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ABSTRACT Nowadays, fieldwork is often accompanied by tight schedules, which tends to strain the
shoulder muscles due to high-intensity work. Moreover, it is difficult and stressful for the disabled to drive
agricultural machinery. Besides, current artificial intelligence technology could not fully realize tractor
autonomous driving because of a high uncertain filed environment and short interruptions of satellite
navigation signal shaded by trees. To reduce manual operations, a tractor assistant driving control method
was proposed based on the human-machine interface utilizing the electroencephalographic (EEG) signal.
First, the EEG signals of the tractor drivers were collected by a low-cost brain-computer interface (BCI),
followed by denoising using a wavelet packet. Then the spectral features of EEG signals were calculated
and extracted as the input of Recurrent Neural Network (RNN). Finally, the EEG-aided RNN driving model
was trained for tractor driving robot control such as straight going, brake, left turn, and right turn operations,
which control accuracy was 94.5% and time cost was 0.61 ms. Also, 8 electrodes were selected by the PCA
algorithm for the design of a portable EEG controller. And the control accuracy reached 93.1% with the time
cost of 0.48 ms. To solve the incomplete driving data set in the actual world because some driving manners
may cause dangerous or even death, RNN-TL algorithm was employed by creating the complete driving
data in the virtual environment followed by transferring the driving control experience to the actual world
with small actual driving data set in the field, which control accuracy was 93.5% and time consumption was
0.48ms. The experimental results showed the feasibility of the proposed tractor driving control method based
on EEG signal combined with RNN-TL deep learning algorithmwhich can work with the displacement error
less than 6.7 mm when the tractor speed is less than 50 km/h.

INDEX TERMS Electroencephalographic (EEG), brain-computer interface (BCI), recurrent neural network
(RNN), assistant driving, driving robot.

I. INTRODUCTION
Agricultural machinery is popularly used in most field
operations such as tillage, harvesting, weeding, and land
preparation for improving agricultural efficiency. Whereas
the shoulder muscles of drivers are vulnerable due to the
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high-intensity repetitive operation of quick steering during
the busy farming season [1]. Furthermore, it is extremely
easy to cause fatigue driving and lead to traffic accidents
every year. Moreover, unexpected risk is increased because
of hazard working environment, extreme weather conditions
and high-intensity work due to limited crop harvesting time
which will lead to fatigue of dirvers. Besides, the tradi-
tional agricultural machinery cannot satisfy the operation of
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the disabled drivers whose proportion is about one fifth in
America.

The intelligent navigation method such as the Global Nav-
igation Satellite System (GNSS) [2], [3] was introduced to
tractor autonomous driving in the field but will fail inter-
mittently because of the satellite signal blocked by the trees
occasionally.

Machine vision navigation technology [4] as an auxiliary
navigation method was developed for covering the shortage
of GNSS but can not work all the time because of the tremen-
dous complexity and uncertainty in the farmland.

Since electroencephalogram (EEG) signal is the direct
embodiment of human brain consciousness, the auxiliary
driving method based on the EEG signal can reduce the
driver’s workload, improve work precision, avoid disastrous
consequences caused by driver fatigue operation, and provide
a feasible solution for the disabilities to drive agricultural
machinery as well.

The brain-computer interface (BCI) technology provides
a new solution for tractor assistant driving because the
BCI technology has been widely used in fatigue detec-
tion [5], [6], emotion recognition [7], [8], mental task clas-
sification [9]–[15], robot control and the disabled assistive
help [16], [17], etc. in recent years. Nowadays, BCI tech-
nology has been applied in the assistant driving of airplanes,
automobiles, and other vehicles successfully to achieve steer-
ing, U-turn control, tracking control [18]–[21], etc.

Nowadays, EEG was popularly used in actuator control
in different fields. Alyasseri, Z. A. A. proposed Flower
Pollination Algorithm (FPA) combined with wavelet trans-
formation to denoise EEG signals, extract features and clas-
sify effectively, which accuracy reached 87.69% [9]–[13].
Moreover, the improved MOFPA-WT algorithm can remove
EOG artifacts and the classification precision reached
97.5% [14], [15]. Bartosz Binias utilized EPOC+ electroen-
cephalograph combined with Common Spatial Pattern (CSP)
algorithm, band-pass filtering method, and neural network
classifiers for monitoring and enhancing the performance of
aircraft pilots [19]. In addition, EPOC+ was also used by
J. Gomez-Gil in tractor steering control with a deviation of
less than 7 cm from the standard track which shows the
feasibility of tractor driving based on EEG [21].

In this article, we proposed a tractor assistant driving tech-
nology based on the EEG signal and tested on the second
generation of tractor driving robot platform developed by our
lab [22]–[24]. The rest of the paper was organized as follows:
First, the experimental platform andmethod were introduced.
Then the signal processing, feature extraction, and control
method were mentioned. Finally, the experiments were car-
ried out and the results were discussed and concluded.

II. MATERIALS AND METHODS
A. MATERIALS
1) SUBJECT
Factors such as age, physical condition, and the fatigue level
of the subjects directly influence the experimental results.

Fifteen volunteers including 10 males and 5 females were
selected as subjects in the experiments. All subjects were all
healthy, sighted without any brain disease whose ages ranged
from 20 to 25 years old. Also, the experiments were carried
out at different times of the day for improving the robustness
of the motion intention recognition model.

2) EXPERIMENTAL SETUP
a: EEG ACQUISITION DEVICE
The EEG signals were recorded by the Emotiv-EPOC+ sys-
tem (Fig.1a), which has been applied in the tractor tracking
control by the University of Valladolid in Spain [21]. The
device has 14 electrodes to collect different areas EEG signals
on the head and the electrodes were placed according to the
10/20 electrode placement system (Fig.1b).

EEG signals were collected and processed on an industrial
computer, configured with an Intel Core i5 processor, 8G
memory, Windows 10 operating system, and a programming
environment of Matlab R2019a.

b: DRIVING ROBOT
Figure 2 shows the second-generation human-machine
cooperative tractor driving robot developed by our lab. The
structure mainly includes a steering manipulator, a shift
manipulator, a rotary tiller lifting manipulator, a break-leg, a
clutch-leg, and a throttle-leg in Figure 3. The steering manip-
ulator can control the tractor’s steering wheel smoothly. The
shift manipulator can change the gears. The clutch-leg and
break-leg are responsible for the clutch and brake operations
of the tractor. The throttle-leg is used for the gas adjustment
of the tractor. The driving robot adopts hybrid control modes,
i.e., the break-leg, clutch-leg, and rotary tiller lifting manip-
ulator are hydraulically driven and other manipulations are
electrically controlled.

In order to control the tractor more intelligently and
achieve safe and efficient operation simultaneously, the trac-
tor driving robot was controlled on the hybrid switching
mode, i.e., GNSS navigation control is preferred for the
tractor and EEG control mode will be used when the GNSS
navigation signal is lost or any other emergency cases occur.
Hence, it can relieve drivers’ work intensity and provide a
feasible way for the disabled driving tractors in the compli-
cated agricultural environment as well. This article focuses
on studying the tractor control method by EEG signal.

B. EEG SIGNAL ACQUIRING METHOD
For improving the recognition precision and model robust-
ness, the training set was built based on the experiments
carried out according to the method below. Firstly, the exper-
iments were executed at different times of a day such as
morning, noon, and afternoon for acquiring EEG data of
the subjects in different states of mind and fatigue. Second,
the subjects were trained 3 minutes before the experiments.
Finally, the experiments were conducted according to the
steps below.

163270 VOLUME 8, 2020



W. Lu et al.: Tractor Assistant Driving Control Method Based on EEG Combined With RNN-TL Deep Learning Algorithm

FIGURE 1. Emotiv EPOC+ and electrode setting. a) the Emotiv-EPOC+ system. b) 10/20 electrode placement system.

FIGURE 2. The second-generation human-machine cooperative tractor
driving robot was developed by our lab which structure is showed in
Figure 3. The subjects sat in the tractor and controlled the tractor-driving
robot based on EEG signal for straight going, brake, left turn, and right
turn.

FIGURE 3. The overall arrangement of the driving robot. Among them, 1 is
the steering manipulator, 2 is the hydraulic drive, 3 is the pedal control
mechanical leg, including a break-leg, a clutch-leg, and a throttle-leg, 4 is
the shift manipulator.

1) The subjects were led to concentrate on the experiment
by a cross shown on the center of the screen for 3 s.

2) To acquire the EEG signals of the subjects while they
creating imagery movement according to the displaying ani-
mations in the screen randomly.

3) Previous EEG signal cleaning step by 5 s relaxation was
used to attenuate the brain activity that had been generated by
the previous stimulus [8], [25].

It should be noted that step 1 and step 3 mentioned above
were not used during the test experiments. The subject made a
decision to go straight, left turn, right turn, or brake according
to the condition of the lane displayed in the screen and at
the same time, the EEG signal of the subject was collected
and processed to control the virtual car in the game. The
sameEEG signal acquiringmethodwas adopted during actual
tractor driving control using a tractor driving robot.

FIGURE 4. Imagine according to the animation content.

C. CONTROL METHODS BASED ON EEG
1) TRACTOR DRIVING MODEL BASED ON EEG IN THE
VIRTUAL ENVIRONMENT
The control model based on EEG for tractor driving was
carried out in the virtual environment for avoiding fatal dan-
gerous and financial loss during physical experiments in the
actual tractor test field.

The specific experimental steps are as follows shown
in Figure 6. Firstly, the EEG signals of the subjects were
collected by using the Emotiv-EPOC+ system followed by
denoising using a Butterworth low-pass filter. Then the fea-
tures of the power spectrum signal of driving actions were
extracted by the wavelet packet. Finally, the obtained features
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FIGURE 5. Time paradigm of EEG acquisition for a sports imagination.

FIGURE 6. The process of EEG control.

were input into the neural network to build the driving model
for tractor driving robot control such as straight going, brake,
left turn, and right turn.

a: SIGNAL DENOISING
Brainwaves associated with motor imagery are delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz),
and gamma (30-50 Hz) waves which could be captured
and processed by Emotiv EPOC+. Also, the frequency of
EMG artifact [26] caused by the sub-scalp EMG contrac-
tion is generally above 100 Hz. Therefore, the 8th order of
50 Hz Butterworth low-pass filter was used to filter out the
high-frequency irrelevant noise signals and the delta, theta,
alpha, beta, and gamma waves were extracted.

For denoising the EEG signals, wavelet transform (WT) is
a more suitable method to decompose the EEG signal into
its different frequency bands and retain the signal informa-
tion in both time and frequency domain unlike fast Fourier
transform (FFT) or short-time Fourier transform (STFT).
WT represents or approximates signals or functions through
a wavelet function system which is formed by the translation

and stretching of the basic wavelet, then characterized the
local characteristics of signals in both time and frequency
domains [27]. Besides, the transform coefficients can be
approximated to the original signal. Figure 7 shows the
detailed denoising method flow.

The continuous WT of signal x(t) is defined as:

WTx(a, τ ) =
1
√
a

∫
∞

−∞

x(t)ψ(
t − τ
a

)dt (1)

where a represents scale displacement, τ representing time
displacement, and ψ (i) is a wavelet basis function, including
Haar, db series, Coiflet, and so on.

As EEG signals are discrete signals, discrete wavelet trans-
forms (DWTs) are suitable for discrete wavelets. Compared
with the continuous WT, the DWT is to limit the a and τ of
the wavelet basis function ψ (a, τ ) to discrete points, that is,
the discretization of scale and displacement, and the discrete
wavelet basis function is ψj,k (t) = 2−

i
2ψ

(
2−jt − k

)
, where

j ∈ Z , k ∈ Z , the DWT is:

WTx(j, k) =
∫
x(t)ψ∗j,k (t)dt (2)
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FIGURE 7. The process of noise reduction method based on wavelet
transform.

By comparing popular wavelet basis functions, db series
has better orthogonality and tight support. So, dbwavelet base
is selected to better denoising effect. Since brainwaves associ-
ated with motor imagery are 5 wavebands, the decomposition
scale j is set to 4, and j performs wavelet transformation on
the signal x(t) to obtain wavelet decomposition coefficients
WTx(j, k), where k represents the position.

b: FEATURE EXTRACTION BASED ON SPECTRUM
EEG signals are time-varying and nonstationary signals,
which have different frequency elements at different times.
Besides, the signal amplitude of EEG signal is weak, and it
is easily interfered with by the external environment. So, it is
hard to analyze EEG signal using FFT. The power spectrum of
the random signal could reflect its frequency component and
the relative intensity of each component. Therefore, popular
power spectrums such as periodograms, MUSIC, and Welch
were used to characterize brain commands.

Periodograms method power spectrum treats EEG signals
in the time domain as a sequence with limited energy and
uses discrete Fourier transform (DFFT) to calculate the power
spectral density [28]. The formula for calculating the power
spectral density is:

P(ω) =
1
N
|XN |2 =

1
N

∣∣∣∣∣
N−1∑
n=0

x (n) e−jωn
∣∣∣∣∣
2

(3)

where x(n) is the data in the time domain and N is the number
of the data.

MUSIC method power spectrum is a non-parametric
method of power spectrum estimation based on matrix fea-
ture decomposition, which can suppress noise, significantly

improve the signal-to-noise ratio, and can reflect harmonic
characteristics in more detail [29]. The basic idea is to sep-
arate the signal from the noise, and the spectral estimation
calculation formula is shown below:

Pmusic (f ) =
1

eH (f ) [
N∑

k=p+1
VkVH

k ]e (f )

=
1

N∑
k=p+1

∣∣VH
k e (f )

∣∣2 (4)

wherePmusic (f ) is the power spectrum value, f is the complex
sine wave frequency, N is the dimension of the eigenvec-
tor, Vk is k-order eigenvector of the input signal correlation
matrix, p is the dimension of the signal subspace and H is
complex conjugate transpose.

Welch method power spectral is a power spectrum density
estimator that applies the periodogram, which is based on
Bartlett’s idea of splitting the data into segments and finding
the average of their periodograms. Where L is the length of
the segments, the i-th segment is denoted by x iN and the offset
of the successive sequences by samples [30]. Compared with
the periodic graph, this algorithm performs segmentation
through an appropriate window function to make the power
spectrum smoother. First, find each segment of the spectrum
estimate (5), and then average the L-segment periodic graph
to obtain the power spectrum estimate of the entire signal (6).

Pixω =
1
MU

∣∣∣∣∣
M−1∑
n=0

x iN (n) d2 (n) e
−jωn

∣∣∣∣∣
2

(5)

where Pixω is the i-th spectral estimate, M is the number of

samples in each segment, U = 1
M

M−1∑
n=0

d22 (n) is the normal-

ization factor and d2(n) is added window function.

Pwelch (ω) =
1
L

L∑
i=1

Pix (ω)

=
1

MUL

L∑
i=1

∣∣∣∣∣
M−1∑
n=0

x iN (n) d2 (n) e
−jωn

∣∣∣∣∣
2

(6)

where Pwelch (ω) is the spectral estimate of the entire signal
and L is the number of segments of the periodograms.

c: DRIVING BEHAVIOR RECOGNITION
In the BCI technology, neural networks are more suitable to
use for behavior recognition due to their powerful nonlinear
fitting and data mining capabilities, such as BP neural net-
works, Support VectorMachines (SVM), Convolutional Neu-
ral Networks (CNN), and Recurrent Neural Networks (RNN),
etc. In this article, the above-mentioned neural networks were
selected for driving behavior recognition to compare the
recognition effects and calculation consumption.

BP is a multi-layer pre-feedback neural network, includes
the input layer, hidden layer, and output layer. The learning
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process of BP neural network is a forward feedback learning
process. It is a process essentially in which errors propagate
backward while correcting the weight coefficients of each
layer. Feedback learning works through the adjustment of the
connection mode, weight, and threshold of each neuron, and
the identification of the whole network [31].

The SVM algorithm is based on the statistical learning
theory and the Vapnik-Chervonenkis dimension. It maps the
input patterns into a higher dimensional feature space through
some nonlinear mapping where a linear decision surface
is then constructed. In SVM, a kernel function implicitly
maps samples to a feature space given by a feature mapping.
But, training SVMs from extremely large and complicated
datasets is a pivotal issue due to the high time and memory
complexity of the SVM training [32], [33]. In this article,
RBF was selected as the Kernel function of SVM, the param-
eters such as c and g were optimized by going through −5 to
+5 to reach the highest cross-validation accuracy as the best
parameters.

In the CNN algorithm, the convolutional layers used are
responsible for performing the mathematical process of con-
volution on the pseudo images generated. Each of these lay-
ers is activated by the ReLU, Sigmoid, or Tanh activation
functions which determines the output value of each neuron.
While the Max pooling Layers are responsible for grouping
the original input data, and the dropout layers are responsible
for disconnecting a portion of neurons from the previous
layer to avoid overfitting in this way. The layers which are
between the input layer and the output layer are called hidden
layers whose number determines the depth of the architec-
ture. Although it is evident that the greater the depth of the
network, the greater the abstraction capacity of the network,
however, the greater depth of CNNneedsmore computational
cost to train it [34].

Multilayered architecture is a special architecture of neural
models.With respect to the direction of their connection, mul-
tilayered networks are divided into feedforward and feedback
networks. Highly nonlinear dynamic mappings can be per-
formed by RNNs and therefore have a temporally extended
application, whereas multilayer feedforward networks are
confined to performing static mappings [35]. So, RNNs are
suitable for EEG signals recognition. When processing EEG
signals, RNN takes the spectrum of EEG signal as the net-
work input and transmits the output of each layer to the
input of the next neural network layer. And at the same time,
the output of a hidden layer transmits to its input through a
recycled unit to generate its influence, and by thismeans, each
neuron in the hidden layer is recycled, as shown in Figure 8.
There is a forward connection and a feedback connection
between the neural units of the RNN network. So, the weights
are equal, the connection of each neuron is independent and
there is no connection with other neurons that contribute
to the robustness when processing time series and EEG
signals.

While tractor driving utilizing EEG control method in the
virtual environment, the subjects drove in every possible

FIGURE 8. RNN hidden layer expansion.

manner they want, including deadly and dangerous way,
to generate as complete a training set as possible.

2) TRACTOR DRIVING MODEL BASED ON EEG COMBINED
WITH RNN-TL DEEP LEARNING ALGORITHM IN THE ACTUAL
ENVIRONMENT
To improve the tractor driving performance through EEG
through the tractor driving robot developed by our lab. Trans-
fer Learning (TL) algorithm was applied to transfer the driv-
ing experience in the virtual environment to the actual-world
only with a small amount of driving experience data in the
actual environment.

Training neural networks have faced two critical prob-
lems, including expensive resources and computational costs.
Besides, the computational time to train a number of deep
learningmodels increases exponentiallywhen the deep neural
networks become deeper andmore complex. TL is introduced
to overcome the problems of expensive resources and com-
putational costs for training multiple deep learning models.
TL methodology focuses on applying the gained knowledge
of deep learning models from a trained architecture to train
another deep learning model on a different task [36].

FIGURE 9. Tractor driving model based on RNN-TL.

Specifically, a tractor driving control mode of RNN deep
neural network based on EEGwas established using the com-
plete dataset built in the virtual environment. Then transfer
learning strategy was applied by freezing LSTM layer and
Softmax layer followed by training the parameters of a fully
connected layer using the small driving data set in the actual
field as shown in Figure 9.
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FIGURE 10. Signal denoising (e.g. F3 electrode of left turn signal). a) EEG signal after low-pass filtered. b) Wavelet multi-layer decomposition. c) Wavelet
decomposition spectral characteristics.

FIGURE 11. Power spectrums of the eeg signals under different control commands.

III. ANALYSIS OF EXPERIMENTAL RESULTS
A. SIGNAL DENOISING
The EEG signals of a driver’s subject are firstly filtered
by an 8th order of 50 Hz Butterworth low-pass filter and
then decomposed by db4 wavelet packet to remove the
high-frequency noise signal d1, as shown in Figure 10.

B. FEATURE EXTRACTION
1) SPECTRIM ANALYSIS
Due to the randomness, time-variability, and vulnerable being
interfered with, the power spectrum analysis method was
introduced to extract the statistical information of EEG sig-
nals for getting the driving control intent with high precision.
The power spectrums such as periodograms, MUSIC power
spectrum, and Welch power spectrum were selected for com-
paring the signal-to-noise ratio (SNR) of EEG signal spec-
trums [37], as shown in Table 1. The Welch power spectrums
of EEG signals under different control commands are shown
in Figure 11.

TABLE 1. SNR of different power spectrums.

As shown in Figure 11, the delta is the frequency range
from 0.5 Hz up to 4 Hz, which only occurs in the cortex, and
is not controlled by the nerves in the lower parts of the brain.
The power spectrum amplitude of this band is significantly
larger in the brake and forward control EEG signals. Theta
is the frequency range from 4Hz to 8Hz, which can be seen
in meditation. The power spectrum amplitude of this band
is slightly bigger in the forward and right turn control EEG
signals. Alpha is the frequency range from 8Hz to 13Hz,
which emerges with relaxation and attenuates with mental
exertion. Besides, it can reflect the subconscious mind of
the brain. The power spectrum amplitude of this band is
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remarkably bigger in the left-turn control EEG signal. The
beta is the frequency range from 13 Hz to 30 Hz, which is
closely related to consciousness, brain activities, and motor
behaviors [38]. The power spectrum amplitude of this band is
larger in the forward and right-turn control EEG signals. The
gamma is the frequency range from 30 Hz to 50 Hz, which
carries out a certain cognitive or motor function. The power
spectrum amplitude of this band is bigger in the forward and
right-turn control signals. The spectrums of EEG signals of
the experimental results are consistent with the law of brain
wave activity [39].

TABLE 2. Comprehensive coefficient and weight of electrodes in the right
turn signal.

2) PCA
Due to the inconvenience to wear and poor experimental
comfort using 14 electrodes for EEG signal acquisition, Prin-
ciple Component Analysis (PCA) algorithm was applied to
optimize and reduce the EEG electrodes. The comprehensive
coefficient and weight of 14 electrodes e.g. in right turn were
obtained in Table 2. And the comprehensive coefficient and
weight of each pair of motion control electrodes are shown
in Table 3.

TABLE 3. The comprehensive coefficient and weight of each pair of
motion control electrodes.

The results showed that the motion signals such as brake,
forward, left-turn, and right-turn mainly reflected on sev-
eral electrodes which are AF3, AF4, F7, F8, T7, T8, F3,
and F4. Besides, the brake control command reflected on
the electrodes of AF3, AF4, and F3. The forward control
command reflected on the electrodes of AF3, F7, and AF4.
The left-turn command reflected on the electrodes of AF3,
FC5. The right-turn command reflected on the electrodes
of AF4 and T7 respectively. The contribution rate is shown
below.

C. DRIVING BEHAVIOR RECOGNITION
Before driving behavior recognition, 1000 groups of EEG
driving control signals including brake, forward, left-turn,

FIGURE 12. The average contribution rate of motion signals in each
electrode.

FIGURE 13. The roc curve of RNN-TL algorithm.

and right-turn signals were built in the virtual environment
which has 4000 EEG signals. And 750 groups of them were
applied as a training set and the rest 250 groups were used as
the testing set.

EEG signals of different numbers of the electrode were
employed for modeling of driving behavior recognition. The
comparing prediction results of the models using BP, SVM,
CNN, RNN are shown in Table 4 which demonstrates that
more electrodes lead to higher precision at the cost of more
time consumption. Moreover, the prediction precision of
RNN model is the best among that of different models. Over-
all, the scheme of 8 electrodes is the optimization in which
prediction accuracy and time consumption are 93.1% and
0.48 ms respectively. For the practical application of tractor
driving in the actual environment using EEG signal, the trans-
fer learning algorithm was employed. Firstly, 300 groups of
EEG driving control signals were built which has 1200 EEG
signals. And 200 groups of them were applied as a training
set and the rest 100 groups were used as the testing set.

According to the existed RNN model trained using the
EEG signals in the virtual environment, the LSTM layer and
Softmax layer were frozen firstly followed by training the
parameters of the Fully connected layer using the training
set of the actual environment to transfer the driving model
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TABLE 4. Comparison of different classification methods.

from virtual environment to the actual environment. Finally,
100 groups of the testing set were used for model testing
the result shows that the command recognition accuracy is
93.5% with the time consumption of 0.48 ms. The recall rate
is 93.6% and the precision is 93.8%. The ROC curve is shown
in Figure 13.

IV. DISCUSSION AND CONCLUSION
A. DISCUSSION
Firstly, the EEG signals of the subjects were collected in
the virtual driving environment without any danger to build
a complete data set by using the Emotiv-EPOC+ system
followed by denoising using 8th order of 50 Hz Butterworth
low-pass filter. Then the features of power spectrum signals
of driving actions were extracted by the wavelet packet.
Furthermore, the obtained features were input into the neural
network such as BP, SVM, CNN, and RNN to establish the
driving model for tractor driving robot control in a virtual
environment such as straight going, brake, left turn, and
right turn. Among which the prediction precision of RNN
reaches 94.5% followed by CNN with a precision of 93.9%.
Whereas the prediction of SVM and BP are only 91.6% and
91.3% respectively. And the calculation time consumption
of the RNN model only costs 0.61 ms which leads to an
8.5 mm displacement error when the tractor works at the
speed of 50 km/h.

The study of the paper is consistent with the existing
research which results show that EEG signal of a human is
available to be applied to control machines. For example,
the University of Valladolid, Spain [21] studied the control of
a tractor tracking specific trajectories based on EEG signals.
Silesian Polytechnic University in Poland [18], [19] studied
on the basis of EEG aircraft assisted driving to improve the
pilot’s accident response. Besides, the University of Tokyo
in Japan [20] using sEMG to control vehicles to achieve
different steering ranges.

To reduce the employed electrodes for improving the
user’s comfortable feeling, PCA algorithm was applied for
dimensionality reduction of electrodes. Eight electrodes were
selected which located in the anterior half of the brain, i.e.
AF3, AF4, F7, F8, T7, T8, F3, and F4. And the prediction
accuracy and time consumptions were 93.1% and 0.48 ms
respectively which only lead to 6.7 mm displacement error
when the tractor works at the speed of 50 km/h. The motor
cortex is mainly located in the central anterior gyrus of
the cerebral cortex, where electrodes of AF3 and AF4 are

located in the forehead, electrodes of F3 and F4 are located
in the frontal area, and electrodes of F7 and F8 are located
in the lateral forehead. Related studies [40] showed that
some electrode channels appear more frequently in the sub-
jects, the frontal brain area is more important under artificial
induction.

For actual employment in tractor driving control by EEG
signals in the actual world, large experimental data should
be collected when the subjects drive the tractor using EEG
signal. But it’s difficult to generate a complete dataset for
model training because some driving control will lead to
dangerous or even cause death. So, the Transfer Learning
algorithm was introduced to use not so many driving experi-
ence data in the actual environment to retrain the parameters
of the fully connected layer of the trained RNN driving
model mentioned above to transfer the EEG signal driving
mode from the virtual environment to the actual application
world.

Due to the introduction of TL, the improvement of the
model accuracy no longer limited to the objective condi-
tions of tractor experiments in the actual environment e.g.
site restrictions and natural environment. And the prediction
accuracy and time consumptions were 93.5% and 0.48 ms,
respectively, with 8 optimized electrodes which lead to only
6.7 mm displacement error when the tractor works at the
speed of 50 km/h. The results show that it can meet the
conventional requirement of tractor field operations.

In addition, relevant research showed that human move-
ments could be predicted to exceed one second in advance
before the movement occurs [41] which means that
human-computer cooperative control mode based on EEG
could compensate for human reaction delays, improve driving
safety, and reduce agricultural machinery accidents caused
by improper operation. In the meantime, EEG signal control
method can avoid accidents caused by untimely tractor brak-
ing and other unexpected conditions for incorrect recognition
of control commands or other reasons.

Moreover, the arms and legs of agricultural machinery
drivers could be moderately relaxed. Therefore, the work
intensity of agricultural machinery drivers could be reduced.
Furthermore, this article provides a feasible method for the
disabled to drive agricultural machinery.

It should be noted that: during the EEG test, the electrodes
of the electroencephalograph need to be kept wet, otherwise
the electrodes and the scalp are directly in poor contact, which
leads to large errors in the data collected by the electrodes.
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B. CONCLUSION
In this article, a tractor assistant driving control method based
on EEG signals was proposed to relieve the tight operation to
avoid shoulder muscle strain. Also, it can help the driver to
avoid misoperation when the brain consciousness and limb
movements are not consistent. Furthermore, it can contribute
to assist a disabled person to drive tractors as well.

By using deep learning algorithms, there are also many
challenges and limitations. For example, a huge dataset is
required to obtain better accuracy, but it is difficult to col-
lect huge datasets due to site constraints, environmental
influences, and other factors during tractor operation in the
actual world. Although it is convenient to build big dataset
in the virtual environment, their conditions can not be con-
sistent with each other which require subsequent algorithm
modifications.

To solve the incomplete driving data set in the actual world
because some driving manners will lead to dangerous or even
to death, RNN-TL algorithm was employed by creating the
complete driving data in the virtual environment followed by
transferring the driving control experience to the actual world
with small actual driving data set in the field. The experiments
showed the feasibility of the proposed tractor driving control
method based on EEG signal combined with RNN-TL deep
learning algorithm which can work when the tractor speed is
not more than 50 km/h and the displacement error is less than
6.7 mm.

In summary, the paper provided a novel tractor assistant
driving control method based on EEG signal and a transfer-
ring learning algorithm based on RNN to obtain a perfect
control model only using a small dataset in the actual world
and large data set in the virtual environment.
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