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ABSTRACT Airport objects are hotspots in the field of image object detection because of their specific
features and value for applications. In this study, we developed a complex object detection method based
on improved Faster R-CNN to achieve higher detection precision to detect seven types of remote sensing
image objects in airport areas under complex conditions such as different scales, different visual angles,
and different backgrounds. When building the network, we used deeper basic networks and feature fusion
components to extract more robust features. At the same time, we had also modified the selection of positive
and negative samples to improve sample imbalance. The main improvements in the algorithm concern
the anchor size generation rule, and the addition of an a priori judgment network for the network. The
effectiveness of the improved algorithm was verified in experiments. Compared with the original Faster
R-CNN, the improved network brings a 12.7% increase in mAP, at the detection time of 0.307s. Finally,
the model with trained weights was used to test the detection of the seven types of objects in airport areas
on different data sets, and comparisons were conducted with other algorithms. The experimental results
showed that the method improved the average detection accuracy and had a good performance in remote
sensing airport object detection tasks.

INDEX TERMS Airport object, image processing, multi-class object detection, pattern recognition, remote
sensing.

I. INTRODUCTION
Due to rapid developments in remote sensing imaging tech-
nology, the imaging resolution has increased greatly and the
ability to acquire information has gradually improved. There-
fore, the full exploitation and utilization of remote sensing
images has become a hotspot in computer vision and remote
sensing research [1]. Airport areas are key building for mili-
tary and civilian usage, and thus, they have become a major
focus in the field of object detection [2].

Many studies have investigated the detection of airport
areas. In particular, before using CNN, many scholars mostly
used artificially designed features combined with the method
of locating regions of interest to detect objects in images.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shiqi Wang.

In this way, Zhao et al. [3] combined the Hough transform
and graph-based visual saliency (GBVS) method for air-
port detection. Tao et al. [4] combined the segmentation
region and scale-invariant feature transform (SIFT) feature
statistical method for airport detection. At that time, this
method accelerated the detection accuracy of airport objects
to a certain extent, but due to the lack of robustness of
artificial design features, it was often disturbed by similar
objects. Since the 21st century, convolutional neural net-
work (CNN) had been successfully used in a large number
of fields such as detection, segmentation, object recognition,
etc. Zhu et al. [5] obtained regions of interest (ROI) from
the saliency maps of geometric saliency and local entropy,
and then used AlexNet to conduct networkmigration learning
for airport identification. Zhang et al. [6] proposed a type
of prior knowledge to develop a regional suggestion method
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with linear characteristics for airports and a CNN for airport
detection based on the strong classification capacity of the
CNN. Due to the use of CNN, the problem of insufficient
robustness of artificial design features had been overcome
to a certain extent, and the detection accuracy had been
improved. However, it still had the same limitations as the
traditional method when selecting proposed regions. So its
detection efficiency was not very high. In response to this
problem, many methods that gave consideration to detection
accuracy and detection efficiency have been proposed one
after another. Tan et al. [7] proposed a novel method for
aircraft detection in high-resolution SAR images based on a
gradient textural saliency map. Wang et al. [8] proposed a
novel method for aircraft detection based on high-resolution
panchromatic optical remote sensing images. Dai et al. [9]
used Faster R-CNN and a multi-component combination
method for airport and aircraft detection. Cai et al. [10]
proposed the end-to-end convolutional neural network with
hard example mining method for airport detection, where
the detection performance was enhanced and the time cost
was reduced. Chen et al. [11] proposed the transfer learning
method for airplane detection in remote sensing images. Their
methods improved the detection rate. Xu et al. [12] proposed
the multi-layer feature fusion in fully convolutional neural
networks method for airplane detection in remote sensing
images. Xu et al. [13] proposed the end-to-end method com-
bining cascade region proposal networks and multi-threshold
detection networks for airport detection in remote sensing
images. They all built a detection framework based on a
deep neural network adapted to the task for a certain type
of research object (airport or airplane), and achieved good
results. However, many experiments researched on airport
object detection were conducted based on remote sensing
images with a single object, and simple background under
similar shooting distances and fixed vertical visual angle.
The method was not sufficiently robustness for objects with
different shooting distances, different visual angles, and more
complex backgrounds. Very different results were produced
when the same object image was obtained with different
heights, visual angles, etc.

In this study, we constructed a data set including 7 typ-
ical types of airport objects and containing many complex
conditions for the problems described above, and referred
to some ideas in the above-mentioned literature to use to
build a network framework, and made some improvements
to the Faster R-CNN [14] algorithm to improve the detection
accuracy of objects. The details of the construction of the
network and improvements are as follows.

1. In this study, we constructed a multi-class, multi-scale,
multi-view, and simple/complex background data set for this
problem. This data set is more complete and the features are
more distinct compared with other remote sensing data sets
(likeDOTA)with related objects (like plane). A data enhance-
ment operation for rapid error correction in the annotation
information is proposed, which greatly reduces the inspection
time.

2. In the construction of the network, we establishing a
feature fusion between different convolution features and the
full convolutional network in order to reduce the feature
dimensions and increase the nonlinear characteristics of the
network, and a deeper basic network is used to extract more
robust features. At the same time, in order to improve the
imbalance between positive and negative training samples
caused by the excessive number of negative samples during
the training process, a screening network is employed to
extract complex negative samples and reduce the number of
optional negative samples.

3. In terms of improvement, an artificial anchor is unsuit-
able for the multi-class and multi-scale objects considered in
this study, so a compatibility loss clustering method (CLCM)
is proposed based on the compatibility loss function to
autonomously generate the anchor scale. At the same time,
the problem where the regional convolutional neural network
judges the rationality of inter-class coexistence is solved by
establishing a priori judgment network to assess the rational-
ity of the final output.

The remainder of this paper is organized as follows.
In Section 2, we describe the basic components of the
Faster R-CNN, network construction, and improvements.
In Section 3, we analyzed the experimental result, compared
it with other methods, and tested on other commonly used
databases. In Section 4, we give our overall conclusions.

II. METHODS
A. CONSTRUCTION OF THE OBJECT DETECTION
NETWORK IN THE AIRPORT AREA OBJECT
DETECTION TASK
1) DETECTION FRAMEWORK BASED ON FASTER R-CNN
Machine self-identification is mainly based on the model’s
decision regarding the input image, where the model is
learned based on a large training data set usingmachine learn-
ing methods. At present, the neural network model obtains
the best recognition performance and a deep neural network
model trained with the deep learning method obtains the
highest object recognition accuracy [15], [16]. Therefore, a
deep region convolutional neural network (CNN) is employed
to train the constructed data set in our proposed method. The
main reference is the Faster R-CNN algorithm. The schematic
illustration of the process is shown in Figure 1.

A regional CNN mainly comprises a detection network
and a region proposal network (RPN). The detection network
mainly determines the positioning and classification of the
object, and it comprises a convolution network, ROI pooling
layer, and fully connected layer. The convolutional network
extracts the discriminative deep features of the object in
a large number of convolution operations. The convolution
formula is as follows:

y′ =
y+ 2p− k

s
+ 1 (1)
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FIGURE 1. Simplified illustration of the network framework.

where y′ is the size of the feature map, y is the size of the input
matrix, p is the number of zero padding layers, k is the size
of the convolution kernel, and s is the stride.
The ROI pooling layer mainly performs max-pooling

based on the feature map generated by the RPN and
the feature map generated by the model to generate a
proper feature map, and then enters the full connection
layer for subsequent training. The Pooling formula is as
follows:

max _poolingout = max(aij)i∈w,j∈h (2)

where poolingout is the output of the pooling layer and the
max _poolingout represents that the pooling layer adopts the
maximum pooling method, aij is an element of a max-pooling
matrix,w is the width of a max-pooling matrix, h is the height
of a max-pooling matrix, max(aij)i∈w,j∈h means to take the
maximum value of the elements in the matrix.

The fully connected layer is mainly responsible for the
specific classification of the object and further precise posi-
tioning of the position, but it requires a fixed size feature map,
so the appropriate feature map output from the ROI pooling
layer has a fixed size.

The RPN mainly makes regional recommendations where
the extraction of the proposed boxes is based on the fea-
ture map. Clearly, a lower resolution feature map requires
a smaller amount of calculations, thereby greatly reducing
the time and storage space consumption requirements for the
network’s filtering windows based on the original image and
because the overlapping portions of the suggested frame are
extracted repeatedly multiple times, and thus the detection
speed is also greatly improved. The specific details of this
method were described in a previous study [14].

2) DEEPER BASIC NETWORK - RESNET
The depth of the neural network plays a crucial role in the
improvement of model performance. Most of the networks
that won on the early ImageNet dataset [17] adopted a deeper
network structure, such as VGG-16 [18], GoogLeNet [19]
And so on, so it also reveals the importance of network depth.
However, as the number of network layers increases, it will
inevitably bring the problems of gradient disappearance or
explosion and decrease of accuracy after saturation due to
simply increasing the network depth. The ResNet[20] pro-
posed the concept of ‘‘layer jump connection’’ based on this
problem, that is, the input is directly superimposed on the
output. During the back propagation, the gradient of this
path is transmitted back intact, and the correlation is very
strong, as shown in Formula 3. Using it as the basic network
of the detection network will be more conducive to feature
extraction.

Hm(x) = Fm(x)+ ωxn (3)

where Hm(x) is the output of the m-layer through ‘‘shortcut
connections’’, Fm(x) is the output of the original m-layer, xn
is the output of the n-layer (m > n), and ω is the convolution
operation, which is used to change the dimension of xn to
make it consistent with Fm(x).

3) SETTING OF FEATURE FUSION COMPONENTS AND
SCREENING NETWORK
a: FEATURE FUSION COMPONENTS
For the small object detection problem, just like fighter,
helicopter and oil tank are shown in Figure 2, if the last
layer feature is detected separately according to the original
algorithm due to the small object occupying few pixels in
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FIGURE 2. The schematic diagram of fighter(a), helicopter(b) and oil tank
object(c).

the high-level feature map, then the information contained is
highly abstract. Studies have shown that high-level semantic
information is more suitable for the classification of objects
whereas lower-level feature information is better for the posi-
tioning of objects. Therefore, the detection of small objects
based on multi-layer feature fusion is more suitable for the
classification and localization of small objects.

Cross-layer connection is a classic method for the multi-
layer feature fusion problem based on a full convolution net-
work [21], HyperNet [22], and other approaches. In addition,
the dimensionality problem after cross-layer connection can
be addressed effectively with the 1× 1 convolution kernel in
GoogLeNet and ResNet. This method can not only change
the dimensionality under the premise of a constant feature
scale, but also the subsequent nonlinear activation function is
used to increase the nonlinear characteristics of the network.
We employ the convolution method to achieve the feature
fusion and 1×1 convolutions to decrease feature dimensions
and increase the nonlinear characteristics of the network.
The original and improved network structures are shown in
Figure 3.

FIGURE 3. The network structure. (a) original network; (b) improved
network.

Here, we first use RPN and ROI Pooling to extract the
feature vectors of the region proposal that need to be fused.
And then, the feature is fused by convolution operations. The
relevant formula is as follows.

zff (x, y,w) =
k∑
i=1

xi ∗ wi+
k∑
i=1

yi ∗ wi+k (4)

where zff is the fused output, xi is the one of the input channel
(x), yi is another one of the input channel (y), k is the number

of the input channel, wi is the convolution parameters (i), and
this formula also works for more than two inputs.

After that, there is possible to increase the output fea-
ture map dimension. Because if the feature maps of the
corresponding channels have a large semantic difference,
we should add new convolution kernel by formula 4. Finally,
the 1× 1 convolution is used to decrease feature dimensions
and increase the nonlinear characteristics of the network.

b: SCREENING NETWORK
Establish a screening network by defining a sample with an
IoU value between (0, 0.1) as a hard negative sample and
filter it out as a negative sample for training, while strictly
controlling the number of samples so they equal the number
of positive samples. If this is not the case, add the remaining
negative samples. Improve the balance among positive and
negative samples during the training process.

The traditional method for defining a positive sample
involves determining the box with the highest score among a
set of boxes and a box with a ground truth IoU value greater
than 0.7. The method for defining a negative sample involves
determining a box with a ground truth IoU value less than
0.3 among a set of boxes. The remaining boxes do not con-
tribute to the training process. In the airport object detection
task. Most of the objects considered in the proposed method
are small in size, so there will be many negative samples,
which can readily lead to an imbalance between positive and
negative samples during training, thereby making the train-
ing process sensitive to negative samples (background) and
insensitive to positive samples (objects). Thus, a screening
network is established to select hard negative samples with
values between (0, 0.1) based on the IoU values calculated
using the non-maximum suppression (NMS) algorithm for
training the RPN in order to reduce the amount of optional
negative samples, and thus, the balance between positive and
negative samples is improved.

B. IMPROVEMENT TECHNIQUES
Here is our related improvement techniques on the limitations
of the original algorithm on the performance of the object
detected in this paper.

1) AN IMPROVEMENT ANCHOR METHOD– CLCM
The compatibility loss clustering method (CLCM) is used to
generate the size and proportion of the anchor instead of the
original anchor generation rule so the anchor can be a more
suitable fit to the size of most ground truth data, as well as
improving the quality of the positive sample and eliminating
many of the redundant calculations due to the use of a very
large anchor, and avoiding not extracting global features of
the object due to the use of a very small anchor.

The traditional method for determining the size of an
anchor involves manually designing the size of an appropriate
anchor based on the size of the object in the data set. How-
ever, due to knowledge limitations and the large volume of
data, it is difficult to meet the requirements for detecting a
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large number of objects by using many artificially designed
anchors with suitable sizes, and problems will also be caused
by using an anchor with an unreasonable size. Thus, the data
set constructed in the present study contains 7 types of
objects, where each object has many different shapes and
sizes, especially the airport objects. It is very difficult to
manually formulate the sizes of anchors to satisfy all of these
objects. Therefore, we employ the CLCM to automatically
calculate the sizes of the best 9 anchors (consistent with the
number in Faster R-CNN) based on our data set. The specific
steps in the algorithm are shown in Table 1.

TABLE 1. The steps of CLCM.

We define the compatibility loss value for the anchor
and ground truth in the algorithm as Compati Loss. When
designing the Compati Loss function, we consider the IoU
of the machine-generated anchor and the ground truth as the
independent variable. The Compati Loss should be smaller
when IoU is larger. The range of Compati Loss value is
defined from zero to infinity. A value of zero indicates that
the anchor matches completely with the ground truth. The
compatibility of the anchor and ground truth is lower when
the Compati Loss value is larger. In addition, when the com-
patibility increases from zero, the value of Compati Loss
should become less sensitive to it and the decay rate will slow,
so the value of Compati Loss will not change greatly when
the value of IoU is close to one. The value of Compati Loss
should become very sensitive when the IoU increases from
zero to quickly react to the closeness of the predicted box to
the ground truth box. In summary, the function is defined as
follows:

Compati Loss = − ln[IoU (wigt , h
i
gt ,w

k
a, h

k
a)] (5)

IoU(a,gt) =
S(A ∩ G)
S(A ∪ G)

(6)

where wigt is the width of the ground truth (i), h
i
gt is the height

of the ground truth (i), wka is the width of the anchor (k), hka
is the height of the anchor (k), IoU(a,gt) is the intersection-
over-union of the anchor and ground truth, S(A ∩ G) is the

intersection area of the anchor and ground truth, and S(A∪G)
is the union area of the anchor and ground truth.

2) ADD PRIOR JUDGMENT ALGORITHM TO AVOID TEST
RESULTS THAT DO NOT AGREE WITH PRIOR EXPERIENCE
In the training test using Faster R-CNN, some unconventional
test results were obtained. For example, during aircraft detec-
tion, some areas that are similar to the shape of an airport
and have similar sizes are detected as airports. Therefore, it is
necessary to include a prior judgment to avoid similar errors
that do not conform to the rules.
Argumentation analysis identified a few cases of misde-

tection, which usually had low confidence degree values
(generally less than 0.7). Therefore, after the final detection
network determines the category information and the con-
fidence degree, we add a prior judgment before the final
detection result to eliminate detection errors. The specific
steps are shown in Table 2.

TABLE 2. The steps of prior judgment algorithm.

The algorithm mainly aims to eliminate the possibility of
detecting other backgrounds as airports during the detection
of aircraft-type objects, bridges, and oil tank objects from
a lower satellite visual angle. In addition, this method may
eliminate the possibility of detecting other backgrounds as
aircraft-type objects, bridges, and oil tank objects during the
detection of airport objects from a higher satellite visual
angle.

III. RESULTS
A. DATA SET
1) PRODUCTION, CHARACTERISTICS AND
LABELS OF DATA SETS
The data set used in this experiment was in the VOC2007 for-
mat and the images were uniformly set to .jpg format. In addi-
tion, the numbers of the images started from ‘‘000001’’ in
order to facilitate the subsequent model feature extraction and
training processes to optimize the path searches for various
types of information in terms of their parameter weights. The
specific process is shown in Figure 4.

The object detection images considered in this study
comprised remote sensing images. A previous study [23]
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FIGURE 4. Data set construction flow chart.

FIGURE 5. Schematic illustration of the data set.

TABLE 3. Labels and corresponding objects.

showed that the remote sensing images acquired fromGoogle
map are highly generalizable for other sensors. Therefore,
the remote sensing images provided by Google Earth Pro
software were used as the sources for image capture and col-
lection. Object remote sensing images with different heights
and different visual angles were used by the neural net-
work for autonomously learning multi-scale and multi-view
objects. In this manner, more than 200 airports, aircraft, oil
tanks, and bridges in the field were intercepted and collected,
and 7264 original images were obtained without image
augmentation.

A schematic illustration of the data set is shown in Figure 5.
The data set contains 1982 airport images, 1838 civil air-

craft images, 565 fighter images, 715 helicopter images, 813
transport plane images, 583 bridge images, and 768 oil tank
images.

The labels and the corresponding objects are shown
in Table 3.

The object instances of this data set compared with the
traditional data set are described in Table 4 and Figure 6.

TABLE 4. The Number of detected object instances-data set
correspondence table.

FIGURE 6. The histogram of comparison result.

It can be intuitively obtained from Figure 6 that the number
of instances of typical targets such as airport, civil aircraft,
fighter, helicopter, transport plane, and oil tank in our data
set has exceeded the sum of the number of instances of four
commonly used remote sensing data sets. For the bridge
problem, we collect the bridges near the airport in a targeted
manner, so the number of it is smaller than DOTA, but it is
more robust for the task.

At the same time, our data set also has a larger target
scale range, more shooting angles, and rich environmental
characteristics and diverse structural characteristics.

Take the airport object as an example:
From the above analysis, it can be got that the data set

constructed in this article may be more suitable for specific
tasks-Airport Object Detection in Remote Sensing Images.

2) A SMALL OPTIMIZATION METHOD TO THE DATA SETS –
RAPID MULTI-CLASS LABELS INFORMATION CORRECTION
In this paper, seven labels were used and thousands of original
remote sensing images were processed before conventional
data augmentation. Therefore, errors inevitably occurred dur-
ing manual labeling due to factors such as misoperation
and fatigue. The errors included omissions and mis-marks,
and omissions could only be detected based on repeated
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TABLE 5. Test results after using different basic networks and FF.

checks. Thus, a rapid label correction method was developed
to address the problem of mis-marking. First, each type of
object was placed in the same folder during image collec-
tion. Software was then applied for batch searches of the
information in the folder where each object was located.
Checks were performed to determine whether the ‘‘.xml’’
file contained the labels for the remaining six objects and
they were located before correcting them, if necessary. After
optimization, searches and correction were conducted for
more than 100 mislabeled images in no more than 5 minutes,
which helped the next step to achieved better training results.

B. EXPERIMENTAL PLATFORM AND
PARAMETER SETTINGS
1) PLATFORM ENVIRONMENT
The processor comprised an Intel(R) Core(TM1) i9,
the installed memory was 128 GB, the operating system
was Ubuntu 16.04, and the graphics card was an NVIDIA
GeForce GTX 2080Ti 11GB. The experimental framework
was Caffe.

2) PARAMETER SETTINGS
The Caffe framework was used with open source deep learn-
ing. The pre-training network was used for initializing the
parameters in the shared convolution layer. The remaining
new layers were initialized randomly according to a Gaussian
distribution with a mean of 0 and a standard deviation of 0.01.
The initial learning rate was set to 0.001. The momentum
was set to 0.9. The weight attenuation was set to 0.0005. The
threshold was set to 0.7. The number of training epoch was
40,000. The sample ratio comprised training set: verification
set: test set = 7:2:1.

C. ANALYSIS OF RESULTS
1) THE ANALYSIS OF COMPONENTS IN THE NETWORK
CONSTRUCTION
1. Comparative analysis of detection precision after adding
different basic networks and feature fusion components On
the premise that the experimental environment and param-
eter settings are highly consistent, we have tested different
basic networks on Faster R-CNN with adding feature fusion
components, where ‘‘FF’’ represents the addition of feature
fusion. The parts and experimental results are shown below.

Through experiments, it can be obtained that a deeper
ResNet-101 is used as the basic network, and a better mAP

TABLE 6. Test results obtained for data set after establishing a screening
network.

FIGURE 7. The schematic diagram of airport object.

FIGURE 8. Comparison of the effects of prior judgment algorith.

can be obtained, with a value of 70.7%. Because it has
more convolutional layers, and the ‘‘shortcut connections’’
residual structure, it can retain better feature correlation
during the training process, avoiding the problem that the
accuracy rate drops after saturation. In addition, through
experiments, feature fusion has a better improvement effect
for deeper networks. After the feature fusion component
is added to ResNet-101, there is a 4.1% mAP improve-
ment to 74.8%. Therefore, ResNet-101 is selected as the
feature extraction basic network of the detection network,
and feature fusion detection components are added to the
network framework, and subsequent experiments are based
on this.

2. The results after establishing a screening network.
The method for determining the training samples in the

conventional manner is defined as T1, and the method
for adding screening network is defined as T2. The
results obtained after training and testing are shown
in Table 6.

The test results showed that the model after joining the
screening network improved mAP by 0.5%, and the detection
time was basically unchanged, thereby demonstrating the
effectiveness of the screening network.
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TABLE 7. Test results after using CLCM and other methods.

FIGURE 9. The schematic diagram of airport detection.

FIGURE 10. The schematic diagram of civil aviation and transport plane detection.

TABLE 8. Test results after using different basic networks.

2) THE ANALYSIS OF IMPROVED NETWORK
RUNNING RESULTS
Here we will analyze the effects individually of the above
improvement techniques through comparative experiments
and related evaluation indicators.

1. The results after using CLCM.
Here, we tested the Faster R-CNN∗ (based on the

above experimental basis) and the improved algorithm
using the same experimental environment. Where Faster
R-CNN∗+ 9 anchors(a) represents the original algorithm.
Faster R-CNN∗+ 9 anchors(b) represents that the anchors are
set by manual experience (the number of anchors is still 9).
Faster R-CNN∗+ 12 anchors represents that the anchors are
set by manual experience (but the number of anchors is 12).
The results are shown in Table 7.

It can be obtained from the experimental results that the
addition of CLCM makes the model have improved to a

certain degree in various evaluation indexes compared with
the others algorithm, including commonly used k-means
algorithm. This is mainly because CLCM uses a loss function
that is more sensitive to IoU response. The Average IoU has
the best improved effect, which has increased 8.8% com-
pared with Faster R-CNN∗, and the mAP has increased 1.8%
compared with Faster R-CNN∗, proving the effectiveness of
the CLCM. At the same time, the process of the machine
automatically fitting the 9 most suitable anchors is reflected
before the detection (or cross training) process, so it does not
produce time increase to the detection process.

2. The results after adding prior judgment algorithm.
The results are shown in Table 8 and the ROC curve drawn

by experiment is shown in Figure 8. Here, L1 represents
the CLCM algorithm, and L2 represents the prior decision
algorithm.

Figure 8 shows that after adding the prior judgment algo-
rithm, the network has a lower false positive rate at the
same true positive rate, especially when the true positive
rate is high. This is because the addition of a priori judg-
ment network makes the number of false positive samples
(False Positive, FP) less, while the number of true negative
samples (True Negative, TN) increases. At the same time,
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TABLE 9. Summary of each object test result.

FIGURE 11. The schematic diagram of helicopter and fighter detection.

FIGURE 12. The schematic diagram of oil tank and bridge detection.

FIGURE 13. The schematic diagram of multi-class object detection.

it is proved through experiments that the a priori judgment
network has brought a 3.1% increase to 80.2% mAP, and
there are also good improvements in other indicators. At the
same time, as mentioned above, because the judgment net-
work mainly brings about a decrease in FP and an increase
in TN, the recall value does not change much. Thereby
demonstrating the effectiveness of the prior judgment
algorithm.

3) THE OVERALL TEST RESULT ANALYSIS
The results of test are shown in Table 9.

Overall, the results showed that the trained model achieved
a good average precision (AP) for each type of object, and
the mAP reached 80.2% with an average detection time of
0.307s. The detection of fighters and bridges (mainly near
airports) achieved a lower detection rate mainly because there

FIGURE 14. A poor detection result.

were less remote sensing images of fighter and bridge data
compared with other objects due to some security measures,
geographical factors, and other reasons. In addition, fighters
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FIGURE 15. Schematic diagram of test results. The title of the images(like ‘‘P0033’’) is the title of the corresponding images in the DOTA
data set.

FIGURE 16. Schematic diagram of test results. The title of the images(like ‘‘P0003’’) is the title of the corresponding images in the
UCAS-AOD data set.

FIGURE 17. Schematic diagram of test results. The title of the images(like ‘‘001’’) is the title of the corresponding images in the NWPU
VHR-10 data set.

are smaller than civil aircraft so fewer pixels are present in
the high-range shooting angle, therebymaking their detection
more difficult.

4) VISUAL OBJECT DETECTION TEST RESULTS ON OUR
DATA SET AND ANALYSIS
The results obtained for various object tests are shown in
Figures 9–14.

1. Airport Detection
2. Aircraft Object Detection
3. Oil Tank and Bridge Object Detection
4. Multi-Class Object Detection
5. Example of a Poor Detection Result
The experimental results demonstrated the feasibility of

the improved model based on regional CNN for multi-class,
multi-objective, multi-view, and complex background detec-
tion in remote sensing images. The effectiveness of detec-
tion was good for most of the objects, with highly accurate
and efficient detection, but there was a problem because the

effective detection of small objects and small sample objects
needs to be improved. As shown in the right panel in
Figure 12(a), the model was not able to fully detect the oil
tank object with a small number of pixels, so this problem
needs to be addressed. In addition, the results demonstrated
the importance of the data set’s capacity, and thus building
a broader data set is one of the next steps. In addition,
understanding and correcting the poor detection of the tank
object similar to that shown in Figure 14 is a future research
objective.

5) TESTING ON OTHER DATA SETS
1. Testing on DOTA

2. Testing on UCAS-AOD
3. Testing on NWPU VHR-10
4. Testing on RSOD-Dataset
It can be seen from the diagram that the trained network

still has better detection performance for related objects in
other remote sensing data sets.
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FIGURE 18. Schematic diagram of test results. The title of the images(like ‘‘aircraft_4’’) is the title of the corresponding images in the
RSOD-Dataset data set.

TABLE 10. Comparison results of different detection methods.

6) COMPARATIVE EXPERIMENT AND ANALYSIS
Using a highly consistent experimental environment and
online published codes, some widely used networks were
used for comparative experiments. The test results are shown
in Table 10.

Through comparative experiments, it can be obtained
that the network constructed in this paper has achieved
higher mAP values compared with the currently widely
used R-FCN [25], SSD [26], Ref [24] (Faster R-CNN+
InceptionResNetv2+ TDM), YOLOv3 [27], Ref [23] (Faster
R-CNN++). The constructed network (Faster R-CNN∗)
brings a 7.8% improvement in mAP compared to the Faster
R-CNN (with VGG-16 in source code) by using deeper
ResNet-101 and feature fusion components. The improved
method brought a 4.9% increase in mAP, and only increased
the detection time cost of 0.001s. In summary, it proved the
effectiveness and significance of the constructed network and
improved methods. High detection precision can be achieved
in remote sensing airport area object detection tasks.

IV. CONCLUSION
In this study, we made improvements to the two-stage
detection method based on the Faster R-CNN algorithm
according to the specific detection object and initial experi-
mental results. The results showed that the improved network
constructed in this article obtained better detection results
with our new data set. And in other commonly used remote
sensing data sets (like DOTA), it also has a good detection
effect on related objects. The mAP was improved by 12.7%
compared with the original Faster R-CNN algorithm. In addi-
tion, our experiments showed that the current CNN is highly
dependent on the data set and the detection accuracy needs
to be improved for small objects, especially those containing
only a few pixels. Therefore, constructing a larger data set as
well as deeper construction and optimization of the network,
at the same time, on the premise of obtaining high detection

accuracy, how to reduce the detection time as much as possi-
ble, are our next research priorities.
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