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ABSTRACT Fabric defect detection plays an important role in automated inspection and quality control
in textile manufacturing. As the fabric images have complex and diverse textures and defects, traditional
detection methods show a poor adaptability and low detection accuracy. Robust principal component
analysis (RPCA) model that can be used to separate the image into object and background have proven
applicable in fabric defect detection. However, how to represent texture feature of the fabric image more
effectively is still problematic in this kind of method. In addition, the use of the traditional RPCA may
result in low accuracy and more noises in sparse part. In this article, a novel fabric defect detection method
based on multilevel deep features fusion and non-convex total variation regularized RPCA (NTV-RPCA) is
proposed. Firstly, the image representation ability is well enhanced through multilevel deep features extracted
by a convolutional neural network. Then, the non-convex total variation regularized RPCA is proposed in
which total variation constraint significantly reduces the noises in sparse part and non-convex solution is
more approximate to the authentic one. Next, multilevel saliency maps generated by the sparse matrixes
are fused via RPCA to produce a more reliable detection result. Finally, the defect region is located by
segmenting the fused saliency map via a threshold segmentation algorithm. Qualitative and quantitative
experiments conducted on two public fabric image databases demonstrate that the proposed method improves
the adaptability and detection accuracy comparing to the state-of-the-arts.

INDEX TERMS Fabric defect detection, multilevel deep features, RPCA, total variation regularization,

non-convex.

I. INTRODUCTION

Detection of fabric defect is an essential task in textile man-
ufacturing, as the presence of defects in fabrics can lead to
significant loss, e.g. 45%—65% reduction in sales price [1].
However, in many production lines inspection of fabric defect
is still conducted visually by workers, whose skill and ability
play crucial role on the efficiency of detection, and the perfor-
mance can be influenced by many factors, e.g., visual fatigue
of the workers. Automated detection of fabric defect based
on machine vision technology can provide the objective,
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stable and reliable performance in defects examination, and
hence has become a research focus. However, most exist-
ing methods can only be used for the limited types fabrics,
and it is hence imperative to further study this topic by
development of new methods with improved adaptability and
accuracy.

Existing machine vision methods can be classified into
two categories according to their suitability to the type of
fabric texture. The first category of methods are devised
for unpatterned fabric image as shown in Fig 1(a), includ-
ing statistical-based method [2], spectral analysis-based
method [3], [4], model-based method [5], [6] and dictionary
learning-based method [7], [8], etc. These methods work well
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FIGURE 1. Fabric images: (a) Unpatterned fabric images, including plain
fabric, twill fabric and plain weave fabric respectively; (b) Patterned fabric
images, including box-, star- and dot-patterned fabric respectively.

for simple plain and twill fabric images, but not for fabric of
complex texture, and hence they can not be directly applied
to patterned fabrics. The second category of methods are for
fabric image with patterned texture, as shown in Fig 1(b),
including Elo rating method [9], Motif-based method [10],
and convolutional matching pursuit (CMP) dual-dictionary
method [11], etc. These methods localize the defect using
template-matching approach, requiring use of a suitable tem-
plate and precise alignment. Recently, deep learning tech-
niques, particularly convolutional neural networks (CNNs),
have achieved excellent performance on image classification,
localization and detection. This has inspired great efforts to
apply CNNs to classification and localization of defect in
fabric images. However, there is not much work reported
yet in literature for CNNs based defect segmentation and
detection. This is principally because thousands of training
images with pixel-level annotations are still scarce in fabric
defect detection tasks yet.

Robust principal component analysis (RPCA), also known
as low-rank decomposition model, is an effective tool
to separate an image into low-rank part and sparse
part. The non-defective backgrounds of fabric images are
macro-homogeneous and highly redundant, and they can be
treated as the low-rank subspace. In contrast, the defec-
tive areas are sparse, deviating from the low-rank sub-
space. Therefore, the low-rank decomposition model can
naturally be used for fabric defect detection. A few meth-
ods have been proposed based on this idea and achieved
good results [12]-[15]. However, further improvement is still
required, as fabric images may be contaminated by various
noises and interferences, which are also sparse in nature
and hence may be falsely detected as defects by low-rank
decomposition model. A couple of techniques [16], [17]
were proposed to solve this problem by integrating the total
variation model (TV) into RPCA to improve the detection
performance. However, the total variation model is solved by
convex surrogate, which will result in significant deviation
from the original solution.
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In addition, effective feature characterization of the fab-
ric plays an important role for the performance of above
mentioned low-rank based detection methods. The reason
is that a good feature descriptor can effectively separate
the background part and the sparse defect part. Traditional
handcrafted feature descriptors are used in the above men-
tioned RPCA based detection methods, such as Gabor fea-
ture, HOG (Histogram of Gradient) feature to characterize
the fabric texture. These feature descriptors are designed
for the specific task and not able to adapt to the texture
changes. As the convolutional layers in CNN resemble simple
and complex cells in the human visual system, and fully
connected layers act like higher-level inference and decision
making [18], CNN is a powerful method for automatically
leaning feature representations. Therefore, it is a consensus
that features extracted using CNNs are highly versatile and
superior to traditional handcrafted feature descriptors. In gen-
eral, the high-level convolutional layers abstract more seman-
tic information, which are good at category classification,
but weak in shape and location. While, the low-level and
the mid-level convolutional layers have a higher resolution
and can generate sharp and detailed boundaries. Therefore,
different convolution layers focus on describing the different
characteristics. In the proposed method, the fabric texture will
be characterized by fusing multilevel deep features, leading
to improvement in the representative capability to distinguish
the defect from background.

In order to learn robust feature representation and to
cope with the noise contamination for fabric defect detec-
tion, a method based on multilevel deep features fusion and
non-convex total variation regularized RPCA (NTV-RPCA)
is proposed. The main contributions of this article can be sum-
marized as follows: 1) Multilevel deep feature are extracted to
characterize the complex and diverse fabric texture. 2) RPCA
is used to separate the defect from background. 3) The
non-convex total variation regularized term is integrated into
RPCA model to detect fabric defect, which is advantageous
by reduction in noise and improvement in the accuracy.
4) A novel fusion strategy based on RPCA is presented to
improve the detection results.

The remainder of this article is organized as follows:
Section II briefly reviews the related work for fabric defect
detection. Section III presents the details of the proposed
method. In Section IV, the performance of the proposed
method is comprehensively evaluated. Section V summarizes
our research work.

Il. RELATED WORK

A. FABRIC DEFECT DETECTION

Existing fabric defect detection methods based on machine
vision can be roughly divided into two categories according
to the types of fabric, i.e., the methods for unpatterned fabric
images with simple texture and the techniques for the pat-
terned fabric images with complex texture. The methods for
the plain and twill fabric include statistical-based methods,
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spectral analysis methods, model-based methods and dictio-
nary learning-based methods.

The main idea of the statistical-based method is to divide
the test image into blocks, and each block is assessed by
measuring its statistical properties, i.e., the texture features,
such as texton feature [2]. Then, the image blocks containing
defect will exhibit different statistical properties. However,
it is difficult to extract appropriate statistical feature and such
methods are sensitive to scale changes in the fabric texture.

Spectral analysis methods transform the test image into a
spectrum domain, and then detect the defect by computing the
energy of filter responses [3], [4]. The performance of these
methods depends on the filter banks selected and the type of
the defect.

The model-based methods detect fabric defects by mod-
eling and parameter estimation. In [5], Markov ran-
dom fields (MRF) is used as the texture model and a
Karhunen-Loeve transforms are proposed for defect detec-
tion. Susan and Sharma [6] used a non-extensive entropy
calculated by Gaussian mixture model as the regularity index
to detect the defects. However, the model-based methods are
difficult to be implemented due to the high computational
complexity.

Dictionary learning based methods use labeled samples to
train defect classifiers. Tong ef al. [7] proposed a non-locally
centralized sparse representation model to estimate the
non-defective class. However, the accuracy of detection is
affected by the sparse coding model and small defects are
difficult to detect. Sezer et al. [8] used independent com-
ponents approach to detect defects on raw textile. However,
the method does not work well for twill and plain weave
fabric.

All methods described above were developed and can work
for certain plain and twill fabric images. However, they can
not be used for patterned fabric because of the complexity and
sophistication of patterned fabrics texture. Recently, several
approaches have been proposed for patterned fabric, such as
Elo rating method, Motif-based method, and convolutional
matching pursuit (CMP) dual-dictionary method.

Tsang et al. [9] proposed an Elo rating (ER) method to
detect the patterned fabric defect by the idea of sportsman-
ship, i.e., fair matches between the image block in a test
image. The test image is divided into image blocks with a
standard size, and then the matches between various patches
will be updated by an Elo point matrix, and the image blocks
can be classified into defect blocks or defect-free blocks.
However, the performance of the method relies on partition
size and the number of randomly located partitions.

Motif-based method [10] assumes that the patterned tex-
ture can be divided into lattices. Then the symmetry property
of motifs is utilized to calculate the energy of moving sub-
traction and its variance among different motifs. By counting
the distribution of defective patch and defect-free patterns,
the threshold for discriminating defective and defect-free pat-
terns can be determined. However, this method cannot detect
small defect whose size is smaller than the partitioned lattices.
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Jing et al. [11] proposed a convolutional matching pur-
suit (CMP) dual-dictionary method for patterned fabric defect
detection. A set of defect-free image blocks are selected as a
sample set by sliding window. Subsequently, dual-dictionary
and sparse coefficients of the defect-free sample set are
obtained via CMP and the K-singular value decomposition
(K-SVD). Then the projections of defect-free and defective
fabric image on the dual-dictionary are used as features for
defect detection. Finally, the test results are determined by
comparing the distance between the features to be measured.
However, this method requires a set of defect-free image and
is sensitive to the size of blocks.

Based on the above analysis, the methods based on
machine vision are more objective, stable and reliable than
the traditional manual method. However, when applied for
unpatterned fabric, these methods have an unstable perfor-
mance and are sensitive to the selection of parameter. The
methods designed for patterned fabric images usually require
defect-free samples to train, or choose a suitable template,
thus they are lack of adaptability and will be restricted to
specified type fabric.

B. CNN BASED FABRIC DEFECT DETECTION

Deep convolutional neural network has demonstrated itself
as a powerful tool for image classification, localization and
detection with the promotion of Large Scale Visual Recog-
nition Challenge (ILSVRC) [19]. Recently, deep learning
has also been used for fabric defect localization [20], [21].
For fabric defect detection, namely as defect segmentation
which is to tackle pixel-wise object instance segmentation,
there is not much work reported yet, because collecting large
numbers of fabric defect samples with pixel-level labels,
especially for some rare types fabric, is extremely difficult in
practice. Actually, the key to the success of deep learning lies
in a well-designed convolutional neural network. Such a net-
work has been deemed as a feature extractor with a stronger
versatility and portability than traditional handcrafted fea-
tures. Besides, the key advantage of deep learning is that
these layers of features are not designed by human engineers.
They are learned from data using a general-purpose learning
procedure, thus reducing the dependency of specific domain
knowledge and complex procedures needed in traditional
feature engineering. Inspired by this, we employ activations
of CNN as descriptor to represent fabric images.

C. RPCA BASED FABRIC DEFECT DETECTION

A series of RPCA based methods have been proposed for
fabric defect detection. Li et al. [12] introduced dictio-
nary learning into RPCA, i.e. low-rank representation (LRR),
which can retain certain edge and texture information and
hence can accurately detect saliency defect. Cao et al. [13]
proposed to use prior knowledge guided least squares regres-
sion. In this work, an 8-dimension texture feature is used for
characterizing the fabric image, local prior learnt from local
texture features is incorporated into LRR to further guide and
improve the detection. In [14], a feature descriptor DERF
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FIGURE 2. Flowchart of the proposed method.

derived from the biological modeling of P ganglion cells
is utilized to improve the representation of fabric images.
Meanwhile, Laplacian regularization is integrated in LRR
to further enlarge the gaps between defective regions and
the background. In [15], a spatial pooling strategy is uti-
lized to improve the discrimination ability of an efficient
second-order orientation-aware descriptor GHOG. Then the
nuclear norm in RPCA is surrogated by a non-convex log
det, which can improve the efficiency. In [36], a second-order
multi-channel feature extracted by modeling P-type ganglion
cells in the primate retina is proposed to characterize the
fabric texture. Then, a joint low-rank decomposition method
is utilized to model biological visual saliency and detect
defect.

In fact, the performance of RPCA based fabric defect
detection depends on the effectiveness of feature descriptor
and RPCA model. However, the above methods still use tradi-
tional handcrafted feature descriptor to characterize the fabric
texture, which is not sufficient for the fabric image with com-
plex texture. In addition, the existing RPCA model may result
in additional noises in the sparse part. Meanwhile, traditional
machine-vision methods cannot handle all types of fabric
images, while CNN based methods still only study the defect
classification or localization currently, due to the lack of a
large number of fabric defect samples with pixel-level label.
In order to overcome or alleviate these problems, we proposed
a new method based on multilevel deep features fusion and
NTV-RPCA in this work.

lll. THE PROPOSED METHOD
The novel method proposed is based on multilevel deep fea-
tures fusion and NTV-RPCA, which can be divided into five
steps, as described in Fig.2.

To begin with, multilevel deep features are extracted by
retrained VGG16 [22] and they will be employed to represent
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the fabric image. Then, the deep feature maps are partitioned
into multiple regions by overlapping uniform partition, and
the feature vectors of each region will be aggregated to
generate the deep feature matrix of the image. Subsequently,
RPCA model is used to separate the deep feature matrix into
the redundant matrix representing background and the sparse
matrix representing defect. Meanwhile, the non-convex total
variation term is integrated into RPCA model to further
improve the detection performance. Besides, the multiple
saliency maps generated from various convolutional layers
are fused via RPCA model to combine their advantages and
obtain a better result. Finally, the detection results can be
obtained by a threshold segmentation operation.

A. MULTILEVEL DEEP FEATURE EXTRACTION

Feature extraction is crucial for the fabric defect detection
based on RPCA model. The traditional handcrafted fea-
ture descriptors require careful engineering and consider-
able expertise, which are usually only devised for specific
kind of images. In other words, they cannot adapt to fabric
images with different texture pattern. As a powerful feature
extraction method, convolutional neural networks can auto-
matically learn hierarchical and representative features via
a layer-to-layer successive propagation pipeline. As CNNs
are originally inspired by biological neural network, it is a
natural choice to build a feature extractor for visual saliency.
So, deep features extracted by CNNs have been proved to
exhibit stronger versatility and portability than the traditional
handcrafted features. Therefore, the feature extraction based
on CNNs will be utilized in this article.

The performance of feature extraction by CNNs requires a
well trained neural network, and it needs tens of thousands
or even millions of labeled images. However, there is not
a public fabric defect database with enough labeled images
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to support training a new network. Since ImageNet database
has a large number of images, among which many are with
complex texture similar to fabric images, we can transfer
a model pre-trained over the ImageNet database to fabric
image [23]. Specifically, we will adopt a typical transfer
learning approach that only retraining the last fully connected
layer of a pre-trained model.

Considering that VGG16 network is advantageous by
higher expansibility than other CNN models, we adopt
VGG16 network as the pre-trained model to extract deep fea-
tures from the input fabric images. The 13 activations layers
of VGG16 network corresponding to 13 feature extractors
will be used to extract feature respectively. LeCun et al. [24]
pointed out that the learned features in the first layer typically
represent the edges at particular orientations and locations
in the image, like a Gabor filter bank extracting low-level
features, while subsequent layers detect objects as combi-
nations of these detailed parts. The feature extracted from
the deeper layers corresponds to the abstract feature of input
image including the semantic properties, which are suitable
to locate the salient regions. The feature at shallow layers
contains the spatial structural details, which is suitable to
locate boundaries. For fabric defect detection, the features
extracted from the shallower layers are more important than
the deeper layers for fabric defect detection.

Since the size of feature map is inconsistency due to
convolution and pooling operations in VGG16, we should
resize each feature map to make them the same size as the
input images. Then for each pixel, the deep feature is formed
by concatenating activations from feature maps at the same
location of the pixel. Let f; be the feature vector of each pixel
extracted from the fabric image

-5 Xit] ey

where i = 1,2,---,N x N, NxN is the image size. xj
indicates the activation taken from the /y, resized feature maps
of a certain convolutional layer at the iy, pixel.

In order to construct feature matrix, deep feature maps are
divided into the image blocks with the same size np, X np. For
each segment Ry, where k = 1,2, --- , Np, Np is the number
of image block, and the mean of feature vectors fk within this
segment is regarded as the feature of this image block.

fi=lxi, x2, ..

Jo=——""" @

Then the deep feature matrix can be formed by stacking the
feature of all image blocks.

F=1[fi.fo . fw,] 3)

B. SALIENCY INFERENCE WITH NON-CONVEX TV-RPCA

As fabric is woven by warp and weft in a particular way, and
the defect breaks this regularity, so the background of a fabric
image always can be considered as a highly redundant which
lies in a low dimensional subspace, while the defect is always
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different from the background and usually occupies areas of
small size, which implies sparse. Therefore the RPCA can be
used at dealing with the task of fabric defect detect, and it can
be implemented by the following two steps, namely, model
construction and model solution.

1) MODEL CONSTRUCTION
The RPCA can be realized through minimizing the following
problem:

min L]l +y ISl st F=L+S “

where F is the deep feature matrix extracted from a certain
convolution layer, L is a low-rank matrix representing the
background, S is a sparse matrix indicating the defective
object, y is used to balance the effect of the two terms. |||,
denotes the nuclear norm which is defined as the sum of the
singular values of the matrix, ||-||; denotes the /; norm defined
as the sum of the absolute value of all entries.

However, fabric images are easily contaminated by noise
derived from camera sensors and background clutters. The
noise mainly include Gaussian noise or impulse noise that
also possess sparse property, thus if we utilize the traditional
RPCA in (4), both the defect and noise are easy to be sep-
arated into matrix S simultaneously, making it difficult for
the defects to be detected. Therefore, effective separation of
defect and noise is a great challenge for fabric defect detection
based on RPCA.

As an effective approach for denoising images and videos,
total variation norm (TV-norm) is able to suppress discontinu-
ous changes, preserve the edges and spatially promote piece-
wise smoothness. Inspired by this, we integrate TV-norm
into the RPCA model to detect defects and denoise simul-
taneously. The model is denoted as TV-RPCA, and can be
described as follows.

min L]l + v ISl + AlISlzy st F=L+S )

where ||-|| 7y is a total variation regularization, 8 is a weight-
ing parameter whose role is identical to y.

The convex total variation regularization function ||S||7y
has two cases: one is isotropic form ||S||¥‘”,, the other is
anisotropic form |[|S ||‘}’{,i. And they can be defined as [|DS||, ;

and ||DS||; respectively.

m?

i 2
ISP - = D> \IDSP +|DyS|” = IDiSl2,  (6)

i

I
<

Rt

ISI%Y : =) " IDeS|+|DyS| = DS, (7

1

where D, and D, denote the first-order forward finite-
difference operators along the horizontal and vertical direc-
tions respectively. D; = [Dy; Dy] represents a two row matrix
formed by stacking the iy, row of Dy and D, Dju"e¢ denotes
the first-order difference of S at each pixel i in both horizontal
and vertical directions.
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Among approaches for solving TV-norm, Split Bregman
iteration [26] can transform a constrained optimization prob-
lem to a series of unconstrained ones, and achieve the highest
efficiency. However, such method belongs to the convex reg-
ularization, and /» ; norm is for isotropic case and /; norm
is for anisotropic case. The common drawback derives from
such relaxation may make the solution significantly deviate
from the authentic solution. In order to improve the solution
accuracy, we integrate non-separable non-convex TV regu-
larizations into TV-RPCA model with both anisotropic and
isotropic cases, and we call it as the non-convex total varia-
tion regularized RPCA (NTV-RPCA). This can be solved by
minimizing the following objective function:

min (LI, + Y ISIy + BISIxry 5.0 F =L+S ()

where ||-||y7v is the non-convex TV regularization based on
the Moreau envelop and minimax-concave penalty [27], [28].

2) MODEL OPTIMIZATION
In order to split the energy function, we introduce an auxiliary
variable J = S.

F=L+S§

min L1+ y ST+ B Wiy s ©)

Thereafter, alternating direction method of multipli-
ers (ADMM) is employed to solve problem (9). The aug-
mented Lagrangian function of problem (9) is rewritten as
follows.

L(L,S,J. Y1, Y2, )
= LI+ ¥ ISy + B 1 lygy + (1. F~L = S)
"
+ SUF=L = SIE+ 1S = JIE) + (V2,8 =)

1
= L+ v ISl + B I v — E(IIYHI% + 172117

Y 2 2

F—L-§ + — ) (10)
HlF F

where Y] and Y, are the Lagrange multiplier matrices, (-)

represents the inner product, ||-||r denotes the Frobenius

norm and p is a positive penalty parameter. In addition to the

Lagrange multipliers, there are three variables, i.e. L, S and J.

It is difficult to hard to make a joint optimization over them

simultaneously. So we approximately solve it in the manner

of minimizing one variable with others fixed. The detail of

optimal iteration is as following:

"
+2(

Y,
+s—r+2
7

a: UPDATING L WITH THE OTHER VARIABLES FIXED
the solution of L at the (k + 1)y iteration L¥T! can be
obtained by solving the following sub-problem:

L = argmLinL (L, VAT 3 ) Mk>

2
Yk
— argmin L], + S(|F-L —s* + 1| )
L 2 7
F
2
! . Yk
=argmin — Ll + 5 |L = (F =S" +—)| D
L 2 K
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Such sub-problem had been solved by the Singular Value
Thresholding (SVT) directly [29].

b: UPDATING S WITH THE OTHER VARIABLES FIXED

the solution of § at the (k + 1) iteration S+l can be
obtained by solving the following sub-problem:

Sk+1

= argmin L (L5 s 0% vh vE, k)

argmin y Sl + (v}, F = 1+ =)
2 2
R R R e
2 F F

.Y
= argmin — || S
gmi 2MII ¥

1 1 k k
+—HS—E(J’<+F—L’<“+(Y1 —Yz)/u) (12)

2

Such sub-problem had been solved by the Soft Thresh-
old (ST) directly directly [30].

2
F

c: UPDATING J WITH THE OTHER VARIABLES FIXED
the solution of J at the (k 4 1), iteration J*t! can be
obtained by solving the following sub-problem:

J = argmjin L (LH],SHI,J, Y1k7 Yé‘, Mk)

2

Y
s+ =
w

ik
argrnjin B I v + EX

F
2

13)
F

Yk
J—(sH M—i)

B
2o Z
argmin - M llnry + 5

To be convenient for description, such non-convex
TV-norm (NTV) denoising model (13) can be written as:

1
min Apa () + > lu = f13 (14)

where ¢y 4(-) = |||llyyy is the minimax-concave penalty
function of (6) or (7), g represents either the /1 or l | norm
that correspond to anisotropic and isotropic case respectively.
Such problem is convex when 0 < o« < 1 / A, and it will
reduce to standard TV-norm denoising model when o = 0.
Such sub-problem can be solved by forward-backward
splitting (FBS), and details of FBS can be reviewed in [31].

d: UPDATING Y., Y, WITH THE OTHER VARIABLES FIXED
Update the Lagrange multipliers Y and Y>
Y]k+1 — Ylk +Mk(F _Lk+1 _ Sk+l) (15)
R AR AR A (16)

e: UPDATING 1« WITH THE OTHER VARIABLES FIXED

Update the penalty parameter p

pE = min(upmay, o) (17)
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After repeated iterations, we can obtain the optimal value
until reaching the stop condition:

[P =i —Sk+1HF/||F||F < tol (18)

Motivated by the afore-discussed considerations, the
pseudo-code of minimizing the Lagrangian function of (9)
using ADMM is summarized in Algorithm 1

Algorithm 1 Solving NTV-RPCA by ADMM
Input: fusion feature matrix F'; parameters y > 0, 8 > 0;
Initialize: L = $° = J° = 0y) = oY)
F/max(|Fll2, y 'IFllo) -u° = 125/1Fl2 wfimax
wl107,p = 1.5,k = 0,0l = 10°
while not converged do

1) Update L¥+! using (11);

2) Update S¥*1 using (12);

3) Update J¥*! using (13);

4) Update the Lagrange multipliers Y{**!, ¥,F*1 using

(15) and (16);

5) Update the penalty parameter <! using (17)

6) Check the stop condition (18);

7 k=k+1,
end while
Output: The optimal solution S¥*!

C. SALIENCY MAP GENERATION

After generating the final spare component S*, the saliency
score for the R; image block can be obtained by the /; norm
of the j;, column of S*:

m(l) = [[S*C. )|, 19)

The higher saliency score m(/;) indicates the higher prob-
ability for the image block to belong to the defect. Then,
the corresponding saliency map m is generated according to
the spatial position relation.

D. MULTILEVEL SALIENCY FUSION

For each convolutional layer, we can obtain one saliency map
with the above process, and multiple saliency maps can be
obtained correspond to different convolutional layers. Based
on the above analysis, saliency map generated by any single
convolutional layer may fail in capturing the intrinsic salient
defect regions. In order to achieve reliable saliency detection,
we propose to use an adaptive fusion strategy via RPCA.

To compute the adaptive fusion weights, each saliency
map, which is a data matrix, will be firstly converted to a row
vector respectively, and then we stack all the vectors to form
a saliency indication matrix F. Because the saliency maps
generated from different convolutional layers are similar, F
is of low-rank. We can model this using the RPCA:

min rank(L) + y HSHO st.F=0+8 (20)
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where each row S; of § represents the disparity of the cor-
responding saliency map. The larger the S; is, the more
inconsistent this saliency map is with others, and so the
corresponding saliency map m; should be endowed with a
relatively small weight. The weight w; can be calculated as

follows.
2
~ exp <— 1)
- 2
> exp (— 1)

Then the final saliency map using multilevel saliency maps
can be obtained by

A

S;

i

Si

M = Zwi - my (22)

E. SALIENCY MAP SEGMENTATION

Since the defective regions always occupy smaller part of
the entire saliency map, a threshold operation can be used to
estimate the upper and lower boundary of the threshold value,
which is given by the following equation

T=uxco (23)

where c is a constant, i and o are mean and standard devia-
tion of pixel values in the saliency map.

Finally, the segmentation results can be obtained by a
binary image M to locate the defect regions.

M(i,j) _ {O, I ccr. <M(,j) < u+co 24)
255, otherwise
IV. EXPERIMENTAL RESULTS
A. EXPERIMENTS SETUP
1) DATASET
Two fabric databases are selected to implement compre-
hensive evaluation of the proposed methods. One is the
TILDA fabric images dataset [32]. constructed by work-
group on texture analysis of German Research Council,
and it includes 284 plain or twill fabric images with sim-
ple textures. The other is from the Research Associate of
Industrial Automation Research Laboratory, Department of
Electrical and Electronic Engineering, Hong Kong Univer-
sity. It mainly includes patterned fabric images with com-
plex texture from the star-, box- and dot-patterned fabric.
Among them, the star-patterned fabric database contains
25 defect-free and 25 defective images, the box-patterned fab-
ric database contains 30 defect-free and 26 defective images,
and the dot-patterned fabric database contains 30 defect-free
and 30 defective images. Noted that only the patterned fabric
images have corresponding ground-truth images, which are
treated as standard criterion.

2) IMPLEMENTATION DETAILS

First, we transfer domain-specifically VGG16 to adapt to our
fabric databases by replacing the original softmax layers with
2-way outputs, namely belonging to defective image or not.
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Then, the transfer learning is carried out by stochastic gradi-
ent descent with a batch size of m=200, momentum of 0.9,
and weight decay of 0.0001. The learning rate is initially set
to 0.0001 and is decreased by a factor of 3 when the validation
set accuracy is stabilized. Then, for the saliency inference
model, the model parameters y and B are empirically set to
0.002 and 0.01 respectively, and constant ¢ in the threshold
operation is set to 0.27.

All parameters are kept fixed for all the experiments to
demonstrate the robustness and stability of our method. The
simulation is performed in matlab2018b, running on a PC
with an i7-8750H CPU accelerated by a NVIDIA GeForce
GTX 1080 GPU.

3) EVALUATION CRITERIA

To perform a comprehensive evaluation, statistical parame-
ters are introduced to verify the performance, including true
positive (TP), true negative (TN), false positive (FP), false
negative (FN). Where true positive is the number of defective
periodic blocks identified as defective; true negative is the
number of defect-free periodic blocks identified as defect-
free; false positive is the number of defect-free blocks identi-
fied as defective, and false negative is the number of defective
blocks identified as defect-free.

Based on the above parameters, evaluation criteria are
applied, including: Accuracy ACC = (TP + TN)/(TP +
FN + FP + TN), true positive rate TPR = TP/(TP + FN),
false positive rate FPR = FP/(FP 4+ TN), positive pre-
dictive value PPV = TP/(TP + FP) and negative predic-
tive value NPV=TN/(TN + FN) are adopted in this article.
Moreover, curve metrics, including receiver operating char-
acteristic (ROC) curves and precision-recall (PR) curves, are
also shown based on the above evaluation criteria, and the
AUC (Area Under ROC curve) score is reported given from
ROC curve. It should be noted that because of the lack of
ground-truth in the TILDA fabric database, the above quan-
titative evaluation will only be conducted for the patterned
fabric databases.

B. ABLATION STUDY

1) COMPARISONS OF DIFFERENT CONVOLUTION LAYERS
The activations of each convolutional layer are employed
to form deep feature. The features derived from different
convolutional layers range from Conv1-1 to Conv5-3, which
are used to characterize the multilevel deep features. Among
them, the shallow layers of VGG16 act like a Gabor filter
bank, which can extract low-level contrast information. The
deeper layers with receptive field of entire image represent
high-level semantic information, but have low discriminabil-
ity for pixels. Due to the limited space, we will only show
the saliency maps generated from the top 9 of convolutional
layers, as presented in Fig. 3. The first column is the original
image; the second column to the last column are the generated
saliency map using the Conv1-1 to Conv4-2, respectively.
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FIGURE 3. The saliency maps of different convolution layers.

Precision-Recall Curve

Convl_1

o
©
T
|
|

nd
o
T

Precision
o
(9]

N
~
T

0 | | I | I
0 0.1 02 03 04 05 06 07 0.8 0.9 1

Recall

FIGURE 4. The PR curve of results from different convolution layers.

It can be seen that the shallowest and the deepest convolu-
tion layers shown in Fig.3 yield the worse results, while the
intermediate layers achieve better results. Therefore, we can
conclude that the layers higher than Conv4-2 cannot generate
the good detection result. We also find that, from different
convolution layer, the best result for different image is gener-
ated. For example, the best detection results for the first image
come from Conv3-3, but the best results for the last image
come from Conv3-1.

In order to perform a quantitative evaluation, the PR curve
of different convolution layers in patterned fabric database is
shown in Fig.4. From this figure, we can see that Conv2-2
achieves the best performance, and the intermediate lay-
ers outperform other layers. This verifies the discussion
in section III-A that shallow and intermediate layers are
more important than deep layers for characterizing the fabric
texture.

Through quantitative and qualitative experiments, we can
see that a single convolution layer is not able to efficiently
generate the best detection result for all kinds of fabric image.
The results of each convolution layer are complementary to
others, and so different convolution layers should be fused to
improve the detection results.
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2) COMPARISONS WITH HANDCRAFTED FEATURES

In this section, deep features extracted by VGG16 will fur-
ther make a comparison with other frequently-used low-level
handcrafted features, such as Gabor, DAISY, HSOG and LBP.
We will directly use ROC curve to perform the qualitative
evaluation of these features. Meantime, we only use Conv2-2
layer feature to compare with the handcrafted features. The
detection results are shown in Fig.5. It can be seen that even
if one layer feature is significantly superior to all the hand-
crafted features, which demonstrates the substantial superi-
ority of deep features.

ROC

True positive rate

0 I I I I I
0 0.1 02 03 04 05 06 07 08 09 1

False positive rate

FIGURE 5. The PR curve of results from deep and handcrafted features.

In addition, we adopt the AUC to evaluate the detection
result, as shown in Table 1. We can see that the deep feature
achieves better performance than other handcrafted features.
Because we only adopt one layer feature Conv2-2, it is
expected that the performance can be further improved by
fusing multilevel deep features,

TABLE 1. Comparison of saliency detection performance using different
features.

Gabor
0.8708

DAISY
0.7105

HSOG LBP
0.6985 | 0.5100

Features | Conv2_2
AUC 0.9356

3) COMPARISONS OF SALIENCY INFERENCE MODELS
In section I/I-B, a saliency inference model NTV-RPCA
is proposed to detect the defect saliency map. To validate
its effectiveness, we compare our proposed model with the
other four models: 1) original RPCA; 2) isotropic TV reg-
ularized RPCA (ITV-RPCA); 3) anisotropic TV-norm based
RPCA (ATV-RPCA); 4) non-convex isotropic TV regularized
RPCA (NITV-RPCA); 5) non-convex anisotropic TV-norm
based RPCA (NATV-RPCA). In addition, we consistently use
Conv2-2 of VGGI16 to extract features consistently for the
sake of fair comparison, and the results are shown in Fig.6,
where the first row is the original image and the last five
rows correspond to the saliency map generated from RPCA,
ITV-RPCA, ATV-RPCA, NITV-RPCA and NATV-RPCA
respectively.

From Fig.6, it can be concluded that TV-RPCA can con-
sistently improve the results computed using RPCA across
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FIGURE 6. Detection results for the unpattern images and pattern fabric
images with five configurations. The first row is the original image,
detection results of RPCA, ITV-RPCA, ATV-RPCA, NITV-RPCA and
NATV-RPCA are listed from the second row to the sixth row.

all the two databases due to the integration of total variation.
Then because of the technology of non-convex TV, the results
of NTV-RPCA can significantly reduce noise and enhanced
outline information of defects when comparing with RPCA
and TV-RPCA, especially NATV-RPCA on the patterned
fabric images database.

095
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FIGURE 7. Curves from top to bottom correspond to ROC and PR
performance of five configurations on patterned fabric dataset,
respectively.

In order to further demonstrate the efficiency of our pro-
posed model, the ROC curve and PR curve, comparisons
of five configurations on patterned fabric dataset are shown
in Fig.7. We can conclude that that results of NATV-RPCA
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TABLE 2. Average evaluation results (%) for each defect type of box-, star- and dot-patterned fabric images datasets.

Patterned fabriC Defect! BrokenEnd Hole Netting Multiple ThickBar ThinBar Knots
Methods ACC TPR FPR PPV NPV[ACC TPR FPR PPV NPV[ACC TPR FPR PPV NPV[ACC TPR FPR PPV NPV[ACC TPR FPR PPV NPV[ACC TPR FPR PPV NPV
WGIS [14] 74.85 36.39 24.43 2.94 98.40(74.17 31.17 25.52 0.92 99.31]73.77 33.00 25.68 1.28 98.87(75.32 49.08 24.24 4.30 98.77|75.33 26.90 24.20 1.02 99.07| - - - - -
TDVSM [37] 41.31 57.24 59.24 3.27 96.46/41.08 62.04 59.08 0.77 99.32|45.17 65.32 55.23 2.27 98.50(45.87 73.88 56.09 8.44 96.00|42.64 61.22 57.54 1.04 99.10 -
HOG [44] 94.08 935 1.60 22.99 95.51(97.17 11.39 1.81 6.97 98.94|94.68 8.62 1.77 16.74 96.30(93.56 4.21 1.80 10.85 95.17|91.97 9.33 1.81 27.94 93.51
Box PGLSR [45] 94.24 40.42 2.58 48.04 96.52/90.48 53.93 7.46 29.03 97.26|91.51 28.46 5.09 23.21 96.09(95.28 54.58 2.11 62.42 97.11|93.75 44.48 4.51 25.89 97.98 -
-patterned LSF-GSA [46] |89.84 21.56 4.97 24.80 94.10({91.07 32.47 4.80 32.27 95.2489.15 24.79 7.27 15.91 95.69(85.09 18.54 9.33 14.26 93.00|87.08 23.93 6.27 28.65 92.13
SOMC [47] 94.99 52.16 3.58 32.67 98.37|96.67 62.08 2.81 24.90 99.42|95.18 53.45 3.84 24.74 98.87|94.56 47.56 3.18 41.72 97.47|95.66 57.30 3.73 19.71 99.30 -
ER [11] 95.27 10.26 0.69 30.43 95.88(97.66 0 0.03 0 97.69|95.77 0.15 0.04 4.00 95.81(95.43 22.76 1.68 42.40 96.93|75.33 26.90 24.20 1.02 99.07
Ours 96.61 70.34 1.83 69.67 98.23/97.32 74.20 1.43 73.79 98.60|96.49 72.39 2.01 69.05 98.28(95.71 65.62 2.17 67.95 97.59|96.35 68.13 1.86 69.89 97.98 -
WGIS [14] 9574 026 3.56 0.09 99.60[95.82 0.34 3.66 0.05 99.45[94.76 1.03 3.61 0.88 98.25[93.40 4.37 3.44 5.09 96.63[9542 0 3.65 0 99.00
TDVSM [37]  |54.45 54.07 45.55 0.82 99.42(57.11 69.99 43.16 3.34 98.89|52.70 67.31 48.35 9.13 95.63|59.65 64.62 41.15 20.18 91.18|57.95 64.39 42.22 3.98 98.35 -
HOG 9532 5.82 3.09 323 98.30(95.56 7.00 2.55 5.52 98.01/93.00 8.81 1.89 22.01 94.66[96.44 0.60 2.81 0.17 98.21{96.40 1.69 2.59 0.69 98.93
Star PGLSR [45] 96.68 45.24 2.60 19.59 99.22(96.59 54.57 2.51 31.88 99.01|92.33 54.57 5.05 42.82 96.79(96.09 60.49 2.07 60.13 97.96|93.78 44.88 4.81 21.25 98.35 -
-patterned LSF-GSA [46] [88.37 36.37 8.36 21.41 95.83|91.50 30.33 4.49 30.75 95.43|86.02 23.94 3.97 49.27 88.6882.53 27.75 8.31 35.83 27.75(88.91 19.34 9.36 4.88 97.84
SOMC [47] 96.01 65.56 3.65 16.93 99.60(96.96 72.87 2.71 26.81 99.62|95.44 71.99 3.63 44.16 98.86(94.96 67.28 3.29 56.15 97.92|95.77 64.02 3.78 19.07 99.48 -
ER [11] 98.13 879 1.16 7.17 99.27(98.32 24.47 1.23 11.68 99.54|97.76 16.42 0.82 12.61 98.54/97.30 69.52 1.67 54.52 98.81|96.72 45.47 2.83 12.50 99.45
Ours 98.29 67.78 1.03 59.58 99.28(98.45 67.78 0.93 59.58 99.35|96.41 70.85 2.12 65.71 98.32|98.56 72.25 0.97 57.13 99.50|/97.69 70.71 1.87 38.08 99.52| - - - - -
WGIS [14] 80.04 54.93 0.18 25.51 93.90(83.06 75.13 0.17 10.92 99.15(73.55 38.61 0.25 4.89 97.10(81.06 62.92 0.18 14.10 97.73[81.49 71.66 0.17 33.18 95.58(83.39 66.69 0.16 10.66 98.64
TDVSM [37]  |46.06 47.84 54.05 5.58 92.95/44.94 52.76 55.21 1.79 98.03(43.16 63.65 57.52 3.54 97.24|46.94 66.97 53.87 4.84 66.97|49.34 57.52 52.31 18.14 84.78|42.62 66.53 57.95 2.68 98.13
HOG [44] 87.57 4.85 0.94 41.66 88.23|95.00 14.29 0.94 43.33 95.83(93.11 14.38 0.96 52.94 93.89|86.37 24.71 0.54 90.69 86.16|84.60 9.28 1.28 57.62 85.30({96.40 18.98 1.11 35.34 97.44
Dot PGLSR [45] 94.21 31.55 2.09 47.19 96.03(93.79 61.48 4.96 32.53 98.45|94.15 34.36 1.51 62.33 95.38(91.18 2520 1.37 67.50 92.11|86.46 60.75 4.00 84.92 86.83|94.73 65.61 3.56 52.04 97.95
-patterned LSF-GSA [46] [79.29 21.18 9.58 29.73 85.70|88.91 24.38 4.86 32.62 92.88(87.84 34.78 3.63 60.62 90.19(76.45 17.11 0.99 86.69 75.86|70.58 17.73 2.84 75.83 70.13]90.30 16.23 2.45 39.29 92.25
SOMC [47] 91.77 37.36 3.97 42.43 95.14(93.79 60.35 4.95 31.51 98.45|92.07 45.41 5.15 34.46 96.68(91.58 43.01 4.03 49.04 94.91|87.57 60.45 4.47 79.88 89.17|95.15 64.29 3.16 52.71 98.02
ER[11] 96.69 32.27 0.01 56.25 91.90(94.49 69.21 0.05 30.63 98.64|97.07 54.35 0.01 66.88 98.10(96.41 43.79 0.01 80.95 97.79|84.76 84.94 0.15 49.46 96.19(92.50 81.22 0.07 26.81 99.30
Ours 98.32 71.76 0.97 65.37 99.25|95.06 68.27 2.77 66.57 97.43|98.27 71.76 0.97 67.93 99.19(97.34 68.91 1.75 55.71 99.00|91.60 68.29 5.20 64.38 95.60({96.56 69.54 2.19 59.57 98.58

and NITV-RPCA perform better than the other three con-
figurations, where the curve of NATV-RPCA is higher than
NITV-RPCA a little. Both qualitative and quantitative exper-
iments confirm that the effectiveness of non-convex TV reg-
ularization term and NATV-RPCA is more suitable for the
fabric defect detection.

4) COMPARISONS WITH THE STATE OF THE ARTS

As discussed in the previous sections, we had investigated
the contribution of image representation and saliency infer-
ence after an ablation study. In this section, we compare
the detection results of our method with the state of the art,
including HOG [34], PGLSR [13], ER [9], LSF-GSA [35]
and SOMC [36].

A subjective comparison is shown in Fig.8, where the first
column is the original fabric image, and the second to the
seventh columns are the detection results generated by the
HOG, PGLSR, ER, LSF-GSA, SOMC, and our proposed
method. The eighth row is the segmentation results generated
by our method and the last row is the ground-truth images.
It can be observed that dramatically discrete defects occur in
the results of HOG method, especially in Fig.8 (a) and (b), and
so such method cannot work for the patterned fabric image.
The PGLSR method could effectively detect defect position
in the patterned fabric, but at the cost of inaccurate shape
descriptions of the defects. ER method could not only locate
defects position, but also retain some contour information.
However, such method requires fabric images without defects
as match samples, which belongs to supervised learning.
LSF-GSA generated saliency map by incorporating local tex-
ture features with global analysis, but the detection results are
filled with lots of spots noise. SOMC based on multi-channel
feature matrixes extraction and joint low-rank decomposition
could effectively detect defect position and outline, but part
of detection results for box- and dot-patterned fabric images
are discontinuous and exist noises. Our method can not only
highlight the position of defective regions, but also outline
the shape of defects for all types of fabric images, and its
segmentation result is extremely similar to the ground truth
images. In addition, the proposed method can detect the
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FIGURE 8. Comparison of the detection results using different methods:
(a) Detection result for box-patterned fabric image; (b) Detection result
for star-patterned fabric image; (c) Detection result for dot-patterned
fabric image. The first row is the original image, detection results of HOG,
PGLSR, ER, LSF-GSA, SOMC, Ours and Segmentation of Ours are listed
from the second row to the eighth row. The last row shows the
ground-truth images.
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fabric images with big defects more effectively than the other
methods, as shown in the first row of Fig.8 (c).
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Besides the methods mentioned above in Fig.8, the eval-
uation results of WGIS reported by [14] and TDVSM [37]
are also listed in the quantitative evaluation. The average
evaluation results for each defect type of star-, box-, and
dot-patterned fabric images are illustrated in Table 2. Results
that surpass other competing methods are bold. From this
Table, we can see that our proposed method performs better
than the existing methods in most cases on the three patterned
fabric datasets. Even our method is slightly lower than others
in rare evaluation criteria, it is obvious that defect contour and
continuity of our method, as shown in Fig.8§, is more complete
than others. In summary, qualitative and quantitative experi-
ments verify the robustness and superiority of our proposed
method.

V. CONCLUSION

In this article, we proposed a novel fabric defect detection
method based on multilevel deep feature and NTV-RPCA.
Based on the fact that handcrafted feature is incapable of char-
acterizing the fabric texture comprehensively, the multilevel
deep features extracted by VGG16 are used to improve the
image representation ability. In order to separate the defects
effectively, RPCA is adopted to decompose the fabric images
into background parts and salient defect parts. Meanwhile,
non-convex total variation regularization term is integrated
into RPCA to prevent defect saliency map from being pol-
luted by noises as much as possible. Besides, saliency maps
generated by multilevel deep features are fused to combine
the advantages of all convolution layers. We also compare
the performance of the proposed approach with that of pre-
vious approaches, such as the HOG, PGLSR, ER, LSF-GSA,
SOMC methods. The qualitative and quantitative experimen-
tal results demonstrate that our proposed algorithm is more
effective than other state-of-the-art methods. In addition,
the proposed algorithm provides a new solution for detecting
surface defects of other industrial products.
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