoded in the bacterium’s chromo-
some were improved through the generations using the BMA
(Sec. III-C, meta parameters in Table 3), monitored by cal-
culating the fobj objective function values for each set of
bacteria. A bacterium with a low fobj value indicates that the
WPVs in it produces a target geometry with a small deviation
from the estimated geometry.

IV. RESULTS AND DISCUSSION
In this section, the results of the development work will
be discussed, including the overview of the main findings
of the weld bead profile modeling, the comparison with
other published models, and the evaluation of the WPVs
optimization. The computations were carried out on a PC
using an Intel R© CoreTM i7-5820K Processor at 3.30 GHz
and an NVIDIA GeForce R© GTX 970 graphics card. The
trained models’ performance was evaluated by comparing the
estimated and the measured values to define the goodness
of the fitting using the root mean square error (RMSE); the
normalized RMSE value to the output range (NRMSE); and
the R Pearson product-moment correlation coefficient. The
normalization was carried out on the range of the measured
properties w : 8.82 − 13.75 mm, h : 0.93 − 2.19 mm, and
AB : 6.18− 16.88 mm2.
The evaluation of fitting was performed on an independent

validation data set to avoid the models’ overfitting, and the
data was preprocessed in the same way as the training pat-
terns. The comparison to other models includes models from
the literature and amultiple regression analysis (MRA)model
on the available data set, see in Sec. IV-B.

A. EVALUATION OF THE TRAINED MODELS
The training of the fuzzy systems of the BGP model was
carried out on multiple numbers of rules between two and
seven. The required calculation time depended on the number

TABLE 4. Comparison of the RMSE and NRMSE values between the
training and validation data for the BGP model.

TABLE 5. Comparison of the RMSE and NRMSE values between the
training and validation data for the DPM model.

of rules. As long as for two rules (R2), one generation for
each parameter was calculated just under 2 s requiring 191 s
for the whole calculation. For six rules (R6), one generation
is calculated 5 s, and the whole calculation took 501 s; for
seven rules (R7), the run times were 6 s and about 10min. The
response time of the model for the input parameter change is
approximately 5 ms.

Table 4 shows the comparison of the RMSE values
obtained on the training and the validation data for the prop-
erty estimation of weld bead profiles. It can be seen that the
roughest estimation is given by the FS with two rules. Its
estimation accuracy is similar to the MRA model. However,
when the number of rules increases, the estimation accuracy
is also increasing, and the best result for the validation data
was obtained using six rules (R6) for all three geometry
properties. In the case of estimating the bead width, R6 and
R7 provide a similar result, but the difference is in the last
digit; thus, the lower number of rules is preferred. Figure 6
illustrates the evolutionary process for each BPP to compare
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FIGURE 6. Evolutionary process with different number of rules for each
Bead Profile Property (BPP) and comparison to the MRA model output
(RMSE values).

the RMSE values over the generations. In each case, the R6 is
among the best performers, and the estimation accuracy
increases with the number of applied rules. Furthermore,
the steepest increase in the fitting is observed in the first tens
of generation, with a slow but steady increase during the later
generations. These results support the quick convergence of
the BMA towards the global optimum and increase accuracy
as long as the algorithm is running.

The rules of the BGP model for each BPP are shown
in Fig. 7 and tabulated in Table 6. Each row represents one
FS estimating a BPP, and the membership functions of the
same rule are marked by the same color.

The interpretation of the rule bases shows that the weld
beads’ width is not affected by the amount of the deposited
metal, but the applied arc current and torch travel speed. The
weld bead height has a base value, which is independent of
theWPVs changes, but the additional gain affectedmostly the

appliedmaterial (increase) and the applied current (decrease).
The rule base shows that the weld bead area calculation
depends on the variation in the torch travel speed and the wire
feed rate.

These findings strengthen the applicability of the proposed
method since it provided a reasoning base from experimental
data, providing similar assumptions that are part of an expe-
rienced welder’s knowledge base. Therefore, these rules can
be used in training or supporting a robot cell’s commissioning
when monitoring the degree of changes in the weld geometry
while tuning theWPVs. Another possible application is in the
WPV optimization to achieve a predefined bead geometry.

In Fig. 8, the correlation between the estimated and the
measured values is illustrated for the models with the best
performing rule sets. The results are compared with the
expected values and the estimated values of the reference
MRA model. In the case of the BGP model, correlation
coefficients for the training are 0.9970, 0.9970, and 0.9975,
respectively, with an RMSE value of 0.0683, 0.0153 and,
0.1245. Consequently, the estimated and the measured values
correlate with a high degree, and the approximation accuracy
in the training is above 98.5 percent. Similarly, the validation
set’s correlation coefficients are 0.9903, 0.9997, and 0.9984,
showing a similar good correlation. The RMSE values are
0.0769, 0.0054, and 0.1082, meaning that the model esti-
mates unknown values within its application range under one
percent of the average error for each parameter.

The training of the DPM model required a higher num-
ber of fuzzy rules but one system instead of three since it
created an estimation model for the curve fitting itself. The
training was also carried out with a various number of rules
as their RMSE values are presented in Table 5. The best-
fitting rule number was found as six (R6) for estimating w
with a 5.3 and 6.0 percent of average error for the training
and the validation set. Eleven rules (R11) provided the best
estimations for h and AB, with an average approximation
accuracy of 95 percent. The calculation required 215 min for
up to eight rules, 392 min for nine rules (R9), and 646 min
for eleven rules (R11) in total for the 50 generations on
the same hardware used for the BGP model. The response
time of the model for the input parameter change is approx-
imately 8 ms. A similar execution time was experienced up
to eight rules (but as the number of rules increased, a raise
in required time was observed) since the model calcula-
tion utilized the advantages of the GPU provided parallel
programming.

As Fig. 8 shows, a good agreement exists between the
actual values and the estimated parameters of the weld bead
profiles. TheBPPs of the training data set were estimatedwith
the correlation coefficients of 0.9734, 0.9649, and 0.9528.
Similarly, 0.9001, 0.9069, and 0.9604 values were achieved
for the validation set. As observed, the width estimation
showed the best result at six rules, and the estimation was
overfitted on the training data as the rule number increased.
The height and bead area approximation accuracy increased
with the number of applied rules.
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FIGURE 7. Rule bases of the BGP model to estimate BPPs from WPVs.

TABLE 6. Mamdani Fuzzy system definitions for the bead profile parameters by the BGP model.

The comparison of the two models in both cases showed
good fitness for the training and the verification data sets.
However, the DPM model provided a bit of noisier output.
The correlation coefficients for the verification sets were
slightly worse than that of the training sets, which can be
explained by the sensitivity of curve-fitting on the width
and height parameters during the data preprocessing. The
computational cost of the training of the DPM model is 30-
times more than that of the BGP model, which corresponds
to the increased number of samples. Despite the additional
complexity of the DPM during the BPPs feature extraction,
both models responded within 10 ms. Due to the quicker

response, the BGP model was utilized during the evaluation
phase of the optimization process.

B. COMPARISON TO OTHER MODELS
To provide further evaluation of the models’ performances,
a comparisonwasmadewith theMRAmodel - using the same
datasets - and with similar models from the literature. The
regression analysis was carried out with the Data Analysis
tools of Microsoft ExcelTM. The coefficients of the analysis
are tabulated in Table 7. The Pearson correlation coefficients
were found to be w : 0.9493, h : 0.9715, and AB : 0.9745 for
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FIGURE 8. Comparison between the expected and estimated values of the fuzzy systems for each output (BGP with the estimated outputs, DPM model
with the fitted and extracted values).

the training, and w : 0.8698, h : 0.9728, and AB : 0.9964 for
the validation.

The RMSE values of the MRA model are listed in the
first rows of Table 4 and Table 5. Their values fit into the
list of the proposed models between R2 and R3, meaning
that using two rules in the fuzzy systems of the BGP model
can have a similar accuracy than using the MRA. However,
the increased rule number providesmore accurate estimations
of the proposed models. In the case of the DPM model,
the trend is not that visible, but it has a similar performance
as the MRA, as shown in Table 5.

The performance of the developed models was also com-
pared with already published models. The comparison is
given in Table 8 for the bead width estimation, and in Table 9
for the bead height. Models estimating the weld beads’
cross-sectional area were not presented in the literature since
the area is usually calculated from the bead width and
height or even neglected due to prioritizing other parameters.
As discussed in the introduction, a limited number of bead
property estimation models exist for TIG welding in the liter-
ature. Therefore a few models developed for Metal Inert Gas
(MIG) welding were also included. The presented model’s
estimation accuracy was normalized to the corresponding
range of the output parameter, discussed in the reference.
Unfortunately, in the study by Xiong et al. [12], the error
was given as the mean absolute percentage error; thus, it was
included instead of the NRMSE because of the model’s com-
parably good performance.

The w bead width estimation models are presented
in Table 8. The models presented by Subashini and Vasude-
van [25] and Bestard et al. [22] (Table 8 1., 4., 5.) are model-
ing methods based on analyzing the image of an IR camera to

TABLE 7. Coefficients for the multi-variable regression analysis.

estimate the width of weld beads during welding. The other
models are based on the classical CI approaches to estimate
the bead geometry by alternating the selected process vari-
ables. As the results show, only the Infra Red (IR) imaging-
based ANNmodel by Subashini and Vasudevan [25] showed
slightly better estimation accuracy (1.32% error) than our
proposed BGP model (1.56%). However, in that case, only
the value of I arc current is altered from the WPVs.
Furthermore, this high accuracy was observed only in this

setup, and different network architecture was more in the
range of the best performing classical CI models. Further-
more, the proposed DPMmodel provides a 6.03% estimation
error, which is still better than some other models. Compar-
ing the results to the performance of other BMA developed
FS with different rules from Table 4 shows, that even with
three rules (R3), the estimation accuracy is among the best
models.

Estimating the h bead height, our BGP model was found
to be better than the models of the literature, with a highly
accurate estimation (0.4% error). The approximation accu-
racy of the DPM model was not outstanding, but compa-
rable good to the existing methods. It provided estimations
with 6.03%, 7.52%, and 4.49% NRMS error for the width,
height, and area of the weld bead, respectively. Therefore,
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we can state that our proposedmethod, including the bacterial
memetic algorithm, can be utilized to develop welding appli-
cations, which can outperform many of the existing models,
as demonstrated with the BGP model.

TABLE 8. Performance of reference models for predicting width of the
weld bead (RMSE values are normalized to the parameter range).

TABLE 9. Performance of reference models for predicting height of the
weld bead (NRMSE values are normalized to the parameter range).

TABLE 10. Various Set of WPV obtained by the BMA optimized
BGP model to achieve the target geometry.

C. EVALUATION OF THE OPTIMIZATION
The WPV optimization by the BMA provides an application
of the developed fuzzy rule bases since the BGPmodel is used
during the evaluation of the objective function.

The initialization of the BMA optimization process
requires the specification of the target BPPs. The set of
{w = 10.40 mm, h = 1.18 mm, AB = 8.17 mm2

} was
chosen from the validation sets of the experiment, produced
by using the following WPVs: {I = 220.0 A, U = 12.10 V ,
vt = 3.00 mm/s, vf = 1200 mm/min}. The obtained WPVs
combinations are expected to contain a similar set to the

one used in the experiment. During the optimization process,
the progressive reduction of the fobj objective function values
presented by Eq. (22) of the best bacteria indicated that
the solutions were improving by generations and converging
towards an optimum. By the end of the iterations, the calcu-
lated values of the fobj were under 10−5, indicating that the
provided geometric parameters of the solutions agreed well
with the corresponding desired experimental values.

The result of the optimization process is shown in Table 10.
Significantly different values of the WPVs are provided as
solutions, indicating the multiple paths to obtain the specified
bead geometry. As Table 10 shows, the arc current values
ranged from 183.0 to 222.0 A, the arc voltage varied between
11.30 and 12.20 V , the welding speed changed from 2.00
to 3.05 mm/s, and the wire feed rate took the interval of
864 to 1157 mm/min in various sets of optimized WPVs.
Note that the values of WPVs in solution (v) of Table 10 is
recognizable as the corresponding experimental values. The
parameters were verified by the DPMmodel and found a sub-
digit deviation from the expected values.

Therefore, the application of our model could support the
decision to select WPV combinations to produce a certain
target bead geometry. This is important when the robotic
operation needs to be initialized or when alternating those
parameters required to initialize the numerical analysis of the
produced weld.

V. CONCLUSION
The paper proposed a fuzzy system-based method, providing
high accuracy models to describe the weld bead geometry
(WBG) from the welding process variables (WPVs). The
bacterial memetic algorithm (BMA) provided a suitable tool
to tune themembership functions of the fuzzy systems (FS) in
order to model the weld bead geometry (WBG). Furthermore,
it optimized theWPVs to produce a specifiedWBG by listing
multiple solutions.

Based on experimental data, twomodels were developed to
estimate the weld bead geometry. The Bead Geometry Prop-
erty (BGP) model followed the more traditional approach by
defining the relationship between the WPVs and one WBG
property at a time. The Direct Profile Measurement (DPM)
model utilized the measured profile points and described the
bead profiles from points by a non-linear function realized in
the form of fuzzy rules.

The proposed BGP model with six fuzzy rules outper-
formed the models from the overviewed literature and esti-
mated the width, height, and cross-sectional area of the bead
geometry with 1.56%, 0.40%, and 0.95% normalized root
means square error (NRMSE), respectively. Furthermore,
the BGP with at least three rules performed among the best
models of the literature. The DPM model provided above
92% of estimation accuracy, with an NRMSE of 6.03%,
7.52%, and 4.49% for the width, height, and cross-sectional
area, placing the DPMmodel into the average region. In both
cases, the BMA tuned rule bases provided a proper tool to
interpret the models’ behavior on the inputs’ changes.
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The developed FSs were applied to optimize the WPVs to
produce a specified weld bead geometry. A single objective
function defined the optimization problem of the WPVs as
a combined least square error function of the three WBG
properties. The estimated WBG properties were calculated
by the evaluation of the previously developed FS. The per-
formance of the optimizer was tested by experimental data
to define a realistic bead geometry. The proposed method
providedmultiple, distinctly different solutions ofWPVs, and
contained a recognizable match of the variable set, which pro-
duced the initial target geometry. This proved the method’s
capability to support the decision of WPV selection by listing
candidates to be evaluated in order to fulfill additional criteria
of the welding process. The outcome of this research is being
implemented in a robotic welding application in the industry.
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