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ABSTRACT The problem of maximizing lifetime of a sensor network is still challenging mainly due to
the stringent delay-deadline of real-time applications and heterogeneity of sensor devices. The problem is
further complicated when the network contains many obstacles. In maximizing network lifetime, existing
literature works either merely address issues of application delay-deadline and presence of obstacles,
or analyze primitive data collection approaches for such an environment. In this paper, we formulate
optimal data collection schedule of a mobile sink in an obstructed sensor network as a mixed-integer linear
programming (MILP) problem. The proposed data collection scheduling finds an optimal set of rendezvous
nodes over a preformed Starfish routing backbone, and corresponding sojourn duration so as to maximize
the network lifetime while maintaining delay-deadline constraint in an obstructed network. The proposed
Starfish-scheduling ensures a loop-free traveling path for a mobile sink across the network. The results of
performance evaluation, performed in network simulator-2, depict the suitability of Starfish scheduling as it
outperforms state-of-the-art-works in terms of extending network lifetime and data delivery throughput as
well as reducing average end-to-end delay.

INDEX TERMS Network-lifetime, data collection schedule, obstructed sensor networks, starfish routing
backbone, mobile sink, sojourn location, sojourn duration.

I. INTRODUCTION
In this era of Industry 4.0 [1], [2], sensor networks play
important roles for collecting data from wide-range of real-
time applications including industrial process monitoring,
nuclear power plant monitoring, precision agriculture, big-
data gathering, e-health, smart grid, smart city [3], etc.
In the upcoming years, the sensed data will lead to devel-
oping embedded intelligent systems for most industrial and
domestic applications [4], [5]. The efficiency of these real-
time applications highly depends on delivering data within
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the bounded delay-deadline and minimizing end-to-end data
delivery delay. Consequently, sensor networks inherently
focus on ways of efficient data routing so that energy con-
sumption is minimized and network lifetime is maximized.
In mobile-sink based sensor networks, the sink typically col-
lects data traveling across the network and this technique has
already been proven not only to enhance the network life-
time but also to minimize average end-to-end data collection
latency to a great extent compared to its static counterpart
[6], [7]. However, still, there is room to further optimize
the network lifetime while maintaining delay-deadlines for
real-time applications.
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The problem of maximizing lifetime of sensor networks
has been well studied in the literature [8], [9]. The prim-
itive strategies follow optimal coverage and connectiv-
ity [10], opportunistic transmission schemes, dynamic beam-
forming [11], [12], etc. Further improvement of network
lifetime is achieved through greedy energy-efficient routing,
clustering techniques, and machine learning approaches [13].
Though the strategies can achieve an extended network life-
time, they lack to maintain delay-deadline for real-time appli-
cations. A set of recent studies has been found to further
minimize energy consumption by designing an efficient trav-
eling path of a mobile sink while collecting sensed data from
different regions in the network [14], [15]. These are achieved
through predictable path planning or dynamic cluster-based
data collection strategies [16].

In the literature works, data collection strategies using
a mobile sink are broadly grouped into two categories:
direct-contact based and rendezvous-node based. In the for-
mer strategy [17]–[20], the mobile sink periodically trav-
els to all source sensor nodes and collects sensed data
directly from them. Even though this strategy can completely
avoid message-relay overheads and increase network life-
time, the strategy sacrifices application delay-deadline and
therefore it’s not applicable for real-time data collection
applications. Moreover, it increases the traveling path length
for the mobile sink, causing higher data delivery latency.

In rendezvous-node based data collection strategy
[21]–[23], a mobile sink only visits and collects data from
a few rendezvous nodes over a designated tree-like back-
bone [24], cluster-heads [25], [26] or routing-backbones
(e.g., Honeycomb [27], Fish-bone [28], Starfish routing
backbone [29], etc.), instead of visiting all sensor nodes in
the network. In this strategy, ordinary sensor nodes send
their data packets to a few rendezvous nodes ahead of time,
reducing the moving path length of the sink as well as the data
collection delay. The problem of selecting rendezvous nodes
over a given routing backbone (at which a mobile sink halts)
has been addressed in [22], [30]–[32]. The key philosophy
of these works is to develop an energy-efficient traveling
path avoiding multi-hop communication, to minimize end-
to-end data collection latency, or to reduce computational
complexity for determining mobile sink’s path. The problem
is further investigated in [33]–[37] for networks containing
several obstacles, opposing free movement of the sink.

In [29], we developed a routing backbone following the
water vascular process of a sea fish, namely starfish. The
work aimed to minimize energy consumption in an obstacle-
free sensor network, and later, in our pioneer work [38],
it was investigated for an obstructed-network. However, both
works have considered the random sinkmobilitymodel rather
than finding an efficient data collection scheduling based on
data arrival rate, sojourn duration at rendezvous nodes, etc.
Moreover, exhaustive visits through all rendezvous-nodes on
cluster-heads or backbone nodes also become infeasible for
real-time applications due to violation of application delay-
deadline. Thus, the problem of determining an optimal set

of rendezvous nodes together with sojourn duration at each
of them aiming to maximize network lifetime for a time-
constraint application is still challenging. Moreover, in pres-
ence of obstacles in the network and heterogeneous data gen-
eration rates of sensor nodes, a data collection strategy that
might further enhance network performances and lifetime of
the network has not yet been well-explored in the literature.

In this paper, we offer a novel data collection scheduling
for a mobile sink in an obstructed sensor network adopt-
ing Starfish routing backbone [29], [38]. The Starfish rout-
ing backbone has been developed in our earlier work that
spreads backbone nodes throughout the network. In this work,
the proposed data collection schedule addresses the problem
of determining an optimal set of backbone nodes over the
Starfish routing backbone, together with sojourn duration
at those backbone nodes aiming to maximize network life-
time. This mechanism is also driven by time-constraints of
underlying applications and data generation rates around the
backbone nodes. The key contributions of this paper are
summarized as follows:
• We formulate the problem of maximizing lifetime of an
obstructed network as a mixed-integer linear program-
ming (MILP) that finds an optimal set of rendezvous
nodes along with corresponding sojourn duration

• The proposed data collection schedule of a mobile sink
maintains application requirements on end-to-end data
delivery delay.

• It also guarantees loop-free travel-scheduling among the
rendezvous nodes, ensuring balanced energy consump-
tion as well as reduced data delivery delay.

• An experimental analysis, performed in network sim-
ulator version-2 [39], shows significant performance
improvements on network lifetime, end-to-end delay,
data throughput over state-of-the-art-works.

The rest of this paper is organized as follows. Sec-
tion II provides a study on state-of-the-art works related
to backbone-node based data collection scheduling of a
mobile sink. The network model, along with assumptions,
and the proposed optimal data collection scheduling (namely,
Starfish) of a mobile sink are stated in Section III and Sec-
tion IV, respectively. Section V presents the simulation envi-
ronment and experimental results of the proposed Starfish
data collection scheduling with comparative analysis. Finally,
Section VI concludes the paper.

II. RELATED WORKS
Recently, diverse developments of the Internet of Things (IoT)
devices and applications have dramatically changed data
collection strategies in sensor networks. Devising an efficient
data collection mechanism is important for increasing the
network lifetime and decreasing the end-to-end data collec-
tion latency from source nodes to the mobile sink. We have
come across a handful of literature works focusing on mobile
sink based data collection strategies that are grouped into two
categories: direct-contact based [18]–[20] and rendezvous-
node based [22], [24], [25], [36], [37].
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FIGURE 1. Data collection strategies of a mobile-sink in state-of-the-art works.

In a direct-contact based data collection strategy, a mobile
sink travels all source nodes in the field of interest, and a typ-
ical traveling path is determined by a well-known traveling
salesman problem (TSP) [17]. Apart from that Hilbert- [18],
Moore- [19], and Z-curves [20] are employed in a network
to formulate traveling paths for a mobile sink to collect data
through one-hop communication. A mobile sink visits along
a Hilbert-curve [18], a continuous fractal space-filling curve,
to collect data from the sensors. However, a mobile sink can-
not return to the starting location along Hilbert-curve. There-
fore, a Moore-curve [19] is developed as the loop version
of the Hilbert curve, as shown in Fig. 1(a). Data collection
scheduling along both Hilbert- and Moore-curves is easy
to develop with similar recursive constructions for a large
network. However, the path length of a mobile sink shows
polynomial growth for the larger networks. Besides, their
constructions become more complicated, while the network
contains either path-restricted or location-restricted obsta-
cles in the network [8]. Z-curve [20] tried to minimize data
collection time through bypassing obstacles in the network,
as depicted in Fig. 1(b). Since a mobile sink collects data
from each sensor directly, these approaches can completely
avoid message relay overhead, broadcasting sink’s fresh loca-
tion, etc. Thus, direct-contact based data collection strategies
essentially increase network lifetime. However, they suffer
from exaggerated traveling path distance, higher data deliv-
ery latency, buffer overflow, and meeting application’s hard
delay-deadline, etc. Therefore, direct-contact based strategies
are not suitable for time-constraint data collection in sensor
networks.

To mitigate these problems, in rendezvous-node based
data collection strategy, a mobile sink collects data from
a few rendezvous nodes [22], [23] over a designated
tree-like backbone [24], [28], cluster-heads [35]–[37] or
routing-backbone [29], [38], instead of traveling all source
nodes in the network. In the literature, rendezvous-node
based strategies have been developed for two varieties of
networks: obstacle-free and obstructed-networks. In the for-
mer type, a mobile sink can travel to any rendezvous
node along a straight-line direction without any inter-
ruption. On the contrary, an obstructed-network area
may contain building, tree, pond, lake, forest, moun-
tain, etc. opposing free movement of the mobile sink
along the straight-line direction between two rendezvous
nodes.

In an obstacle-free-network, a set of rendezvous
nodes (RNs) constructs a one-time stationary path for data
collection based on residual energy of sensors to maximize
network lifetime [21], [22], [30], [31], [33], [34]. In [21],
weighted rendezvous planning (WRP) selects RNs, and to
avoid hot-spot problems in sensor networks through adopting
the shortest path tree and traveling salespersons for path con-
struction. Though it works efficiently for a smaller network,
it has higher computational complexity for larger networks.
Meanwhile, the expected sojourn time to the corresponding
RN is optimized to enhance network lifetime in different
works [22], [30]. The sojourn time of a mobile sink in [30]
is determined over each grid of a network. This work suffers
from buffer overflow, increased data loss, and energy hole
problems while collecting data. To further improve the net-
work lifetime, Basagni et al. [22] determine an optimal tour
over rendezvous-nodes so as to maximize network lifetime.
Sensor nodes, located within the transmission range of RNs,
can send data directly to the mobile sink, while others send
data through multi-hop communication to the mobile sink.

However, these works lack from applying in a non-grid
network, or an irregular node distribution in the network.
Recently, Wen et al. [33] proposed energy-aware path con-
struction (EAPC) scheme by selecting RNs on the spanning-
tree and constructing a data collection path using a con-
vex polygon algorithm. Since the path is not the shortest
and the mobile sink traverses more distance in the network,
application delay-deadline is violated. In [31], Gharaei et al.
proposed a collaborative approach (namely, CMS2TO) to
balance the energy consumption of the cluster heads (CHs)
in the network. Since it focuses on the lifetime of CHs, hot-
spot regions are created around the CHs. In [34], the authors
proposed an efficient path planning for reliable data gather-
ing (EARTH) that determined RPs based on distance and hop-
count. Similar to the CMS2TO, the nearby nodes to the RPs
die quickly in EARTH approach for large-scale wireless sen-
sor networks (WSNs). To enhance the reliable data collection,
trust-based energy-efficient data collection techniques have
been proposed in [40], [41].

Based on the aforementioned literature review, we observe
that these works optimize network performances in terms of
energy consumption, data delivery delay, network lifetime,
data throughout, sojourn time [31], [42], etc. for obstacle-
free networks. However, obstacles are an integrated part in
a practical scenario, and aforementioned cluster-head and
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tree-based routing protocols become complicated to construct
sink’s tour. Moreover, a few work addresses data collec-
tion schedule in an obstructed network [35]–[38], [43], [44].
In this consequence, to overcome the complexity of the data
collection scheduling in a network containing obstacles, Xie
and Pan introduced spanning graph-based data collection
scheduling [35] of a mobile sink, in which they developed a
heuristic path planning algorithm to skirt obstacles, as shown
in Fig. 1(c). In [36], the authors developed the shortest viable
path scheduling (VPS) for a mobile sink based on a road-
map, as shown in Fig. 1(d), which aimed to construct a
tree-like graph (or similar to a convex-hull) using dynamic
programming for a unicycle robot or mobile sink. Though this
approach reduces data collection time significantly, it suffers
from higher data traffic load. Besides, it is inappropriate for
larger networks since its computational complexity isO(N3),
where N is the number of all sensor nodes. In another work,
Redhu and Hegde proposed the landmark-assisted scheduling
(LAS) [37] for a mobile sink, as shown in Fig. 1(e). The key
philosophy of the work is to identify the optimal clusters and
associated landmark nodes to minimize energy consumption.
Since this approach uses random walks over a network, and
then it performs matrix multiplication operations over its
Markov model, its computational complexity is also O(N3),
similar to VPS.

Recently, rendezvous node selection and data collection
approaches have been developing for obstructed-networks
using artificial intelligence [43], fuzzy logic [44], and
machine learning algorithms. In [43], Ghabel et al.
proposed DGOB algorithm for data collection over an
obstructed-network that was executed into two phases,
cluster- and tour- constructions. This approach exploited
hierarchical agglomerative clustering, ant colony optimiza-
tion, and genetic algorithms to construct clusters in the
presence of obstacles. In [44], Verma et al. developed fuzzy-
logic based effective clustering (FLEC) that used three-tier
communication-based approaches: nodes to cluster heads
(CHs), CHs to super cluster heads (SCH), and then SCH to
mobile sink. Both works [43], [44] exhibit higher computa-
tional complexity to select efficient rendezvous nodes in a
large scale network.

Moreover, most of above works for obstructed-networks
exhibit higher end-to-end data collection latency using a
mobile sink due to scheduling periodically over a large
circular-path [36] or cluster heads [37], [43], [44] to collect
data. These works also violate the delay-deadline of real-
time applications and increase energy consumption among
the sensor nodes significantly. To mitigate these issues, as a
preliminary version of this work, we developed the Starfish
routing backbone in an obstructed-network [38], as shown
in Fig. 1(f). A brief description of its construction is pre-
sented in subsection III-A. Though we improved network
lifetime by balancing energy consumption throughout the
network and minimized end-to-end delay in [38], data col-
lection was scheduled by random mobility of a sink in the
network. Therefore, this work still lacks an efficient data

collection scheduling over the Starfish routing backbone by a
mobile sink.

Furthermore, in an obstructed-network, a few works have
considered sojourn duration and data arrival rate at ren-
dezvous nodes (RNs), and application delay-deadline in
selecting visiting nodes. Consequently, what would be the
optimal rendezvous nodes and sojourn duration at individ-
ual RN have been left unexplored. Motivated by the above
challenges of real-time data collection, in this paper, we have
developed data collection scheduling of a mobile sink aim-
ing to determine an optimal set of rendezvous nodes in
an obstructed-network at each round, together with sojourn
duration at each rendezvous node so as to maximize the
lifetime of sensor networks. The proposed data collection
scheduling mechanism, over an established routing back-
bone, is driven by delay-deadline of underlying applications
including sojourn locations, sink’s sojourn duration, and data
generation rates around the rendezvous nodes. Such a data
collection schedule is expected to offer an extended network
lifetime and reduced end-to-end data delivery delay. What we
unfold in the next section is the obstructed-network model
followed by operational details of an optimal data collection
scheduling over the Starfish routing backbone [29].

III. NETWORK MODEL AND ASSUMPTIONS
This section introduces the network model of an obstructed
wireless sensor network (WSN) of 2a × 2b m2 (a ≥ b)
area with network-center at (u, v), as shown in Fig. 2 and
Fig. 3. Here, obstacle means a bounded area in WSNs across
which a mobile sink cannot travel (e.g., forest, ponds, hills,
mountains, etc.). The network contains a mobile sink (acts
as a central controller) that travels throughout the network
to collect sensed data from nodes. We assume, N is the set
of stationary sensor nodes in the network each having initial
residual energy ε0, and transmission range r (0 < r < b).
Since connectivity among sensor nodes and mobile sink
needs to be guaranteed to receive all sensed data for future
processing, we consider a pre-constructed routing backbone
in the network. In this paper, we have adopted the Starfish
routing backbone from one of our earlier works as discussed
in [29], [38]. Its backbone nodes are categorized into ring-
canal nodes (Z) and radial-canal nodes (B). The construction
of a Starfish routing backbone is briefly described in subsec-
tion III-A.

In this work, we consider the classic energy consumption
model for a sensor node, as described in [15], [42]. Sincemost
of the energy is dissipated during transmitting and receiving
states of a node, the energy consumption for transmission (E)
and reception (Ẽ) for each bit is measured as follows.

E = Etransmit =

{
ξelec + ξfsd2 if d < d0
ξelec + ξampd4 if d ≥ d0

(1)

Ẽ = Ereceive = ξelec (2)

In the equations, ξelec, ξfs, and ξamp represent energy
dissipated by the transmitting circuit, required energy for
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FIGURE 2. Ring-canal and radial-canals of a Starfish routing backbone.

FIGURE 3. Network model and Starfish routing backbone in an
obstructed-network.

amplification in free space, and for multi-path attenuation
model, respectively. If the transmission distance d is less
than the threshold value d0, as considered a boundary value
between free space and multi-path, the power amplification
loss adopts as a free space model. On the other hand, if the
transmission distance is greater than or equal to the threshold
value d0, the multi-path attenuation model is adopted.

A. CONSTRUCTION OF STARFISH ROUTING BACKBONE
The key philosophy of designing a Starfish routing backbone
is to spread backbone nodes throughout the network aiming
to balance energy consumption among the nodes. Motivating
from thewater vascular process of a sea-fish called "Starfish",
we construct a Starfish routing backbone that contains back-
bone nodes on a central ring-canal and several radial-canals
throughout the network [29]. The central ring-canal is formed
in the middle of the network and is also circularly connected
with ring-canal nodes, as depicted in Fig. 2(a). On the other
hand, the radial-canals are spread out to the periphery from
the principal-axes of the network, as depicted in Fig. 2(b).

The primary objective of constructing ring-canal is to alle-
viate the hot-spot problem at the network center. To construct
the ring-canal, an optimal radius (R) of a reference circle is
estimated, and then the ring-canal nodes are selected nearby
every r distance away starting from any node on it, as depicted
in Fig. 2(a). To ensure the efficiency of the Starfish routing
backbone, an optimal radius of the ring-canal R is estimated
proportionally to themaximum number of radial-canals using

mixed-integer linear programming (MILP), as explained in
Lemma 1, in the light of our another work in [45]. Then the
ring-canal nodes Z ⊂ N are selected over the reference circle
(having radius R) every r distance interval. For instance,
Z = {z1, z2, . . . , z6}, as shown in the Fig. 2(a).

On the contrary, the key philosophy of constructing radial-
canals is to spread the backbone nodes across the network
so that the source nodes from all areas of the network can
access at least one of the backbone nodes on radial-canals.
At first, few designated nodes are chosen every 2r distance
away along principal-axes, as shown in Fig. 2(b), and then the
radial-canals are prolonged toward the edge of the network
parallel to both principal-diagonals. Later, a central controller
(or the mobile sink) selects radial-canal nodes (e.g., B ⊂ N)
over principal axes, principal diagonals, and all radial-canals
approximately every r distance away. Finally, all of these
ring-canal and radial-canal nodes are connected to construct
the Starfish routing backbone. Since the network model con-
tains obstacles in the network, the controller selects backbone
nodes for both ring-canal and radial-canal surrounding the
obstacle following the obstacle-detection strategy described
in [46]. In the network, any application may adopt trust-
based energy-efficient data collection techniques [40], [41]
for secured data transmission.
Lemma 1: Given that a and b (a ≥ b > r) are the

halves of two sides, respectively, of a rectangular network.
Then the optimal radius of the ring-canal of a Starfish routing
backbone is estimated as R ∼= (a + b)/π , if and only if the
number of radial-canals has a linear relationship with the
number of backbone nodes on the ring-canal.

Proof: Since the backbone nodes on the ring-canal are
positioned approximately every r distance away, the number
is measured for the central ring-canal with radius R as 2πR/r .
Meanwhile, the number of radial-canals of the Starfish rout-
ing backbone is estimated for the given network as (2a +
2b)/2r , since the radial-canals are rayed out approximately
every 2r distance away along both principal-axes. If and only
if the number of backbone nodes on the ring-canal and that
of radial-canals has a linear relationship, or equal proportion
(i.e., 2πR/r ∼= (a + b)/r), the Starfish routing backbone
contains the optimal radius of the ring-canal that is estimated
as R ∼= (a+ b)/π , and thus the Lemma 1 is proved.

B. PROBLEM STATEMENT
In this paper, we assume a network containing obstacles like
trees, forest, building, mountains, etc. that oppose free move-
ment of themobile sink between the nodes, as shown in Fig. 3.
In the network, each source node i ∈ N sends data packets
to nearby radial-canal (B) or ring-canal (Z) backbone nodes,
which then relays to the mobile sink in multi-hop fashion
over the preformed Starfish routing backbone. We assume
that source nodes are producing data packets with different
delay-deadlines and T is the minimum value of deadlines in
the network. While any backbone node collects data from
a source node, it takes responsibility to forward data to the
mobile sink over starfish routing backbone nodes. However,
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TABLE 1. Notations.

scheduling the sink’s mobility within the obstructed-network
would still improve the efficiency of data collection and
network lifetime.

The details of the proposed optimal data collection
scheduling, namely Starfish scheduling, are explained aiming
to maximize network lifetime and improve data collection
efficiency in Section IV. The symbols and notations are
summarized in Table 1.

IV. DATA COLLECTION SCHEDULING
In this section, we have developed an optimal data collection
scheduling of a mobile sink so that lifetime of a sensor net-
work can be maximized while maintaining application delay-
deadline. In the network, a mobile sink visits any set element
of Rc in each cycle c ∈ C , where Rc denotes the power set
on Z (i.e.,Rc

= P(Z)), and C = {0, 1, 2, . . . }. This choice
is motivated by the fact that data collection over the optimal
size of the ring-canal (of Starfish routing backbone [29] )
offers minimum energy expenditure in the network, in the
light of our earlier work in [45]. Moreover, the computational
complexity of finding optimal sojourn locations over ring-
canal nodes would be less compared to that when all nodes
are explored. The following subsections describe optimal data
collection scheduling, namely Starfish scheduling, in detail.

A. OPTIMAL DATA COLLECTION SCHEDULING
In the proposed scheduling, we assume, the mobile sink
sojourns (or halts) at sojourn location m ∈ Mc

n and Mc
n ∈ Rc

for a duration of Scm in a cycle c, where n = {1, 2, . . . ,
|Rc
|−1}. Since the network contains obstacles among nodes,

arc set is defined as follows, Ac = {(l,m) : f clm = 1}, where
f clm = 1 indicates that there exists a traveling path avoiding
obstacles between sojourn locations l ∈Mc

n and m ∈Mc
n in a

cycle c ∈ C ; 0 otherwise. The sojourn duration of the mobile
sink at a rendezvous node in a particular cycle depends on
the data arrival rate. Here, sojourn locations are those that
are optimally selected among rendezvous nodes in a cycle.
We assume σ cm and Scm are, respectively, the data arrival rate
and the sojourn duration at corresponding location m ∈ Mc

n
in a cycle c ∈ C . The sojourn duration Scm is measured as
follows,

Scm =
σ cm∑
j∈Z σ

c
j
× Dc, ∀c ∈ C, ∀m ∈Mc

n (3)

whereDc is the worst-case end-to-end data collection latency
from the farthest source node of the network to the mobile
sink for a cycle c. Since the central controller is aware of
both data arrival rate at each rendezvous nodes on the ring-
canal and sink travels around the preformed ring-canal, it can
determine the worst-case end-to-end delay Dc for a network
instance [29]. To support real-time applications, worst-case
end-to-end delay Dc for a cycle cannot exceed the minimum
value of application delay-deadline T (i.e., Dc ≤ T ).

Now, we assume εcm be the residual energy of a rendezvous
node m ∈Mc

n at a particular cycle c ∈ C . While routing data,
a node requires energy E and Ẽ for transmitting and receiving
each bit, respectively. Therefore, the total energy required by
a rendezvous node m ∈ Mc

n during sojourn period Scm can be
computed as,

ecm = Scm · σ
c
m · q

c
m · (E + Ẽ), ∀m, ∀c, (4)

where qcm is the bit-length of a packet. While selecting a
sojourn location m ∈ Mc

n in a cycle c, its residual energy εcm
must be greater than the required energy ecm. At the end of a
cycle, the residual energy of a rendezvous node is updated
as, εc+1m = εcm − ecm. At the initial cycle, i.e., c = 0,
ε0m is considered as the initial residual energy and energy
expenditure, e0m = 0.
The key objective of the proposed Starfish data collection

scheduling is to maximize network lifetime that is translated
as maximizing sojourn duration over the optimal set of ren-
dezvous nodes of Starfish routing backbone. A rendezvous
node is interpreted as a sojourn location when the mobile sink
halts for a certain duration and collects data. We maximize
total sojourn duration so as to increase the network lifetime
since sink’s data collection lasts until the network is dead. The
objective function and the constraints of the mixed-integer
linear program (MILP) are formulated as follows.
Maximize :

L = argmax
Mc
n∈Rc

∑
∀c∈C

∑
∀m∈Mc

n

Scm, (5)

subject to,

ecm < εcm, ∀c ∈ C, ∀m ∈Mc
n (6)∑

m∈Mc
n

ecmh
c
m/S

c
m <

∑
m∈M̃c

n

ecmh
c
m/S

c
m,∀c,∀M̃

c
n (7)

hcm ∈ {0, 1}, ∀c ∈ C (8)
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Dc ≤ T , ∀c ∈ C (9)

Pc(j k m) = True,∀j ∈ Z ∪ B, ∃k ∈ Z ∪ B ∪ ∅,
∃m ∈Mc

n,∀c ∈ C (10)

wcl − w
c
m + |M

c
n| · f

c
lm ≤ |M

c
n| − 1, ∀(l,m) ∈ Ac,

∀c ∈ C (11)

0 ≤ wcl < wcm, ∀c ∈ C (12)

f clm ∈ {0, 1}, ∀c ∈ C (13)

Here, Eq. (5) is the objective function and Eq. (6) - Eq. (13)
are the constraints. The objective function schedules the
mobile sink so that it canmaximize network lifetime L, which
is translated as finding out optimal sets of rendezvous nodes
Mc

n to maximize sojourn duration for allowable cycle c ∈ C .
In the objective function, sojourn duration Scm is related to the
data arrival rate at that location in a cycle c that is measured
following Eq. (3).

We formulate the network lifetime maximization problem
in such a way that the mobile sink persistently travels over
rendezvous nodes (RNs) until the residual energy of an RN
is exhausted. The energy constraint in Eq. (6) finds candidate
RNs on the ring-canal to be selected as a sojourn location,
if and only if energy expenditure ecm in a cycle c is less than
the remaining residual energy εcm of the node. At the end of a
cycle, residual energy of RNs is updated as εc+1m = εcm − e

c
m

in order to discover its feasibility to be a sojourn location in
the next cycle.

The energy efficiency constraint in Eq. (7) helps us to
single out all the alternative paths that are not as energy-
efficient as the selected one Mc

n in a cycle. In Eq. (7), the set
of all alternative paths M̃c

n ∈ R̃c and R̃c
= {Rc

\ Mc
}.

Both constraints in Eq. (6) and Eq. (7) force to select a set
of energy-efficient rendezvous nodes as sojourn locations for
a cycle c so that energy consumption is minimized per unit
time. Moreover, as there exists at least one energy-efficient
path during data collection for each cycle, the lifetime of
the network is maximized for all completed cycles. Eq. (8)
defines a binary variable hcm that determines whether the
mobile sink sojourns at m in a cycle c or not. Therefore,
the constraints in Eq. (6) - Eq. (8) jointly select Mc

n among
ring-canal nodes in the network.

The Eq. (9) ensures that the worst-case end-to-end delay
Dc for a cycle cannot exceed the minimum value of applica-
tion delay-deadline T . The worst-case end-to-end delay Dc

is bounded by hop-distance H c
min ≤ H c

≤ H c
max that is

estimated using Lemma 2 and Lemma 3. This constraint guar-
antees the effectiveness of data collection schedule for a real-
time application in the network. The connectivity constraint
in Eq. (10) ensures that there exists at least one path from any
backbone node j ∈ Z∪B to a sojourn locationm ∈Mc

n, either
directly or via a forwarding backbone node k ∈ Z∪B. Since
there exists Starfish routing backbone in the network and it
guarantees single-hop connectivity of at least one backbone
node from any source node, the connectivity constraint in
Eq. (10) holds until the network is dead.

In the network, the mobile sink travels to the selected
sojourn locations over the ring-canal nodes, where it may
exist sub-loop nodes due to the presence of obstacles. The
constraints in Eq. (11) and Eq. (12) jointly determine the
order of visiting sojourn locations and ensure that no sub-tour
would be formed among the nodes. At last, f clm represents a
binary variable in Eq. (13) determining whether the mobile
sink travels from sojourn location l to m among rendezvous
nodes during path selection; therefore, if f clm = 1, then
wcl < wcm. Since each sojourn location m ∈ Mc

n is associ-
ated with a weight wcm > 0 and an increasing weight (i.e.,
wcl < wcm) is maintained for each visiting sojourn location,
it inherently prevents forming any sub-loop of a path for the
mobile sink during traveling sojourn locations.

Finally, the formulation maximizes sojourn duration over
the optimal set of sojourn locations for a maximum number
of cycles until the residual energy is exhausted. This inher-
ently helps to achieve extended network lifetime during data
collection in the network.

B. FEATURES OF THE PROPOSED SCHEDULING
In this subsection, we explain different characteristics of the
proposed Starfish data collection schedule. We analyze the
worst-case end-to-end data delivery delay using Lemma 2 and
Lemma 3. Since the network contains sub-cycle nodes on
the ring-canal due to the presence of obstacles, the proposed
Starfish scheduling could be inefficient if the mobile sink
travels over sub-cycles. Therefore, we present Lemma 4 to
prove that the MILP model avoids sub-loop among the
sojourn locations for a cycle c. Finally, Lemma 5 proves that
the selected set of rendezvous nodesMc

n for a cycle c over the
Starfish routing backbone is optimal.
Lemma 2: For a given network 2a × 2b (a ≥ b > r)

containing a Starfish routing backbone and sensor nodes
with transmission range r, the extreme hop-distance H c is
bounded by d(b−R)/re ≤ H c

≤ d(
√
a2 + b2+R(π−1))/re

for a data packet.
Proof: In the network, the minimum hop distance of

a packet to the ring-canal typically exists along the minor
axes (ignoring obstacles), and thus the minimum hop dis-
tance is bounded by H c

min = d(b − R)/re, since b ≤ a.
Accordingly, the maximum hop distance from the farthest
node (e.g., the corner node of the network) to the mobile sink
is typically bounded by two reference distances, e.g., corner
node to the ring-canal node, and then to the farthest opposite
node around the ring-canal. The longest distance from the
corner node to the ring-canal lies along the principal diagonal
that is estimated as

√
a2 + b2−R. Meanwhile, since the sink

visits around the ring-canal, the longest traveling path to the
farthest opposite node is estimated as half-perimeter of the
ring-canal, i.e., πR. Therefore, the maximum hop-distance
H c
max is estimated as

√
a2 + b2−R+πR, and thus the extreme

hop-distance for a packet is bounded by d(b−R)/re ≤ H c
≤

d(
√
a2 + b2+R(π −1))/re, and hereby, Lemma 2 is proved.

Lemma 3: Given that δ is the expected end-to-end data
delivery delay of a packet for one hop (including medium
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access, processing, queuing delay, propagation, transmis-
sion, retransmission) in a network, then the worst-case end-
to-end data delivery delay Dc = δc × H c

max for a packet
traveling H c

max hop in a cycle c ∈ C.
Proof: Since the network contains obstacles, end-to-

end delay (i.e., δ) of a packet greatly depends on both hop-
distance from the source node to the mobile sink and the
number of retransmission(s) at each hop.

To prove the Lemma 3, as motivated from [29], we assume
ρz

c

H c be the inter-hop transition probability of a packet in
a Markov chain model for a cycle c, where hop H c

∈

{1, 2, . . . ,Hmax} and retransmission attempt per hop till
success zc ∈ {0, 1, 2, . . . , φ}. Therefore, the expected
retransmission attempt for a packet is expressed as zc =∑φ

zc=0 z
cρz

c

H c , and the expected delay is expressed as
δc = δ zc for a packet.

Finally, the average end-to-end data delivery delay for a
data packet traveling maximum H c

max hops is expressed as
Dc = δ

c
×H c

max , which is bounded by extreme hop-distance
H c, as computed in Lemma 2, and thus it is proved.
Lemma 4: Given that wcl ≤ wcm, as stated in Eq. (12),

the optimal data collection scheduling of a mobile sink in the
Starfish routing backbone is sub-cycle free for l,m ∈ Mc

n
and c ∈ C.

Proof: Suppose, for the sake of contradiction, the
hypothesis is not true. Then there exists the constraint
wcl ≤ wcm for which there is a sub-cycle between sojourn
locations such that Mc

n = {l, l2, l3, . . . ,m, l} in a cycle c.
According to the constraint in Eq. (11) of the MILP formu-

lation, the mobile sink travels from l to l2 that follows wcl ≤
wcl2 . Similarly, for the sub-cycle through {l, l2, l3, . . . ,m, l},
it also maintains wcl ≤ w

c
l2
≤ wcl3 ≤ w

c
m ≤ w

c
l .

Now, as on hypothesis, since the mobile sink also travels
from m to l maintaining wcm − w

c
l + |M

c
n| · f

c
ml ≤ |M

c
n| − 1,

that gives wcm ≤ wcl − 1. However, this contradicts the given
fact wcl ≤ wcm. Since we have arrived at a contradiction,
our original supposition that there exists a sub-cycle between
sojourn locations l and m in a cycle c could not be true.

Thus, the optimal data collection scheduling by mobile
sink over the Starfish routing backbone is sub-cycle free for
a particular cycle c, and hereby the Lemma 4 is proved.
Lemma 5: Given that ∀c ∀M̃c

n
∑

m∈Mc
n
ecmh

c
m/S

c
m <∑

m∈M̃c
n
ecmh

c
m/S

c
m, as stated in Eq. (7), the selected set Mc

n ∈

Rc of sojourn locations for a cycle c over the Starfish routing
backbone is optimal.

Proof: Suppose, for the sake of contradiction, the
hypothesis is not true. Then there exists an M̃′cn 6= Mc

n that
maximizes the sojourn duration Scm.
According to the MILP formulation, the key philosophy of

energy efficiency constraint in Eq. (7) is to single out a set
Mc

n from Rc.
Now, as on hypothesis, for the selected set M̃′cn of ren-

dezvous nodes for a cycle c, it maintains∑
m∈M̃′cn ∈R̃cn

ecmh
c
m/S

c
m <

∑
m∈Mc

n
ecmh

c
m/S

c
m. However, this

inequality contradicts according to the constraint in Eq. (7) to
achieve maximum sojourn duration Scm for a particular cycle

c simultaneously withMc
n, since M̃′cn 6=Mc

n and M̃′cn ∈ M̃c
n ∈

R̃c
= {Rc

\Mc
n}. Hencewe have arrived at a contradiction, our

original supposition that the selected set M̃′cn of rendezvous
nodes is optimal in a cycle c could not be true simultaneously
with any other alternative set of rendezvous nodes.

Therefore, the selected set Mc
n ∈ Rc of rendezvous nodes

for a cycle c over the Starfish routing backbone is optimal,
and consequently, it is true for all cycle c ∈ C , and hereby
the Lemma 5 is proved.

C. DATA FORWARDING POLICY
After selection of an optimal set of sojourn locations
following the above MILP formulation, the mobile sink (or a
central controller) broadcasts both the selected sojourn loca-
tions m ∈ Mc

n and corresponding sojourn duration Scm at the
beginning of each cycle c ∈ C . Since the network runs real-
time applications, it follows a continuous forwarding policy
to send data to the mobile sink over ring-canal and radial-
canal nodes of the Starfish routing backbone.

The key philosophy of the continuous forwarding policy
employed by backbone nodes is to send data to the mobile
sink immediately. If a source node senses data within the
transmission range of a ring-canal node, it immediately for-
wards data to the nearest ring-canal node. Afterward, the ring-
canal node takes responsibility to send data to the mobile
sink. If any source node is out of transmission range of the
ring-canal, it transmits data to the nearest radial-canal node;
then the node immediately forwards data to the nearest ring-
canal node. As soon as a ring-canal node collects data from
the source nodes, or radial-canal nodes, or neighbor nodes,
it instantly forwards data over backbone nodes to the current
sojourn location m ∈ Mc

n of the mobile sink for a cycle c.
Here, we consider the shortest routing path in the network
that is implemented in [29]. When a ring-canal node runs
out of energy, it migrates the role to neighboring node(s)
maintaining circular property of the ring-canal. This con-
tinuous data forwarding policy minimizes end-to-end delay
significantly, even in an obstructed network environment.
The simulation results prove the efficiency of the proposed
Starfish scheduling tomaximize network lifetime, as depicted
in Section V.

D. AN ILLUSTRATIVE EXAMPLE
We consider a set of rendezvous nodes {A,B,C, . . . ,H} on
the ring-canal, as shown in Fig. 4. Due to the presence of
obstacles in the network, the mobile sink cannot travel to
every rendezvous node from any of those. Table 2 shows
the traveling route matrix of the mobile sink among the ren-
dezvous nodes {A,B,C, . . . ,H} in the presence of obstacles.
When the mobile sink halts at a sojourn location A, it can only
travel either to C or H due to obstacles in the network. Simi-
larly, in the case of halting atB, it can travel only to {D,F,H}.
Now, the key philosophy of the proposed Starfish data col-
lection scheduling is to determine the optimal set of sojourn
locations based on data arrival rates, energy expenditures at
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FIGURE 4. Data forwarding in obstructed network environment.

TABLE 2. Traveling route matrix for mobile sink.

TABLE 3. Data arrival rates (packet/sec) and set of sojourn locations.

corresponding rendezvous nodes so that the mobile sink can
travel through a sub-loop free path. As an example, we con-
sider the maximum delay-deadline of real-time application
is 250ms and data arrival rates at corresponding rendezvous
nodes {σ cA, σ

c
B, σ

c
C , . . . , σ

c
H } are tabulated in Table 3.

According to the proposed Starfish scheduling, at first,
the central controller (or the sink) finds a set Rc as a power
set on the ring-canal nodes Z. When the MILP formulation
runs, the central controller selects the most energy-efficient
set of sojourn locationsMc

n for a cycle c to maximize sojourn
duration. Meanwhile, it computes energy expenditures over
the sets of Rc based on available traveling paths of the
mobile sink in presence of obstacles and data arrival rates,
as mentioned in Table 2 and Table 3, respectively. In this
example, Starfish scheduling finds a set of sojourn locations
M1

n = {A,C,E,G}, for c = 1, and then it deter-
mines the sojourn duration at corresponding sojourn loca-
tions (using Eq. (3)). For an efficient routing of data packets
throughout the network, the central controller acknowledges
selected sojourn locations (m ∈ Mc

n) along with correspond-
ing sojourn duration {S1A, S

1
C , S

1
E , S

1
G} before starting data

collection.

Similarly, Starfish scheduling gets another set of sojourn
locations M2

n = {H ,B,D,F} for the second cycle c = 2
satisfying the required constraints in Eq. (6) - Eq. (13), and so
on until the network is dead. The lifetime of the network can
be estimated when the central controller finds the maximum
number of cycles. As soon as the central controller determines
the optimal set of sojourn locations, it acknowledges to the
ring-canal nodes along with sojourn duration. Afterward,
each designated sojourn location broadcasts locally to the
neighbors on the radial-canal backbone nodes so as to forward
their sensed data up to the sojourn locations.

In continuous data forwarding policy, a source node imme-
diately forwards sensed data to the nearest ring-canal node
directly (or via the radial-canal nodes). Since each ring-canal
node (or rendezvous node) is aware of the data collection
schedule along with sojourn duration, it instantly forwards
data to the mobile sink via sojourn location m ∈ Mc

n. This
data forwarding policy minimizes end-to-end packet deliv-
ery delay significantly for real-time applications even in an
obstructed network environment. The details of simulation
results are discussed in Section V.

In the following section, we have carried out an exhaustive
experimental analysis to compare the proposed data collec-
tion scheduling with state-of-the-art-works.

V. PERFORMANCE EVALUATION
This section presents the performances of the proposed
Starfish data collection scheduling compared with recent
works such as Viable Path-based scheduling (VPS) [36] and
Landmark-assisted scheduling (LAS) [37] in network simu-
lator version-2 (NS-2) [39].

A. SETUP ENVIRONMENT
In the simulation setup, a WSN of 600× 450 m2 area is con-
sidered, where sensor nodes are randomly deployed following
uniform random distribution having node density 0.002 per
unit area. In the network, each sensor has a transmission range
90m, and initial energy of 6J . In the simulation, constant bit
rate (CBR) traffic is modeled while data are transmitted under
UDP protocol, 512 bytes of each data packet are transmitted
over 512 Kbps of channel bandwidth. The parameters of the
simulation-environment setup are listed in Table 4.

B. EVALUATION METRICS
The following six evaluation metrics [29] have been used
to gauge the performances of the studied data collection
scheduling systems.
• Network lifetime is measured as the time duration from
the deployment of the network to the time at which any
backbone node has exhausted its energy to transmit data
packets in the network.

• Standard deviation of residual energy refers to the distri-
bution of backbone nodes’ residual energy when the life-
time of a network is exhausted. This measure is expected
to be the smallest so that energy consumption among
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TABLE 4. Simulation parameters.

TABLE 5. List of events and the burst duration.

the backbone nodes is balanced to enhance network
lifetime.

• Data throughput refers to the average data rate of suc-
cessful data that is received by the mobile sink. The
higher value of throughput is expected for better network
performance.

• Packet delivery ratio (PDR) refers to the ratio between
the number of data packets successfully delivered to the
mobile sink and the number of packets generated by the
source node within certain application delay-deadline.
The higher value of PDR represents the reliability of the
data routing over the backbone nodes.

• Average end-to-end (e2e) packet delivery delay refers
to the difference in time delay from generation time of
a packet to its reception time. The lower value of e2e
packet delivery delay indicates the effectiveness of data
collection scheduling for real-time applications.

• Operational overhead refers to the ratio of network
control bytes exchanged to the data bytes received by
the mobile sink during experimental evaluation. Perfor-
mance is better when the operational overhead is lower.

C. EXPERIMENTAL RESULTS
We performed 50 times of simulation experiments with dif-
ferent randomly generated seed values, and the average result
is plotted for each data point in the graph. In the network,
if there is no direct, line-of-sight path between the transmitter
and the receiver due to obstacles, data propagation is bounced
off objects and it causes multipath fading with path loss
exponent value of 2–4. However, the simulation trace file
data depicted that the average value of the path loss exponent
used by the transmitters during the experiments was around
2.8. We considered 250 ms for the maximum delay-deadline
of application and events in the simulation experiments hap-
pened randomly at 30 different locations. Table 5 provides
events with corresponding burst duration for the experiment.

1) IMPACTS OF VARYING DATA GENERATION RATES
This section presents the performances of the studied proto-
cols for varying data generation rates 1− 8 packets/second .
In the experiment, the network size was fixed at 600×450m2,
sink speed was fixed at 6 meter/second and the number
of obstacles was fixed at 40 occupying around 15% of the
corresponding network area.

The graphs, as shown in Fig. 5(a), illustrate that average
data throughput (within delay-deadline) rises sharply with
the increasing rate of packet generation in all the studied
protocols. This is trivial because of generating more pack-
ets and successful reception of these packets by the mobile
sink. It is obvious that the proposed Starfish data collection
scheduling is effective in terms of bandwidth utilization as
the rate of packet generation increases. However, for a higher
rate of data generation (e.g., more than 5 packets/second),
data throughput decreases steadily due to the exceedingmax-
imum channel bandwidth, buffer overflow, and packet drop,
etc. The average throughput for the proposed data collection
scheduling over Starfish backbone is significantly higher than
those of VPS [36] and LAS [37] strategies because of faster
data forwarding is offered over starfish routing backbone and
continuous data collection scheduling from the optimal num-
ber of sojourn locations on the ring-canal. It is noteworthy
that both sojourn location and duration are selected based on
corresponding data arrival rates.

For similar reasons, the proposed scheduling over the
Starfish routing backbone exhibits higher PDR with pro-
gressive data generation rate in the simulation experiments,
as depicted in Fig. 5(b), and afterward PDR declines steadily
for a higher rate of data generation. These results prove the
reliability of using Starfish scheduling for real-time applica-
tions in the network.

On the contrary, the average end-to-end packet deliv-
ery delay within the application delay-deadline is decreased
with the progressive rate of data generation, as illustrated
in Fig. 5(c). It occurs because the sink’s mobility significantly
reduces the vicinity-length from source nodes to the mobile
sink. Moreover, the proposed Starfish scheduling performs
better than VPS [36] and LAS [37] strategies, because sink’s
mobility is governed by data arrival rates at rendezvous nodes,
and there is no query requirement for sink’s fresh location,
and finally, forwarding data over pre-constructed routing
backbone in the network.

In the experiments, we also computed the standard devia-
tion of residual energywhen network lifetime was exhausted.
The simulation results show a gradual increase of standard
deviation for the higher data generation rates, as illustrated
in Fig. 5(d), because of fluctuating energy expenditure from
the different corners of the network. The proposed Starfish
data scheduling exhibits the lowest standard deviation of
residual energy due to balanced energy consumption over
the Starfish backbone nodes while forwarding data to the
mobile sink. Here, Starfish scheduling finds the optimal path
over the least energy-expensive sojourn locations for each
cycle. Since energy expenditure and standard deviation of
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FIGURE 5. Impacts of varying rates of data generation.

residual energy are increased for higher rates of data gen-
eration, as described earlier, the lifetime of the network is
inherently decreased for the increasing rate of data genera-
tion, as depicted in Fig. 5(e). Finally, with the increasing rate
of data generation, it requires more control packets to deliver
sensed data to the mobile sink, thus operational overhead
increases, as shown in Fig. 5(f). In the case of the proposed
data collection scheduling, operational overhead is the lowest
among the studied works because of forwarding data packets
over preformed Starfish routing backbone in the network.

2) IMPACTS OF VARYING NUMBER OF OBSTACLES
Obstacles are an integrated part in a practical network sce-
nario, and thus the efficiency of real-time data collection
scheduling in the presence of obstacles should be determined.
This section presents the experimental results, as shown
in Fig. 6, for the increasing number of obstacles from 10-70,
given that obstacles collectively occupied 15 % of a network
600 × 450 m2. In the experiments, the sink speed was fixed
at 6 meter/second , and the packet generation rate was fixed
at 3 packets/second .
The experimental results show that average data through-

put within delay-deadline decreases sharply with the increas-
ing number of obstacles, as shown in Fig. 6(a). This happens
because sink mobility for visiting sojourn location is ham-
pered due to obstacles, increases path length of the mobile
sink, requires more hop distance and increases packet retrans-
mission, etc. These reasons also exhibit decreasing order
of packet delivery ratio (PDR) within the delay-deadline,

as depicted in Fig. 6(b). However, in the case of Starfish data
collection schedule, the performances of average throughput
and PDR outperform over VPS [36] and LAS [37] strate-
gies because of faster and continuous data forwarding over
obstacle-aware starfish routing backbone in the network.

On the contrary, Fig. 6(c) illustrates that the average end-
to-end packet delivery delay sharply increases with a growing
number of obstacles. This is mostly due to the increase in
the proximity of the mobile sink with the obstacles, con-
sequently increasing the path length and end-to-end packet
delivery delay. However, the proposed Starfish scheduling
performs better compared to VPS [36] and LAS [37] strate-
gies because mobile sink visits sojourn locations based on the
corresponding data arrival rate at rendezvous nodes. More-
over, the mobile sink collects data around the ring-canal
and all source nodes forward their data over pre-determined
obstacle-aware Starfish routing backbone nodes.

Later, we also evaluated the standard deviation of residual
energy among backbone nodes for an increasing number of
obstacles, when the network lifetime was exhausted. The
graphs, as presented in Fig. 6(d), illustrate that the devi-
ation of energy sharply expands, as the number of obsta-
cles increases. Since obstacles are sporadically distributed
in the network and source nodes exhibit fluctuating energy
expenditure due to those obstacles, it expands the standard
deviation of residual energy. For similar reasons, some of
the backbone nodes exhaust earlier, and thus network lifetime
decreases with an increasing number of obstacles, as depicted
in Fig. 6(e).

163888 VOLUME 8, 2020



Md. A. Habib et al.: Lifetime Maximization of Sensor Networks Through Optimal Data Collection Scheduling of Mobile Sink

FIGURE 6. Impacts of varying number of obstacles.

Finally, with the growing number of obstacles, more con-
trol packets are required to forward data avoiding sporadi-
cally situated obstacles in the network, and thus it results in
increasing operational overhead, as shown in Fig. 6(f).

3) IMPACTS OF VARYING SIZE OF NETWORKS
In a practical WSN application, the network performances
and lifetime maximization are not only affected by data
generation rate and a number of obstacles but also on the
area of a network. Therefore, we evaluated the scalability
and efficiency of the proposed Starfish scheduling, varying
the network sizes from 400 × 225 m2 to 900 × 675 m2,
while data generation rate, sink speed, and the number of
obstacles are fixed at 3 packets/second , 6 meter/second ,
and 40, respectively. In the case of different sizes of network,
we considered sporadic size of 40 obstacles that collectively
occupied 15 % area of the corresponding size of the network
with specific node density as stated in Subsection V-A.

The graphs, as shown in Fig. 7(a), depict that data through-
put within delay-deadline steadily decreases with the larger
networks for all studied data collection scheduling. This
happens because sink mobility for visiting sojourn locations
is hampered due to obstacles, increasing path-length of the
mobile sink, requiring more hop distance, and increasing
retransmission of packets, etc. These reasons also reduce
event notification as well as the reception probability of data
packets by the mobile sink. In the case of Starfish scheduling,
average data throughput is higher compared to VPS [36]
and LAS [37] strategies because of collecting data over the
optimal ring-canal, single hop reachability from any source

node and continuous data forwarding over obstacle-aware
backbone nodes. For similar reasons, packet delivery ratio
(PDR) decreases, as shown in Fig. 7(b). The performances of
data throughput and PDR prove the suitability and reliability
of the Starfish data collection schedule for larger networks
even though there exist obstacles.

On the contrary, the graphs, as presented in Fig. 7(c), depict
that end-to-end packet delivery delay within the application
delay-deadline is steadily increased for all studied data col-
lection schedulingwith increasing network sizes. It is obvious
due to the linear increase of hop distance, the larger size of
ring-canal with the presence of obstacles. Moreover, exper-
imental results show that the proposed Starfish scheduling
outperforms VPS [36] and LAS [37] because of guaranteed
single-hop access to at least one backbone nodes by a source
node while forwarding data to the sojourn locations, col-
lecting data over the ring-canal nodes, avoiding (re)tracing
the mobile sink, etc. End-to-end delay performance of
the proposed scheduling proves its suitability for real-time
applications maintaining delay-deadline.

In the experiments, we computed the standard devia-
tion of residual energy, when the network lifetime was
exhausted. Fig. 7(d) shows that it increases monotonically
because of fluctuating energy expenditure for increasing size
of networks. Fluctuating energy expenditure occurs for the
existence of obstacles at random locations throughout differ-
ent areas of the network, larger size of the ring-canal, etc. The
proposed Starfish data collection scheduling exhibits the low-
est deviation of energy among other strategies due to balanced
energy consumption of the Starfish backbone nodes during
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FIGURE 7. Impacts of varying size of networks.

forwarding data to the mobile sink. Since energy expenditure
and standard deviation of residual energy increase, inherently
the network lifetime is decreased for an increasing rate of
data generation, as depicted in Fig. 7(e). Finally, with the
increasing size of networks, it requires more control packets
due to longer hop distance to collect data that results in
increasing operational overhead, as shown in Fig. 7(f).
In a separate experiment, we compared the complexities of

the studied scheduling schemes in NEOS optimization [47]
server (2 Intel Xeon E5-2698 @ 2.3GHZ CPU and 192GB
RAM) for selecting optimal set of rendezvous nodes for
each cycle. We find those for both viable path scheduling
(VPS) [36] and landmark-assisted scheduling (LAS) [37]
are O(N3), where N is the number of nodes. In the case of
Starfish data collection schedule, the mobile sink visits ren-
dezvous nodes that are optimally selected over the ring-canal
nodes (Z). According to the MILP formulation, it determines
a set of sojourn locationsMc

n ∈ Rc over the ring-canal nodes,
instead of overall sensor nodes or all backbone nodes. The
constraint in Eq. (7) computes over the power set of the ring
canal nodes Z, and finds out the most energy-efficient set of
sojourn locations achieving maximum duration. Therefore,
the computational complexity of the Starfish scheduling is
estimated as O(c × |Z| × 2|Z|) which is significantly less
compared to those of VPS [36] and LAS [37].

The graphs in Fig. 8 show the computation time required
for execution of the studied data collection schedule algo-
rithms for increasing size of networks from 300 × 225 to
900 × 675. As VPS and LAS strategies explore all nodes
in the network to find out data collection schedules, their

FIGURE 8. Computational complexity.

computation time increase exponentially compared to a lin-
ear graph observed for the Starfish schedule. It is obvious
since the Starfish schedule explores candidate power sets
on the ring canal nodes only. The problem can be grouped
as an NP-complete one [48]. However, the constraints in
Eq. (6) - Eq. (13) of the MILP formulation facilitate us to
significantly reduce the input sets for selecting the optimal
number of sojourn locations, and thus the solution is found in
polynomial time.

The above results and discussions conclude that Starfish
data collection schedule shows its scalability and efficiency
in terms of computational complexity, data throughput, end-
to-end data delivery delay, network lifetime, etc. for real-time
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applications (within certain delay-deadline) in an obstructed
network significantly.Moreover, the proposed Starfish sched-
ule is also applicable for an obstacle-free network as well,
as was primarily studied in [29]. However, from the sim-
ulation trace file data, it is observed that when the data
generation rate at a particular node on the ring-canal is super-
abundant compared to other nodes, the sojourn location is
discriminatorily selected for consecutive cycles. This exhibits
a quicker partition of the routing backbone than the average
network lifetime.

VI. CONCLUSION
This work explored the challenges of data collection and
lifetime maximization strategies for real-time applications in
an obstructed sensor network with a mobile sink. For real-
time data collection, we considered Starfish routing backbone
with obstacles, and thereafter, formulated mixed-integer lin-
ear programming to find an optimal set of sojourn locations
on its ring-canal nodes for a round, corresponding sojourn
duration with data collection scheduling so as to maximize
network lifetime. The simulation results, performed in net-
work simulator version-2, clearly indicated that Starfish data
collection scheduling improved network lifetime as high as
11%while reducing end-to-end data delivery delay by at least
40% compared to state-of-the-art-works.

As a planned study in the future, we envision design-
ing distributed and machine-learning-based algorithms for
data collection schedule by multiple sinks in a large-scale
network.
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