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ABSTRACT The design and implementation of appropriate advanced control strategies is a key factor for
the effective integration of micro-grids into the electrical network. In view of this, the study proposes an
Adaptive Model-Based Horizon Control technique in the bid to addressing issues related to the Energy
Management System in micro-grid operations. The main objective of the energy management system is
to balance energy generation and demand through energy storage, so as to optimize the operation of the
micro-grid with high penetrations of renewable energy sources. This paper further investigates the impacts
of considering the prediction of disturbances on the performance of the Energy Management System based
on the adaptive model predictive control algorithm in order to improve the operating costs of the micro-
grid with hybrid-energy storage systems. The adaptive model predictive control algorithm solves the energy
optimization problem in a renewable energy-based micro-grid with various types of energy storage systems
that exchange energy with the host grid. More so, this optimization problem is resolved at each sampling
period in order to determine the minimum running costs while satisfying demand and taking into account
technical and physical constraints. The simulation results under different conditions have demonstrated how
the use of an adaptive model predictive control based energy management system can enhance micro-grid
operation, provided there is effective forecasting, and consequently minimized the running operating costs
of micro-grid. More so, it is evident in the cost function, J , obtained from the three scenarios conducted, that
the perfect knowledge of the disturbance prediction is essential for effective micro-grid operations.

INDEX TERMS Energy management system (EMS), adaptive model predictive control (AMPC), energy
storage system (ESS), optimization, prediction horizon, disturbance predictions, MATLAB simulation.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
In reality, the penetration of the Renewable Energy
Sources (RESs) into the electrical network poses many chal-
lenges arising from their inherent intermittent nature, as well
as the need to satisfy unpredictable consumer demand [1].
More so, several uncertainties have been imposed on themod-
ern operation of the distribution network by the integration
of large-scale distributed renewable energy. It is necessary
to determine the economic and reliable control strategies
against fluctuating generation outputs and unpredictable
weather conditions. In addition, the stochastic character-
istics of the load profiles are exacerbated by increasingly
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complicated end-users [2], [3]. Conversely, while the tra-
ditional, source-controllable method of generating energy
enables generation to balance the demand, the incorporation
of new renewable-based technology with an unpredictable
and variable profile makes it imperative to provide unique
solutions to the problems that have not previously emerged.
It is essential to realize that the energy imbalances in the grid,
associated with the issues of reliability, stability, and power
quality, are the result of the high penetration of the RESs
in the electrical network. The inclusion of Energy Storage
Systems ( ESSs) such as hydrogen, batteries, flywheels, ultra-
capacitors, and so on, is a one-way approach to addressing
these issues [4].

Meanwhile, due to its inherent predictive difficulties and
variability, consideration of renewable sources, such as the
un-dispatchable unit, can be avoided with the help of the ESS
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buffering capability. Therefore, the discontinuous nature of
renewable generation and the randomness of the behavior of
the consumer are both compensated by the stored energy in
these units [5]. In addition, the imbalances introduced by the
fluctuation of the RESs in the grid are compensated by the use
of energy storage technologies, thus ensuring the appropriate
quality of the power supplied to the local loads.

However, storage concerns are not just a technical solu-
tion for energy management in the electrical network, yet,
in addition, a way of effectively using sustainable resources
by averting the shedding of generation amid overproduction
and, similarly, shedding of loads in the event of generation
deficit. Meanwhile, the design and implementation of an
advanced control system are vital for the convenient operation
of hybrid ESSs. More so, the control technique will manip-
ulate the characteristics of the individual ESS, taking into
account degradation problems and operational constraints;
thus, it appears as a technical solution to improve flexibility,
performance, and lifespan [6], [7]. The Energy Management
System (EMS) is responsible for the most efficient means
of maintaining the energy balance in the micro-grid. Hence,
the primary objective is to ensure a reliable supply of elec-
trical power to its local load consumers. This could involve
simply handling the surplus/ shortage of energy or consider-
ing certain functionalities based on economic or operational
parameters.

EMS objective is located at the tertiary level and, if nec-
essary, must balance power generation and demand through
energy storage, dispatch-able generators, and demand man-
agement. The EMS can also maximize the system efficiency
and reduce running costs. Model Predictive Control can
perform such activities if the cost function and operating
constraints are appropriately set. The predictive controller
determines online optimum set points that are sent as control
signals to generator power converters, loads, storage units,
and grid connections. The on-board electronic control units of
the various elements of the micro-grid (generators, batteries,
fuel cells, etc.) then decide the best way to achieve these
points, according to controllers from their own manufactur-
ers. The power generated by the Renewable Energy Sources
(RESs) and the power demanded are the two major distur-
bances (sources of uncertainty) that operate on a micro-grid
that could positively impact its EMS and economic perfor-
mances [8], [9]. The challenges emerge from the inherent
intermittent nature of renewable energy sources and the cri-
teria for satisfying the variable demand for energy. While
renewable sources are used for the generation, this makes
them a problem to be addressed by the control system due
to their time-varying nature, difficulty in predicting, and lack
of manipulative capability. Although the controller cannot
adjust these variables (except for in the case of Demand
Response) [10], MPC may use the current information (cur-
rent measurement and future prediction) to forecast the sys-
tem output along the horizon.

The MPC-based optimization approach has over-time,
drawn the consideration of the power system network

attributable to a few focal points over the Metaheuristic
and Heuristic control techniques. The MPC-based control
scheme’s advantages over other control schemes are, and
are not limited to the following criteria [11]. It focuses on
the future behavior and predictions of the system and is
therefore extremely appealing to systems that are inherently
dependent on forecasting energy demand and the production
of renewable energy, and offers a feedback mechanism that
makes the system more sensitive to uncertainty and distur-
bance [1], [12]. Moreover, this control strategy can address
complex system constraints, integrate generation and demand
projections, and finally, manage physical and operational
constraints such as storage capacity or generator slew-rate
power limits [13]. Despite its advantages over traditional
control techniques and it’s extensive usage for most of the
control aspects of micro-grid in the industrial community,
some drawbacks require urgent attention as far as control
performance is concerned [5]. It is worthy of notice that
the conventional MPC controller, i.e., the MPC controller
running in the non-adaptive mode, is not accurate in handling
varying dynamics, since the internal plant model used inMPC
for prediction is constant. The optimum outcome could not
be achieved by an MPC-based energy management system
with the constant penalty weights when taking into account
micro-grid complexities; meanwhile, the mechanism would
be closed in certain outrageous circumstances. Thus, adapting
the weights as indicated by the ESS state will increase the
robustness of the system.

On the other hand, the AMPC takes the updated plant
model at each time step for the current operating condition; as
a result, it makes accurate predictions for the new operating
condition. Hence, in order to deal with changes in plant
dynamics, the AMPC controller is utilized. The Adaptive
Model Predictive Controller requires a discrete plant model
for its control actions, which results in excellent controller
performance. Thus, in terms of excellent tracking and regu-
lating control performance, AMPC is superior to the MPC
controller running in the non-adaptive mode. In addition,
consideration is given to the implementation of better opti-
mization algorithms and effective modeling systems due to
the difficulty of the micro-grid optimization problem and the
enormous economic advantages that could accrue from its
improved solution.

B. LITERATURE REVIEW
The intermittent and volatile generation of renewable energy
and the random behavior of consumers introduce a stochas-
tic component to the control problem. In practical applica-
tions, all of these variables are not entirely controllable. Still,
knowledge of their time evolution is essential for improving
micro-grid management and control, especially when using
MPC approaches [8], [14]. More so, predictions can typically
be derived from solar irradiance, wind forecasts, or histor-
ical data on atmospheric conditions, electricity prices, and
load consumption. The mismatch between generation and
demand can, therefore, be resolve by balancing the power
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output utilizing demand-side management, storage devices,
and flexible renewable generation resources. However, the
difficulty of predicting generation and demand causes con-
siderable uncertainty, which is unavoidable [4], [15]. A new
approach to decision-making in micro-grid systems is intro-
duced to address this challenge: deterministic decision-
making can be substituted by a stochastic solution [16], taking
explicit account of system uncertainties. In addition, theMPC
provides a certain degree of robustness to the control of sys-
tem uncertainties due to its receding horizon implementation;
its deterministic formulation generally makes it inherently
inadequate to deal systematically with uncertainties. Hence,
more techniques that are sophisticated are required when the
level of uncertainties are significant [16].

Various techniques were proposed to address uncertain-
ties in the load forecasted [17], [18]. Renewable uncertain-
ties typically have a more significant influence if renewable
energy sources supply a substantial portion of micro-grid
energy. Several robust and stochastic methods of scheduling
micro-grids have been studied to address the challenges of
renewable uncertainties [18]. A Model Predictive Control
(MPC) approach has been utilized in several works to the
scheduling problem [19], [20]. Additionally, the performance
of deterministic and stochasticMPC in the economic schedul-
ing of micro-grids has been contrasted in refs [21], [22]. The
solution of a model predictive economic scheduling was like-
wise provided by ref [23] and further discussed the influence
of forecast error. More so, in literature, numerous control
algorithms spanning from metaheuristics and heuristics have
been presented to address the problem of micro-grid power
dispatch. These algorithms are, but are not limited to the
following, genetic algorithms (GA) [24], evolutionary strate-
gies, and algorithms for tabu searching [25]. Consequently,
the emerging control methods in the literature are either com-
putationally robust or not suitable for real-time implementa-
tion, or they may generate sub optimal solutions. However,
either the problem of optimization remains non-linear in the
works described above or other essential features, such as
minimum up and downtimes and demand-side programs, are
overlooked [26]. Ref [27] typically utilized heuristic algo-
rithms to implement micro-grid electricity. Similarly, few
research works [28]–[31] have used the Hysteresis Band
Control (HBC) technique for energy management, due to its
reasonable simplicity and ease of implementation. Moreover,
a significant decrease in running costs can be noticed by com-
paring both techniques [15]. Several micro-grid applications
utilize Fuzzy Control (FC), either for tuning or supporting
conventional controllers or as the central controller [32].
Jiang et al. [33], proposed a stochastic receding-horizon con-
trol (SRHC) technique based on modified stochastic predic-
tive model control (SMPC) to address fluctuations in renew-
able energy and loads. As uncertainties play a significant
role in the micro-grid network, Farzin et al. [34], proposed
a stochastic framework for optimal energy management of
micro-grids during unscheduled islanding period, providing a
cost-effective solution to this problem, while capturing all the

inherent uncertainties. The presented framework addresses
the prevailing uncertainties of islanding duration as well as
prediction errors of demand and renewable power generation.
Csaji et al. [35], proposed an Adaptive Aggregated predic-
tions for renewable sources, which fits several stochastic
models to historical times-series data and therefore, argued
that side information, such as clear-sky predictions or the
typical system behavior, can be used as exogenous inputs to
increase their performance. The generating forecasts prob-
lems for energy production and consumption processes in a
renewable energy system were further addressed. Ref [16],
gave an overview of the main developments in the area of
Stochastic Model Predictive Control (SMPC), and further
provided the various SMPC algorithms, along with the key
theoretical challenges in stochastic predictive control with-
out undue mathematical complexity. More so, the Optimal
Control Problem (OCP) was also formulated for Stochastic
Linear and Non-linear MPC. Valibeygi et al. [36], proposed
a robust scheduling algorithm for the scheduling of the power
flow between themain electricity grid and themicro-gridwith
the generation of solar energy and the battery energy storage
subject to uncertainty in the generation of solar energy. More-
over, they further proposed a time-varying soft constraints on
the battery State of Charge (SOC) in order to prevent over-
conservatism in power scheduling while ensuring robust-
ness against uncertainties. Dufo-López et al. [37] proposed
a novel control technique, optimized by Genetic Algorithm
(GA), for the control of autonomous micro-grid consisting
of renewable energy sources [PV, Wind and hydro], a fuel
cell, batteries, an electrolyser, and an AC generator. This
technique optimizes the hybrid system control, obtaining the
values of different variables that make the overall Net Present
Cost (NPC) of the system minimal. Ref [38] developed MPC
algorithms for optimal control of distributed energy resources
with a battery storage system. Refs [39], [40] demonstrate
how the MPC controller in hybrid storage systems tends to
be a viable solution. More so, ref [41] presented the control
of a hydrogen-based domestic micro-grid by an MPC-based
structure. Hence, different works additionally allude to opti-
mal generation for renewable micro-grids considering hybrid
storage systems [42], [43]. MPC was also used for energy
management of micro-networks connected to charging sta-
tions for electric vehicles [44], [45]. Thus, several papers have
applied the MPC controller with satisfactory results in the
hybridization of ESSs. The MPC controller was used in the
Vahidi and Greenwell studies [37], [40], Del Real et al. [40],
andValverde et al. [46].More so, Arce et al. [47] andBordons
et al. [48] have similar technologies developed in fuel cell and
battery hybridization.

A careful review of the previous studies shows that, despite
the use ofMPCs in energy systems and industries [5], the con-
sideration ofmeasurable disturbance as well as an appropriate
control technique, which is of great importance in addressing
all the prevailing uncertainties of micro-grid operation, has
not been extensively discussed. In some works, the impact
of the integration of disturbance prediction in the context of
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renewable uncertainties is not considered. However, as these
uncertainties have a significant influence on the micro-grid
operation, they need to be addressed in the scheduling pro-
cess. The article outlines a technique for taking into con-
sideration the prediction of disturbances in the EMS while
using the AMPC control technique. The research shows how
AMPC can incorporate disturbance information to predict
its effect and boost the performance of micro-grids. This
research’s most significant contribution is the design of the
AMPC algorithm used to dynamically adjust the weight of
different objectives as per the state of the system [49], [50].

More so, we incorporate as much information as possible
into the technique used in this study and also keep the problem
of micro-grid optimization solvable without any heuristics
or degradation techniques. More so, we modelled the tech-
nological and physical features of the dispatch-able units
using as few constraints and variables as possible. In addi-
tion, we implemented a feedback mechanism (AMPC),
which subsequently reduces the uncertainty identified with
time-varying loads and RES power outputs in micro-grid
operations. Our contributions in this paper are further out-
lined as follows; a new model of the entire micro-grid
network has been developed using a formalized modeling
methodology that is suitable for use in online optimization
schemes. An AMPC algorithm based on EMS was developed
to minimize the micro-grid running costs, and lastly, simu-
lation results were presented, indicating the viability of the
proposed optimization process.

C. CONTRIBUTION
The main contributions of this paper can be summarized as
follows:
• An advanced control strategy was proposed in this study,
i.e., an Adaptive Model-Based Receding Horizon Con-
trol technique, mainly for the effective integration of
micro-grids into the electrical network; permits the inte-
gration of the information on the disturbances predic-
tion, improves the system flexibility and operational
reliability and address issues related to the Energy Man-
agement System (EMS) in micro-grid operations.

• The impact of considering the prediction of disturbances
on the performance of the Energy Management Sys-
tem (EMS) based on the Adaptive Model Predictive
Control (AMPC) algorithm to improve the operating
costs of the micro-grid with hybrid-energy storage sys-
tems was also investigated.

• More so, we also demonstrated how the AMPC algo-
rithm could incorporate disturbance information to pre-
dict its effect and boost the performance of micro-grids.
The AMPC algorithm was also utilized to dynamically
adjust the weight of different objectives as per the state
of the system.

• The Effectiveness and superiority of the proposed
AMPC control technique in terms of control per-
formance, optimization of the system efficiency, and
minimization of the operational costs are investigated

through the following three scenarios, where (1) the
model used by the AMPC does not include disturbances;
(2) disturbances are incorporated into the model. Still,
the controller does not have any information on the
future evolution of disturbances (constant disturbance
prediction). Lastly, when (3) the disturbance prediction
is perfect (this is an optimal case that offers the best
results that can be compared).

• Comprehensive multi-objective formulation is devel-
oped, which weighs the usage of manipulated variables,
penalizes the rate, and also helps to keep the stored
energy around an operating point.

• Comprehensive case studies with single and hybrid stor-
age systems are presented to provide insights on the
significant effects of introducing more battery storage
into the micro-grid on the system efficiency and cost
function minimization.

D. ORGANIZATION
The rest of this paper is structured in the following man-
ner. The system description and the dynamic modeling of
micro-grid components are presented in Section II. The for-
mulation of EMS-basedAdaptiveMPC optimization problem
with the consideration of measurable disturbances is outlined
in Section III. Section IV describes the Adaptive MPC-based
scheduling of renewable energy-based micro-grid. Simula-
tions of three scenarios: where the model used by the AMPC
does not include disturbances, where disturbances are incor-
porated into the model, but the controller does not have any
information on the future evolution of disturbances (constant
disturbance prediction). Lastly, when the disturbance predic-
tion is perfect (this is an optimal case that offers the best
results that can be compared), and the discussions on the
obtained results are provided in Section V. Finally, Section VI
concludes the paper.

II. DESCRIPTIONS OF THE SYSTEM MODEL UNDERSTUDY
In this paper, the MATLAB/Simulink environment was
utilized to model the system dynamics of a renew-
able energy-based micro-grid network consisting of RESs
(Photovoltaic, PV, Wind Turbine, WT) and Battery Stor-
age system. Moreover, two different kinds of load were
considered, the critical and the curtailable loads [51]. This
micro-grid network was utilized to examine the impacts of
integrating disturbance predictions on energy management
system performance based on the proposed control technique
used.We investigated two cases in this study; case 1 considers
the micro-grid operation using the sustainable generation
sources (PV and Wind sources), the fuel cell, the lead-acid
battery, and the external grid. Hence, in order to have a hybrid
storage configuration, a lithium-ion battery was added in
case 2. It is necessary to note that, during the micro-grid’s
normal operation, the energy generated does typically not
meet demand. The battery bank is mainly utilized to store
excess energy from renewable sources, but can also be used
by electrolysis to produce hydrogen. Moreover, when power
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FIGURE 1. The model-based design description of the proposed micro-grid system for case 1.

from renewable sources is not accessible, the generation
deficits can be compensated by a fuel cell using hydrogen.

The hydrogen storage network consists of a Proton
Exchange Membrane (PEM) electrolyser for hydrogen pro-
duction and a metal hydride tank for hydrogen storage.
In addition, power electronics are used to connect the com-
ponents to the current DC bus. More so, both the fuel cell
and the PEM electrolyser units have their own local con-
trollers, which execute the commands for power conversion.
Moreover, two DC-DC converters associated with fuel cell
and electrolyser enable the DC bus to transmit power. Con-
versely, the lead-acid battery bank is directly plugged into the
DC bus. Thus, the battery bank maintains the bus voltage,
thereby simplifying the configuration. The DC micro-grid
should, therefore, adopt this configuration option in order to
minimize costs and improve reliability, as the batteries absorb
any unbalance in the network [4]. Figures 1 and 2 demonstrate
the design overview of the proposed micro-grid electric and
control signal system for cases 1 and 2. Case 1 solved the
EMS-based energy optimization problem using an AMPC
algorithm in a renewable energymicro-grid consisting of gen-
eration sources (PV andWind sources), lead-acid battery, fuel
cell, and external grid with the inclusion of the three scenarios
considered in this study. Similarly, a renewable energy-based
micro-grid, composed of the generation sources (PV and
Wind sources), fuel cell, hybrid storage systems (lead-acid

and lithium-ion battery), and the external grid is utilized to
solve the EMS-based energy optimization problem with the
inclusion of the three scenarios considered in this study in
case 2. Therefore, a proper model of the dynamics relating
to the uncertainty dimension of the micro-grid components
should be considered in this design in order to design the
micro-grid network in an optimal way.

III. DYNAMIC MODELING OF MICRO-GRID
COMPONENTS
This section focuses on themodeling of the dynamic behavior
of a renewable energy-based micro-grid, which is a major
concept in control engineering and, most notably, in the
AMPC control scheme. More so, the mathematical models of
the renewable generation technologies (Photovoltaic, PV sys-
tem or Wind turbine, WT), and energy storage system (Bat-
teries and hydrogen-based systems) with high penetration in
micro-grids are discussed in this section. Note that, since the
main idea of these models is to build the simplest models that
measure upwith the objectives, then themodel designmust be
precise and simple enough to prevent computational burden
when it is numerically solved. In general, the essence of
modeling in control engineering is for control design and sim-
ulation to analyze the system behavior. Furthermore, accurate
modeling is a major step forward for energy management and
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FIGURE 2. The model-based design description of the proposed micro-grid system for case 2.

helps the optimization algorithm to adapt to exact dispatch
decisions[5], [52].

In the AMPC control scheme, model design plays a
significant role; meanwhile, these models are incorporated
into an optimization problem, which needs simple formu-
lations. In the following subsections, we modeled each
of the micro-grid components in the proposed network of
micro-grids separately.

IV. MODELING OF THE DISTRIBUTED ENERGY
RESOURCES UTILIZED IN THE STUDY
The mathematical models of the DERs (renewable
energy-based resources) utilized in the micro-grid are
described as follows:

A. PHOTOVOLTAIC SYSTEM MODELING
Photovoltaic (PV) cells are electronic devices that generate
electrical energy from solar radiation. Therefore, the energy
the cells transform depends on the temperature, material
properties, and solar radiation. This study utilized a two-
diode equivalent-circuit model for excellent PV cell perfor-
mance [53].

The mathematical Equation, which models the current-
voltage behavior of the ideal PV cell, therefore admits expres-
sions as [53]:

I = Iph − ID1 − ID2 − Ish (1)

ID1 = IO1

[
exp

(
qV
A1kT

)
− 1

]
(2)

ID2 = IO2

[
exp

(
qV
A2kT

)
− 1

]
(3)

I = Iph − IO1

[
exp

(
qV
A1kT

)
− 1

]
− IO2

[
exp

(
qV
A2kT

)
− 1

]
− Ish (4)

Equation (4) is the PV cell model’s fundamental Equation,
which does not reflect the functional I-V characteristics of PV
cells. Practical PV module consists of various elements, such
as Rs, and Rp, that need to be introduced into the above Equa-
tion (4). PV cell’s functional output current admits expression
as [50]:

I = Iph − IO1

[
exp

(
V + IRs
A1Vt

)
− 1

]
− IO2

[
exp

(
V + IRs
A2Vt

)
− 1

]
−
V + IRs
Rp

(5)

where,

Vt =
NskT
q

(6)

where, Iph is the photo-generated current by a PV cell,
ID1, ID2 are the diode currents, IO1, IO2 are the reverse satu-
ration current of diodes D1, D2, in Ampere. Vt is the thermal
voltage, V is the cell output voltage, Ns,Np is the number of
PV cells connected in series and parallel, k is the Boltzmann
constant (1.38 ∗ 10−23 J/K), q is the Charge on the electron
(1.602 ∗ 10−19). A1,A2 are the ideality factors of diodes D1,
D2, T is the Reference cell-operating temperature, 20◦C.

The PV cell output current, as defined by Equation (5) is
the single PV unit. Hence, in order to achieve the desired
voltage and current output level, the PV cells are connected in
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series and parallel. Where the PV modules are composed of
parallel-connected Np cells, the PV module’s output current
admits expression as [53]:

Imodule = Icell ∗ Np (7)

The Equation for the PV current as a function of temperature
and irradiance admits expression as:

Iph = (Isc + Ki1T )
G

GSTC
(8)

where Isc is the short circuit current under standard test
conditions (STC), 1T = T − TSTC (In Kelvin, TSTC =
25◦C) are the actual and nominal temperature,G is the surface
irradiance of the cell, GSTC is the nominal Irradiance under
STC (1000W/m2, Ki is the short circuit current coefficient,
usually provided by the manufacturer.

The diode saturation current IO1 is dependent on tempera-
ture and therefore admits expression as [53]:

IO1 = IO, n
(
Tn
T

)3

exp
[
qEg
A1k

(
1
Tn
−

1
T

)]
(9)

where Eg is the band-gap energy of the semi-conductor
(Eg = 1.12eV for the polycrystalline silicon at 25◦C,
IO, n is the standard test condition (STC) nominal satura-

tion current, which admits expression as:

IO, n =
Isc,n[

exp
(
Voc,n
Vt,nA

)
− 1

] (10)

Considering temperature variations, an improved equation to
describe the saturation current is obtained from Equations (9)
and (10), which admits expression as [54]:

IO =

(
Isc,n + Ki1T

)
exp

[(
Voc,n + Kv1T

)
/A1Vt,n

]
− 1

(11)

where Kv is the open-circuit voltage coefficient (value is
available on datasheets). More so, a power inverter or a
DC/DC converter is utilized to interface the photovoltaic
panel with the micro-grid. Maximum Power Point Track-
ing (MPPT) algorithm is used to track the optimal genera-
tion point, which work efficiently with the power electronics
associated with the photovoltaic panel.

B. WIND TURBINE SYSTEM MODELING
Wind energy, which is a sustainable power source, uses the
rotor blades to convert the kinetic energy in the wind velocity
into electrical energy utilizing a technique known as aerody-
namic techniques. Wind power has many points of interest
over the different forms of energy, such as excellent return on
investment and high power density.Wind turbines are utilized
to transform wind energy into electric energy.

Note that the wind energy system converts the wind’s
kinetic energy into electrical energy. Hence, the kinetic
energy that the dynamic system generated admits expression
as [50]:

Ek =
1
2
mV 2 (12)

where m is the air mass, V is the velocity of the wind.
Similarly, the mass (m) is given as:

m = ρ(Ad) (13)

where ρ is the air density inKg/m3, A is the rotor blade swept
area in m2 and d is the distance covered by the wind in m.
Moreover, according to Betz theory, the wind turbine kinetic
energy for time (t), i.e., mechanical power (Pw), which is
captured by the corresponding mechanical torque and wind
turbine admit expressions as [55]:

Pw =
Ek
t
=

1
2ρAdV

2

t
=

1
2
ρAdV 3

=
1
2
πρR2V 3Cp (14)

Tm =
Pw
ωw
=

1
2
πρR2V 3Cp

1
ωw

(15)

Wind turbine active power depends on the turbine power
coefficient or otherwise known as turbine efficiency, which
represents the turbine conversion efficiency, and it is given
by Cp(λ, β) The power or wind energy utilization coefficient
of turbine is a function of tip speed ratio, λ and pitch angle, β.
Thus, the tip speed ratio, λ, is given as the turbine speed to

the wind speed ratio, which is given as:

λ =
ωR
V

(16)

where ω is the turbine angular speed, R is the turbine radius.
Similarly, the wind turbine stored real power and thewind tur-
bine torque expressed by equation (14) and (15), respectively,
can comprehensively be written as utilized in this research
work as:

Pw =
1
2
Cp(λ, β)ρAdV 3 (17)

Tm =
1
2
Ct (λ, β)ρARV 2 (18)

where the wind turbine torque coefficient is expressly defined
as:

Ct (λ, β) = Cp(λ, β)/λ (19)

Hence, the most extreme power can be extricated from the
turbine just when Cp (λ, β) is 0.48, λ is 8.1 and β is 0,
therefore, the turbine power coefficient Cp (λ, β) , which is
a non-linear function, admits expression using the generic
function [56]:

Cp (λ, β) = 0.0068λ+ 0.5176
(
116
λi
− 0.4β − 5

)
e
−21
λi

(20)

where,

1
λi
=

1
λ+ 0.08β

−
0.035
β3 + 1

(21)

Note that if the pitch angle β = 0, then Cp is a function of
the turbine tip speed ratio, λ, so, therefore, Equation (20) is
reduced to:

Cp (λ, β) = 0.0068λ+ 0.5176
(
116
λi
− 5

)
e
−21
λi (22)
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It is worth mentioning that the wind turbine used in the
simulation, utilized Equation (22) to calculate the turbine
power coefficient.

Similarly, the transmission of energy via the gearbox to the
generator is given as:

dωgen
dt
=
T − Tw
Jeq

−
Bm
Jeq
ωgen (23)

where ωgen is the generator angular speed, T is the mechan-
ical torque, Bm is the damping coefficient, Tw is the aerody-
namic torque and Jeq is the generator’s equivalent rotational
inertia, where[4], [57]:

Jeq = Jgen +
Jw
n2g

(24)

where Jw and Jgen are the rotational inertia corresponding to
generator and rotor and ng is the gear ratio. Similar to the
photovoltaic case, wind turbines also utilize MPPT control
algorithm for optimal power output.

V. MODELING OF DISTRIBUTED ENERGY STORAGE
SYSTEMS UTILIZED IN THE STUDY
ESSs installation in an electrical power network gives the
prospect for better economic dispatch management of renew-
able energies. In the meantime, the control scheme must be
able to determinewhich ESS to use in real-time, depending on
the operating conditions. Similarly, the mathematical mod-
els of the distributed energy storage systems utilized in the
micro-grid are described as follows:

A. BATTERY STORAGE SYSTEM MODELING
The Battery Energy Storage System (BESS) is an electri-
cal energy storage device. The two battery types utilized in
this study are lead-acid and lithium-ion batteries. Therefore,
to improve the stability and reliability of the micro-grid
network, it is appropriate to introduce some kind of Energy
Storage System, ESS, into the micro-grid network. Hence,
the ESS discharges its power and supplies the loads in order
to meet any local shortage in supplying the loads to the
customer [52]. It should be noted that the operation of the
micro-grid EMS is simple if only one ESS is used, such as a
battery, i.e., the imbalance between generation and demand is
absorbed by the battery, given its SOC is between the upper
and lower limits. Meanwhile, it is expected that power gener-
ation will be halted or that excess energy will be sold to the
grid (for grid-connectedmicro-grids) should in case the upper
limit is reached. Hence, more loads must be disconnected,
or the lack of energy must be purchased from the grid, should
it reaches its lower limit. More so, the criterion is mainly
to utilize the control technique to schedule the appropriate
storage system with higher efficiency to balance the mis-
match between the generation and demand, in the presence of
several energy storage systems (such as batteries, hydrogen,
ultra-capacitors, or flywheels) [58], [59]. The switching rules
among various ESSs are often-times based on the stored

energy. The fuel cell and electrolyser switching during micro-
grid operation that utilizes batteries and hydrogen as energy
buffer are usually based on the SOC level of the battery.
i.e., the fuel cell is activated as soon as the level of SOC is
deficient. Similarly, the electrolyser is switched ON, should
the battery SOC level is high as per given limits. Therefore,
it is expedient to protect the battery bank from undercharging
(low SOC level) or overcharging (high SOC level). In this
case, In order to prolong the life span (integrity) of the battery,
energy is transferred from the grid by the control system.

The battery’s’ mathematical model is based on a basic
voltage source model and an internal resistor. The battery
voltage can be expressed as a function of the battery power
and the battery current, which is given as [4]:

Vbt = Vbt,int − RiIbt (25)

Moreover, charging and discharging of batteries are modeled
differently. Thus, when the battery is charging:

Vbt,int = Vbt,0 − Kbt
Cmax,bt

Cmax,bt − Cbt,t
Ibt,ch

−Kbt
Cmax,bt (δbt,ch)
Cmax,bt − Cbt,t

Cbt,t + Abte−BbtCbt,t (26)

Similarly, during the discharging period of the battery, the
expression is as follows:

Vbt,int = Vbt,0 − Kbt
Cmax,bt

Cmax,bt − Cbt,t
Ibt,ch

−Kbt
Cmax,bt (δbt,dis)

Cbt,t + 0.1Cmax,bt
Cbt,t + Abte−BbtCbt,t (27)

where Vbt,0 is the open circuit battery voltage, V, Kbt is the
polarization constant (internal parameter of the battery, V),
Cmax,bt is the battery’s maximum capacity (Ah), Cbt,t is the
battery current capacity (Ah), Ibt,ch and Ibt,dis are the charge
and discharge currents, respectively. Note that, this study
assumed the Cmax,bt 6= Cbt,t , which might result due to aging
degradation of the battery. This assumption was necessary in
order for the value of Vbt,int not to approach∞ during charg-
ing and discharging. Thus, δbt,ch and δbt,dis are the binary
variables of the charge and discharge state of the battery
respectively, Abt is the amplitude of the exponential zone, V,
Bbt is the inverse of the time constant in the exponential zone
(Ah−1), Ri is the internal ohmic battery resistor. The battery
capacity (Ah) admits expression as [60]:

Cbt,t =
∫ t

0
Ibt,tdt (28)

Lastly, the battery state of charge (SOC) is related to the
battery capacity as follows:

SOCbt,t =
Cbt,t
Cmax,bt

(29)

Therefore, in order to model the dynamic behavior of the
battery storage, the battery State of Charge, SOCBS , is taken
into account as the state variable. The charging and dis-
charging power is segregated consequent to the disparity in
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power flow efficiencies between charging and discharging
(i.e., η = Pout/Pin). Hence, the battery storage discrete-time
model admits expression as [61]:

SOCBS (tk+1) = SOCBS (tk)+
ηchPch (tk)Ts

CBS,r
−
Pdis (tk)Ts
ηdisCBS,r

(30)

where the battery charging and discharging powers, are Pch
and Pdis, respectively, kW, the storage battery charging and
discharging efficiencies are ηch and ηdis, respectively, 90%
and the battery storage rated capacity is CBS,r , kWh.

VI. HYDROGEN STORAGE SYSTEM
Hydrogen is often seen as a potential option to be used
as an energy storage device, particularly when hydrogen is
generated with sustainable sources of energy. A complete
hydrogen-energy storage system consists of a system for
hydrogen production, a hydrogen storage system, and another
system for converting hydrogen into electricity, such as a fuel
cell or a hydrogen engine. Nonetheless, the most intriguing
choice to use in micro-grids is hydrogen production by cou-
pling electrolyser to renewable sources. In this study, we used
a metal hydride to store hydrogen, in which the fuel cell
can easily double the conversion capacity for the normal
operating temperature to convert into electricity [4].

A. MATHEMATICAL MODELING OF ELECTROLYSER
Electrolysers are electrochemical devices, which, when the
direct current is applied, can separate hydrogen and oxygen
from the water molecules. Thus, the mathematical model
of the electrolyser is a simplification of the Equation pre-
sented in refs [4], [41]. The electrolyser stack voltage Velz (t),
V, is expressed as the product of the number of electrolysis
cells N cell

elz and the single cell voltage V cell
elz .

Velz (t) = N cell
elz V

cell
elz (t) (31)

Similarly, the single-cell voltage is expressed by the follow-
ing Equation [5]:

V cell
elz (t) = V cell

elz,0 (t)+ V
cell
elz,act (t)+ V

cell
elz,ohm (t)

+V cell
elz,conc (t) (32)

where, V cell
elz,0 is the Nernst voltage or reversible potential,

V cell
elz,act is the activation overpotential, V cell

elz,ohm is the ohmic
overvoltage and V cell

elz,conc provides the losses due to concen-
tration mass. Therefore, the voltage drop is the sum of the
following terms:

V cell
elz,0 (t) = E0

elz +
1S0elz
2F

(
Telz (t)− T 0

elz

)
+

2.3RTelz (t)
2F

ln

PH2 (t)PO
1/2
2 (t)

PH2O (t)

 (33)

V cell
elz,act (t) =

RTelz (t)
F

[
sinh−1

(
Ielz (t)

2Aelzia0,elz

)
+ sinh−1

(
Ielz (t)

2Aelzic0,elz

)]
(34)

V cell
elz,ohm (t) = Ielz (t)Rohm (35)

V cell
elz,conc (t) = K conc

1,elze

(
K conc
2,elz Ielz(t)

)
(36)

where Telz (t) is the electrolyser temperature, T 0
elz is the tem-

perature in standard conditions, 1S0elz is the entropy change,
R and F are ideal gas and Faraday’s constant respectively,
PO2 is the oxygen partial pressure, PH2 is the hydrogen
partial pressure, Ielz is the electrolyser current, ia0,elz and
ic0,elz are the anode and cathode current densities respectively,
and K conc

1,elz and K conc
2,elz are the concentration-losses factors of

the electrolyser.
Therefore, taking into account the reaction in the electrol-

ysis stack, the mass flow of hydrogen is modelled as follows:

W
H2,pro
elz (t) = N cell

elz
Ielz (t)
F

(37)

B. MATHEMATICAL MODELING OF METAL HYDRIDE
Metal hydride is a technology utilized in micro-grid hydro-
gen storage. More so, as per metal hydrides, certain metal
(M), most specifically iron, nickel, aluminum, titanium etc.
Produce a metal hydride compound via an easily controllable
reversible reaction as they react with hydrogen. Hence, hydro-
gen is stored at moderate pressures with this technology, typ-
ically around 2 bar. The general expression is as follows [6]:

M + H2 ↔ MH2 (38)

Meanwhile, this study utilized ref [62] for the mathematical
model of metal hydride in the simulation.

C. MATHEMATICAL MODELING OF FUEL CELL
Fuel cells are electrochemical devices that are used for pro-
ducing energy from hydrogen and oxygen flows.

The anode, which is one of the electrodes, is utilized to sep-
arate the molecules of hydrogen gas into proton and electron,
using a catalyst for the reaction [63]:

2H2→ 4H+ + 4e− (39)

Similarly, the protons move toward the cathode through the
electrolyte.

O2 + 4H+ + 4e−→ 2H2O (40)

Therefore, the fuel cell overall reaction is expressed as:

2H2 + O2 + 4H+ + 4e−→ 2H2O (41)

Moreover, the fuel cell dynamic, defined by the balances of
mass and heat, results in a slow transient response contrasted
with ultra-capacitor or batteries. This study utilized Proton-
Exchange-Membrane Fuel Cell (PEMFC) since it operates at
relatively low temperatures and has a faster response in time.
Moreover, they utilize a solid polymer membrane as the elec-
trolyte and platinum as the catalyst. Hence the mathematical
model used in this study is based on a simplified model of the
study in refs [4], [64]. A fuel stack comprises of several cells
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N cell
fc which are series-connected. The stack voltage admits

expression as [4]:

Vfc (t) = N cell
fc V cell

fc (t) (42)

Similarly, the single-cell voltage is expressed by the follow-
ing Equation:

V cell
fc (t) = V cell

fc,0 (t)− V
cell
fc,act (t)− V

cell
fc,ohm (t)− V

cell
fc,conc (t)

(43)

Parameters’ descriptions are similar to the electrolyser.
Thus, the voltage drop is a sum of four terms, which can

be expressed with the following expression:

V cell
fc,0 (t) = E0

fc +
1S0fc
2F

(
Tfc (t)− T 0

fc

)
+
RTfc (t)
2F

ln

PH2 (t)PO
1/2
2 (t)

PH2O (t)

 (44)

More so, the activation losses in the fuel cell can be modeled
as a function of two constant coefficients K1,act and K2,act
and the stack current, Ifc.

V cell
fc,act (t) = −K 1,act (1− e(−Ifc

/
K2,act) (45)

Similarly, the ohmic losses can be modeled as a function of
the equivalent ohmic resistor of the cell Rohm and the stack
current Ifc.

V cell
fc,ohm (t) = Ifc (t)Rohm (46)

The concentration losses can be modeled as a function of two
constant coefficients K conc

1,fc and K conc
2,fc and the stack current.

V cell
fc,conc (t) = K conc

1,fc e

(
K conc
2,fc Ifc(t)

)
(47)

D. DYNAMIC MODELING OF THE LOAD
The loads in this study can be classified as essential loads and
curtailable loads based on a demand management perspec-
tive. The demand for power of the critical loads should be reg-
ularly met. Thus, each EMU’s load forecasting strategies can
assist the adaptive controller in making important decisions
for the network under study, such as charging and discharging
the ESS and buying or selling it to the host grid. The load is
predicted by the EMU at-time step, which uses the preceding
duration data for a future predefined horizon Np [52].
Moreover, as theAMPCprocedure continues, estimates are

subsequently revised and delivered to the EMU responsible
for updating the parameters of the prediction model to intro-
duce corrections and minimize errors. Consequently, the total
micro-grid load demand is expressed as [52], [65]:

Pload (tk) = Pload−curt (tk) (1− θ (tk))+ Pload−crit (tk)

(48)

where the curtailable load demand and essential load demand
are Pload−curt (tk) and Pload−crit (tk), respectively, and the
curtailment ratio of the curtailable loads is θ (tk).

VII. FORMULATIONS OF EMS-BASED ADAPTIVE MPC
OPTIMIZATION PROBLEM
The EMS’s primary goal in a micro-grid network is to reduce
the costs of purchased electricity while at the same time
maintaining the power balance, generation limits, ESS limits
and power exchange limits. Moreover, AMPC problem for-
mulation requires a micro-grid model for predictions; It also
requires minimizing the concept of cost function and impos-
ing operational constraints. Hence, this section describes the
formulation of the EMS optimization problem. Consequently,
the problem formulation is carried out by specifying the
objective function, as well as the functional and operational
constraints associated with each source of energy [52].

A. COST FUNCTION FORMULATIONS
EMS’s primary goal is to ensure a reliable supply of electrical
power to its local customers. Meanwhile, the EMS fulfills the
following objectives: lowering running costs by decreasing
the energy exchanged with the grid, increasing the battery life
by preventing deep overcharging and discharging, protecting
electrolysers and fuel cells from regular usage by limiting
their power rates, and ensuring energy efficiency at the plant
by using the most effective storage. The fulfillment of these
objectives are attributable to their weights in the cost func-
tion [15], [41]. The cost function can incorporate terms that
consider the values of the different powers involved (identi-
fied with the cost of utilizing each DER) and also the power
rates (identified with their lifetimes). It may also penalize the
stored energy deviation from a desired point of operation.
Therefore, the quadratic cost function associated with each
energy source is given to minimize the total system cost,
which is solved by the proposed control algorithm (AMPC).
Notice that two objective functions are obtained for the

various scenarios investigated in this paper, and the AMPC
algorithm solver tries to minimize it. The first multi-objective
function (Equation (49a)) is used in the scenario when
disturbance prediction is not incorporated in the AMPC
algorithm. In contrast, the second multi-objective function
(Equation (49b)) considers the integration of disturbance pre-
diction. The aim was to investigate the impact of integrating
disturbance prediction on the performance of the EMS in
micro-grid in terms of cost minimization. Therefore, in order
to track the reference outputs, the controller is designed to
set Pnet = 0, which consequently adds a perturbation on Pnet
of which the responsibility of the controller is to balance the
rest of the control variables (Pfc,Pelz,Pgrid ). Moreover, the
highest weight value is often assigned to the Pnet variable in
order to drive the system to attain the system’s power balance
(Pnet = Pgen − PL = 0).

min J =
∑Nc

k=1
α1P2grid (t+k)+α2P

2
fc (t+k)+α3P

2
elz (t+k)

+α4P2bat (t+k)+β11P
2
grid (t+k)+β21P

2
fc (t+k)

+β31P2elz (t + k)+ β41P
2
bat (t + k)

+

∑Np

k=1
γ1
(
SOC (t + k)− SOCref

)2
+ γ2

(
LOH (t + k)− LOH ref

)2 (49a)
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min J =
∑Nc

k=1
α1P2grid (t+k)+α2P

2
fc (t+k)+α3P

2
elz (t+k)

+α4P2net (t+k)+β11P
2
grid (t+k)+β21P

2
fc (t+k)

+β31P2elz (t + k)+ β41P
2
net (t + k)

+

∑Np

k=1
γ1
(
SOC (t + k)− SOCref

)2
+ γ2

(
LOH (t + k)− LOH ref

)2 (49b)

where Nc is the time horizon and αi, βi, and γi are the
weights for each variable. The first four terms in this cost
function weigh the usage of the manipulated variable, the
subsequent four terms penalize the rate, and the last two
terms help to keep the stored energy around an operating
point. More so, weighting values (in the cost function and
operational constraints) are often associated with the priority
of using a particular unit, either for operating costs (refer-
ence tracking) or for efficiency purposes. For example, it is
appropriate to use batteries first, if possible, in a micro-grid
with hydrogen storage, when there is a significant mismatch
between generation and demand because hydrogen has a
lower path efficiency. As a consequence, the weight of the
battery will be smaller than that of the fuel cell. This study
has selected a quadratic cost function as the system costs
to be minimized. Meanwhile, the battery bank utilized in
this micro-grid is directly connected to the DC bus, there-
fore, Pbat is not taken as the manipulated variables [4].
The minimization also includes constraints, accurately mea-
sured, as shown in Table 1. Notice that some of them are
physical limits (e.g., the power generated by the generator
or the fuel cell), and others are limits that are imposed to
prevent system failure (e.g., power rate required by the fuel
cell).

B. DYNAMIC SYSTEM CONSTRAINTS FORMULATIONS
In the optimization problem, which is to minimize the cost
function of Equation (49), and solved by the proposed
advanced control algorithm, the physical and operational
constraints must be put into consideration. The physical con-
straints include the limited power that can be supplied by the
units (external grid, DERs, batteries, fuel cells, electrolysers,
etc.). They are physical limits that cannot be trespassed for
productive reasons. Notice that there is an upper threshold for
all units, but it is often normal for a lower threshold to occur,
meaning that once the unit is attached, a minimum power
must be supplied. Such constraints relate in this way to the
power (variable u (t)) and also to the capacity of the storage
units (maximum energy which can be stored in a battery
or an ultra-capacitor). In addition, equipment constraints in
terms of capacity limits and power rates are implemented
to maximize performance, lifespan, and operating & main-
tenance costs. The battery bank will, therefore, operate in a
range of SOC values to prevent overcharging and undercharg-
ing, which significantly decreases the number of possible
cycles [4], [66]. The following constraints are considered in
this study:

C. INEQUALITY CONSTRAINTS
The constraints imposed in the problem of optimal control
include the generation limits of the units, which admit expres-
sions such as [4]:

Pmingen ≤ Pgen (t) ≤ Pmaxgen (50)

Pmingrid ≤ Pgrid (t) ≤ Pmaxgrid (51)

Pminfc ≤ Pfc (t) ≤ Pmaxfc (52)

Pminelz ≤ Pelz (t) ≤ Pmaxelz (53)

The storage limits admit expressions as:

SOCmin
≤ SOC (t) ≤ SOCmax (54)

LOHmin
≤ LOH (t) ≤ LOHmax (55)

Notice that the maximum and minimum values can be the
same physical limits, and a protective band can be con-
sidered as well, preventing working close to hazardous
regions [1], [52].

1Pmingen ≤ 1Pgen (t) ≤ 1P
max
gen (56)

1Pmingrid ≤ 1Pgrid (t) ≤ 1P
max
grid (57)

1Pminfc ≤ 1Pfc (t) ≤ 1P
max
fc (58)

1Pminelz ≤ 1Pelz (t) ≤ 1P
max
elz (59)

1SOCmin
≤ 1SOC (t) ≤ 1SOCmax (60)

In the same way, the other kind of constraints is imposed in
order to prevent sudden shifts in the power supplied by the
units. These are limits that influence the degradation of the
units and will be significant in costly equipment such as fuel
cells. It is worthy of note that some of these constraints can
be shifted to the soft constraints category if the inequalities
are replaced by a weighted term in the cost function. That is
the case with the energy-storage capacity constraints [5].

D. ENERGY BALANCE CONSTRAINTS
Including the constraints of the energy balance at each time
instant is very essential mainly for the purposes of the power
system’s stability. More so, to keep the network running
effectively and reliably, the micro-grids must meet the power
balance constraint [52].∑ng

i=1
Pgen,i (t)+

∑ne

i=1
Pext,i (t)

+

∑ns

i=1
Psto,i (t)−

∑ns

i=1
Pload,i (t) = 0 (61)

where Pgen,i is the power generated by the generation unit i,
Psto,i is the power exchange with the storage units, Pext,i is
the power exchanged with the external connections such as
the main utility grid or other micro-grids, Pload,i is the power
consumed by the loads.
During micro-grid operations, the balance between energy

production and demand must always be met; thus, Equa-
tion (61) must be applied as a constraint for equality to the
formulation.
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TABLE 1. Main components and the micro-grid characteristics.

VIII. ADAPTIVE MPC-BASED POWER SCHEDULING OF
RENEWABLE ENERGY-BASED MICRO-GRID
AMPC is a control strategy used in micro-grids and has vast
potential for addressing numerous complex problems in the
area of micro-grids. While other proven methods can be used
to control micro-grids, AMPC offers a generalized structure
for handling most of the concerns in an organized way using
some common ideas. The approach taken into consideration
in this study is primarily to adaptively control the micro-
grid’s EMS (power management) to ensure a reliable supply

of electrical power to local load consumers. The primary
responsibility of the adaptive controller is to coordinate and,
at the same time, manage the power in the micro-grid network
by suitably allowing the optimal operation of each generation
unit. The problem of AMPC-based optimization offers a
solution that indicates an input trajectory and states in the
future that meets operational constraints while optimizing
those parameters. For each sampling instant, an optimal plan
is formulated based on generation and demand forecast and
similarly on the knowledge of the level of energy storage.
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More so, the first element in the control sequence is intro-
duced, and the horizon is moved [67]. Using the newly
available information, a new optimization problem will be
solved at the next sampling time. The new optimal design
will theoretically compensate for the disturbance that acts on
the micro-grid by using the feedback mechanism. AMPC is
responsible for the efficient operation of the micro-grid under
consideration [4], [52].

The principal sources of uncertainty in this energy man-
agement problem are due to incident irradiation, wind speed,
and load power forecast. Therefore, the conventional MPC is
not successful in managing the varying dynamics of renew-
able sources, as its control efficiency is deteriorating due to
variations in their production capacity. Hence, it is appropri-
ate to use the AMPC controller, which updates the plant’s
internal model for any changes in operating conditions.
Figures 3 and 4 show the block diagram and the flowchart
of the AMPC-based EMS control scheme [23], [52]. The
state-space model of Equations (62) and (63) are often uti-
lized to model an AMPC, which admit expressions as:

x(t + 1) = Ax (t)+ Bu (t) (62)

y (t) = Cx (t) (63)

where the system state composed of the charging state of the
Energy Storage Systems (ESSs) is given as, x (t), similarly,
the manipulated vector variables, consisting of the dispatch-
able generation and the power exchanged by the ESSs, are
given as, u (t) and the output vector, which in this case corre-
sponds with the state as y (t). Hence, the AMPC’s state-space
model can be implemented and can be solved at the same time
using Quadratic Programming (QP).

FIGURE 3. Block representation of adaptive MPC control unit [52].

As with any network, micro-grids are susceptible to distur-
bance during normal operation. There are two simple sources
of disturbance in micro-grids: the power generated by the
RESs (which is usually non-dispatchable) and the power
demanded. These are external inputs to the system, which
the controller cannot manipulate. As renewable sources are
used for the generation, this makes them a problem to be
solved by the control system because of their time-varying

FIGURE 4. Flowchart of EMS based adaptive MPC algorithm [52].

existence, the complexity of prediction, and lack of manip-
ulative capability. The initial formulation of AMPC does
not contain disturbances, but in this context, several AMPC
strategies have been introduced to ensure stability and adher-
ence to constraints [68]. Note that the feedback mechanism
allows AMPC to reject disturbances, like any other controller.
If disturbances can bemeasured (or estimated), however, their
impact on the output can be included in the dynamic model.
Thus, the controller can predict their influence on system
performance. In this way, AMPC will have a feedforward
effect inherently. The impact of these disturbances, d(t), can
be applied to the AMPC state-space formulation. Hence, the
system’s dynamic model can be written as [5]:

x(t + 1) = Ax (t)+ Bu (t)+ Bdd (t) (64)

y (t) = Cx (t) (65)

where Bd is the matrix quantifying the effect of disturbances
on the states. Now, the forecast includes disturbance values
along the horizon that can be calculated (in the case of
RESs, weather forecasts may provide them) or that may be
considered constant and equal to the current d (t) value.

The discrete-time space model of Equation (64) and (65) is
obtained mainly by discretization with sample time Ts, which
is given by the following Equation [69]:

x (k + 1) = Adx (k)+ BU (k)+ Bdd (k) (66)

y (k) = Cx (k) (67)

where x (k + 1) , x (k), d (k), U (k), and y (k) are the
discrete-time forms of dx (t) /dt , x (t), d (t), U (t), and y (t),
respectively, Ad = eATs, B1d =

∫ Ts
0 eAtBdt , B2d =∫ Ts

0 eAtB1dt . The incremental form of Eq. (66) and (67) are
expressed as follows [8], [70]:

1x (k + 1) = Ad1x (k)+ B1U (k)+ Bd1d (k) (68)

1y (k) = C1x (k) (69)

where 1x (k + 1), 1x (k), 1d (k), 1U (k) and 1y (k) are
the incremental forms of x (k + 1), x (k), d (k), U (k), and
y (k), respectively.

The MPC is widely divided into two parts: a model identi-
fier for obtaining plant predictions as provided by the opti-
mizer, and an optimizer for deriving control action [71].
Therefore in order to solve the cost function, the MPC opti-
mizer adopts the receding horizon concept. It is also worth
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noting that only the first component corresponding to the
first instant prediction of the optimal solution is retained, and
this optimization process is repeated until an optimal control
output is obtained that satisfies all the constraints involved.
However, determining the controller stability in indirect adap-
tive control techniques is unwieldy for time-varying non-
linear systems. AMPC is also divided into two parts, the
identifier for the plant model and the synthesizer for the con-
troller [72]. The following objectives were explicitly taken
into account in the development of AMPC: track the SOC
and LOH references in predicted conditions, limit the fuel cell
and electrolyser power rate to protect this costly equipment
from extensive usage, protect the battery bank against deep
overcharging and discharging. Therefore, it is easier to use
the battery in a micro-grid with hydrogen storage as the
first form of energy storage wherever possible. Since the
efficiency of the hydrogen is much lower than the efficiency
of the batteries, this approach is only used when there is
a huge imbalance between supply and demand. Hence, the
AMPC actualizes these goals by formulating a deterministic
optimization model with an appropriate objective function
and many constraints [4], [71].

IX. CONTROL ORIENTED LINEAR MODEL
The control-oriented model of the micro-grid incorporated
into the AMPC optimization procedure is a simplified model.
It is worth mentioning that at the EMS level, the generators
and loads dynamics are very fast compared to the character-
istic sampling time; therefore, it can be neglected. Hence, the
main dynamics of interest in this study is that of the storage
units, which, together with the balance equation of powers in
the bus, will constitute the model to be used by the AMPC
control algorithms. The proposed control algorithm (AMPC)
utilized a control-oriented linear model for its control design.
Hence, a state-space model can be derived utilizing Equa-
tions (54) - (55) for the battery and the hydrogen storage.
Thus, the state vector is expressed as [4]:

v (t) = [SOC (t)LOH (t)]T (70)

Similarly, the vector of the manipulated variable is given as:

v (t) =
[
PH2 (t)Pgrid (t)

]T (71)

where SOC (t) is the state of charge of the battery and
LOH (t) is the hydrogen level in the hydride tank. Mean-
while, the battery’s fixed efficiency value was used to prevent
the use of binary variables.

SOC (t + 1) = SOC (t)−
ηbatTs
Cmax

Pbat (t) (72)

LOH (t + 1) = LOH (t)+
ηelzTs
Vmax

Pelz (t)−
Ts

ηfcVmax
Pfc (t)

(73)

where Pbat is the power supplied by the battery and Vmax is
the maximum volume ofH2 (normal cubic meters) that can be
stored in the tanks. The manipulated variables are the power

that can be exchanged with the grid (Pgrid ), fuel cell (Pfc)
and electrolyser (Pelz). As it is evident in Figures 1 and 2, the
battery is attached to the DC bus and absorbs the unbalance,
so Pbat must compensate for the remainder of the power in
the DC bus [4], [51].

Pbat (t) = Pload (t)+ Pelz (t)− Pfc (t)− Pgrid (t)− Pgen (t)

(74)

Note that the imbalances generated by the difference
between power generated by the renewables (non-dispatch-
able units, i.e., Solar andWind), and the demand is considered
as the disturbances, d (t). Since the demand and generation
have a similar impact on the energy balance (one positive and
the other negative), it is expedient to group such disturbances
into one variable only: Therefore, the generation and demand
net effect admits expression as:

d (t) = Pgen (t)− Pload (t) (75)

It is worth mentioning that the generation and demand are
measurable quantities; therefore, they are measurable dis-
turbances. Hence, the storage expressions, defining Equa-
tion (66) as the measurable disturbance are:

SOC (t + 1) = SOC (t)−
ηbatTs
Cmax

(
Pelz (t)− Pfc (t)

−Pgrid (t)− d (t)
)

(76)

LOH (t + 1) = LOH (t)+
ηelzTs
Vmax

Pelz (t)−
Ts

ηfcVmax
Pfc (t)

(77)

However, the conversion values for SOC and LOH vary
from charging power to electrical and hydrogen storage
between 10 and 90%, and the charging and discharge capacity
vary from 600 to 1800 W. The mean value obtained for the
battery’s conversion coefficient admits expression as:

Kbat =
ηbat

Cmax
(78)

Similarly, in the case of hydrogen, the mean values are
expressed as [73]:

Kelz =
ηelz

Vmax
[For charging, electrolyser] (79)

Kfc =
1

ηfcVmax
[For discharging, fuel cell] (80)

Then for a sampling time of Ts = 60s, the model in matrix
form is expressed as [46]:[

SOC (t + 1)
LOH (t + 1)

]
=

[
SOC (t)
LOH (t)

]

+

−
ηbatTs
Cmax

ηbatTs
Cmax

ηelzTs
Vmax

0

[ PH2

Pgrid

]

+

−ηbatTsCmax
0

 d (t) (81)
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TABLE 2. Constraints imposed on the energy resources for safe operation.

Discretizing the overall continuous structure defined by
Equation (81), the model in matrix form obtained for
discrete-time is as follows:[

SOC (k + 1)
LOH (k + 1)

]
=

[
SOC (k)
LOH (k)

]

+

−
ηbatTs
Cmax

ηbatTs
Cmax

ηelzTs
Vmax

0

[ PH2

Pgrid

]

+

−ηbatTsCmax
0

 d (k) (82a)

Evaluating the Matrix expression of Eqn. (82a), it results in
Eqn. (82b):[
SOC (k + 1)
LOH (k + 1)

]
=

[
SOC (k)
LOH (k)

]
+

[
1.564× 10−3 1.564× 10−3

−5.667× 10−3 0

] [
PH2 (k)
Pgrid (k)

]
+

[
1.564× 10−3

0

]
d (k) (82b)

Hence, the state considered in the optimization process is
the level of the storage devices (batteries (SOC) and hydrogen
(LOH)), and the control actions are the power exchanged
with the grid and the power of the hydrogen storage network
(including an electrolyser, a fuel cell, and hydrogen tanks).

Consequently, a multi-objective function is used to accom-
plish the entirety of the previous objectives, and the solver
aims to minimize it. In summary, the overall objective func-
tion of the energy management problem, which is solved by
the AMPC algorithm, can be formulated as:

Minimize J (49a) & (49b) (83)

Subject to:
Dynamic constraint-(30)
Equality constraints-(61)
Inequality constraints-(50), (51), (52), (53), (54), (55), (56),
(57), (58), (59), and (60).

Table 1 shows the system parameters of the main com-
ponents of the micro-grid utilized in this study. Similarly,
Table 2 shows the constraints imposed on the grid, genera-
tions, battery, andHydrogen storage system. Notice that some
of them are physical limits (e.g., the power provided by the
generator or the fuel cell), whereas others are limits set for
safe operation (e.g., the fuel cell’s power slew rate). Table 3
shows the weight values imposed on the multi-objective func-
tion to be solved by the AMPC control algorithm.

X. SIMULATIONS, RESULTS, AND DISCUSSIONS
This section presents the MATLAB/Simulink simulation of
a renewable energy-based micro-grid network composed of
RESs (Photovoltaic, PV, Wind turbine, WT) and Battery
Energy System. This micro-grid network was utilized to
test the control technique applied to energy management to
show the impact of integrating disturbance predictions on
its performance. Therefore, two cases of separate generation
scenarios were investigated in order to show the effectiveness
of the proposed AMPC scheme. Case 1, therefore, considered
microgrid operation using generation sources (Photovoltaic,
PV or Wind Turbine, WT), lead-acid battery, fuel cell, and
external grid. Therefore, in order to have a hybrid storage
configuration, a lithium-ion battery was added in case 2.
The proposed micro-grid system shown in Figures 1 and 2
were simulated on the MATLAB/Simulink environment.
The EMS-based energy optimization problem in a renew-
able energy micro-grid with different types of energy stor-
age systems was solved using an AMPC control algorithm
with or without the inclusion of disturbance predictions,
which exchanges energy with the host grid. The problem
of optimization is solved at each sampling time to deter-
mine minimum running costs when satisfying the demand
and respecting the technical and physical constraints. The
behavior of the proposed controller was studied under various
external conditions such as weather and demand changes.
Subsequently, we considered two distinct kinds of Renewable
Energy Sources (RESs), which were studied independently
(Photovoltaic and wind turbine generations). The results of
the MATLAB simulation demonstrate how the AMPC can
adapt to different generation scenarios, providing an opti-
mized solution for power-sharing among Distributed Energy
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TABLE 3. Weight values imposed on the multi-objective function to be solved by AMPC control algorithm.

Resources (DERs) and considering both the physical and
operational constraints, as well as optimizing the imposed
operating criteria. Furthermore, three scenarios were inves-
tigated as regards the incorporation of disturbance predic-
tions in the proposed control algorithm of EMS to examine
the impacts of the level of disturbance predictions on its
performance and to show the effectiveness of the control
algorithm on the cost function minimization. More so, these
three scenarios were simulated on the MATLAB/Simulink
environment to compare these conditions with similar inputs.
The performance criteria utilized to show the degree of effec-
tiveness is the cost function, J , defined in Equation (49).

A. MICRO-GRID OPERATION WITH GENERATION
SOURCES, LEAD-ACID BATTERY, FUEL CELL, PEM
ELECTROLYSER, AND THE EXTERNAL GRID.
This section utilized Figure 1 to analyze the three scenarios,
which are discussed in the following subsections. The first
scenario is when themodel used by theAMPC algorithm does
not include any disturbance prediction. The second scenario
is when disturbance prediction is incorporated into the model,
but the controller does not have any information on the future
evolution of disturbances (constant disturbance prediction).
Lastly, is when the disturbance prediction is perfect (this is an
optimal case that offers the best results that can be compared).

Scenario 1: The AMPC formulation without integrat-
ing disturbance prediction

In this section, we solved the EMS-based energy optimiza-
tion problem in a renewable energy micro-grid, which com-
prises of generation sources (Photovoltaic, PV, Wind turbine,
WT), lead-acid battery, fuel cell, PEM electrolyser, and an
external grid using the AMPC control algorithm. Simulations
were conducted to study the controller behavior under var-
ious external conditions (changes in weather and demand)
to illustrate the theoretical context. Two renewable sources

(Photovoltaic, PV, Wind turbine, WT) were, therefore, con-
sidered and examined separately. Hence, in order to evaluate
the performance of the control system under consideration
on the proposed micro-grid of Fig. 1, three distinct genera-
tion scenarios (Sunny, windy, and cloudy) were implemented
over 24 hours simulation period without including distur-
bances. The first case is based on a sunny day, which has high
solar radiation values and sunshine period. The power that the
photovoltaic array generates is mainly concentrated during
mid-day. This generation profile corresponds to a sunny day,
with high irradiance during the central hours of the day,
getting surplus energy and deficit at night. The EMS controls
all of the storage units (batteries and hydrogen) to meet
demand. Thus, the battery is used during the night to meet the
demand until electricity is abundant. The battery then begins
charging, and since there is still a surplus of energy, it is stored
using the electrolyser in the form of hydrogen and then sells
electricity to the grid. If PV generation is unable to satisfy
the demand, the battery will be used again until depleted, and
then the fuel cell will continue to produce electricity with a
small contribution to the grid. Note that within their operating
limits, SOC and LOH evolve almost freely, since the weights
utilized in the cost function for the reference tracking are
small. A state-space AMPC is obtained using the model from
Equation (82) without the consideration of the disturbance
term.

During the first hour of the day, as shown in
Figures 6 and 7, there is a power deficit requiring the battery
to compensate for the deficit in the microgrid system. Hence,
the control system realizes the impossibility of meeting the
demand entirely only with the battery. At about 7:30, the
generation exceeds the load, and then continue to supply
the load. Meanwhile, the battery continues to charge until
its SOC reached its upper limit (75%). At that point, the
electrolyser was switched ON to control the SOC level
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FIGURE 5. MATLAB/Simulink representation of scenario 1 without disturbance predictions (Sunny, windy, and cloudy).

FIGURE 6. The power flow profile during the sunny day (scenario
1) without disturbances.

due to excess energy because the irradiance was very high.
Hence, the energy surplus had to be stored in the form
of hydrogen. The electrolyser’s power consumption grew
gradually, as illustrated in Figure 6. Note that, during the first
operation of the electrolyser, the controller simultaneously
exports surplus energy to the grid to prevent intensive use of
the electrolyser and slowly decreases as the electrolyser uses
more electricity. Therefore, the battery begins discharging
at 10:00 until the SOC value is close to the lower threshold
(40%), and then the controller decides to switch ON the fuel
cell while simultaneously taking power from the grid to reach
the reference point. The grid and fuel cell shared the demand
for cost function based on their weights at the end of the
day. The weights utilized in the Cost function are determined
by power-sharing among battery, electrolyser, fuel cell, and
external grid. In the middle of the day, a significant excess

FIGURE 7. The level of storage during the sunny day (scenario 1) without
disturbances.

of power is generated. Once the batteries are fully charged,
and the maximum electrolyser capacity is achieved, a small
amount of surplus energy is sold to the host grid. Despite
the extensive use of the electrolyser, as the batteries are
used during the evening to cover the energy deficit, the final
amount of hydrogen does not really meet its initial value [74].

In this scenario, due to the cloudy weather resulting in
minimal or no availability of sunlight, the PV generation
is unable to meet the demand for most of the day (most
often, the net power is below zero). Figures 8 and 9 depict
the power flow profile during periods of surplus or deficit
energy and the storage level during cloudy days, respectively.
The available resources such as the battery, fuel cell, and
grid must, therefore, supply any energy deficit within the
micro-grid network. Hence, the EMS decides to utilize the
battery to meet the load demand. Subsequently, the controller
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FIGURE 8. The power flow profile during the cloudy day (scenario
1) without disturbances.

FIGURE 9. The level of storage during the cloudy day (scenario 1) without
disturbances.

decides to switch ON the fuel cell even though the SOC is far
from its minimum value (around t = 12 hrs in a smooth way),
which is also supported by the grid. It is worth mentioning
that the controller does not activate the electrolyser, as there is
no extra energy in the form of hydrogen to store. Meanwhile,
during the second half of the day, when the battery’s mini-
mum SOC has been reached, the fuel cell and the external
grid feed the load. The fuel cell satisfies the load request
for nearly 12 hours, and the batteries are only utilized to
balance the power within the micro-grid. Following that, the
batteries commit to supplying the power deficit. The batteries,
however, reach their minimum SOC after 12.5 hrs and again
use the fuel cell. Therefore, the fuel cell is unable to satisfy the
load demand on its own because of the thresholds in the power
rate and the voltage limits, and it is required to purchase
electricity from the grid.

In this scenario, a wind turbine is considered as a renewable
energy source, which generates excess power in the micro-
grid. As can be seen in Figures 10 and 11, the wind turbine
produced a significant fluctuation in electricity. A predom-
inantly stored energy, therefore, enabled the electrolyser to
operate for most of the day, and some surplus energy is sold

FIGURE 10. The power flow profile during the windy day
(scenario 1) without disturbances.

FIGURE 11. The level of storage during the windy day (case 1) without
disturbances.

to the grid. It should be noted that the power rate constraints
integrated into the controller design, irrespective of the high
fluctuation in power produced by the wind turbine, insti-
gated a smooth operation of the electrolyser, the behavior of
which was thus quite satisfactory. Thus, the battery still stores
energy, but it gets filled up early (from t = 2 hrs to 16 hrs),
only injecting power into the bus several times during that
period. As there is an energy surplus for most of the day,
there is no need to switch ON the fuel cell. This is also not
subject to substantial consumption, which would drastically
shorten its lifespan. The AMPC controller has adjusted the
setpoints slowly according to the optimum estimated cost
function. Moreover, by evaluating the cost function of the
case of no disturbance prediction, we can, therefore, observe
the impact on the micro-grid performance. The cost function,
J = 18.685, for the case of no disturbance prediction.
Scenario 2: The AMPC formulation with both constant

and perfect disturbances predictions
Similarly, in this section, we solved the EMS-based energy

optimization problem in a renewable energy micro-grid,
which comprises of generation sources (Photovoltaic, PV,
Wind turbine,WT), lead-acid battery, fuel cell, PEM electrol-
yser, and an external grid using the AMPC control algorithm.
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FIGURE 12. MATLAB/Simulink representation of scenario 2 with constant and perfect disturbance predictions.

Simulations were conducted to study the controller behavior
under various external conditions (changes in weather and
demand) to illustrate the theoretical context. Two renewable
sources (Photovoltaic, PV, Wind turbine, WT) were, there-
fore, considered and examined altogether. In order to evaluate
the performance of the control system under consideration on
the proposed micro-grid of Fig. 1, three distinct generation
scenarios (Sunny, windy, and cloudy) were implemented over
24 hours simulation period with the integration of both con-
stant and perfect disturbances predictions. More so, we inves-
tigated the situation when the disturbances are incorporated
into themodel. Still, the controller does not have any informa-
tion about the future evolution of disturbances (constant dis-
turbance prediction). This approach is often utilized inAMPC
control scheme, since there is no future information about the
disturbances prediction, the most appropriate assumption is
that the disturbance will be the same across the horizon as in
scenario 1. However, if the information of future disturbance
evolution is available, it can be incorporated into the AMPC
formulation, then, the disturbances prediction is perfect (this
is an optimal case that offers the best results that can be
compared). In this case study, the disturbance is given by
the net power, i.e., the difference between generation and
demand, d(t) = Pgen(t)− Pdem(t), which can be estimated
at the current instant t time. Therefore, the effects of these
disturbance predictions on the micro-grid performance are
also investigated.

To compare both predictive disturbance situations, we per-
formed some simulation with a constant disturbance based on
the parameters given in Table 3, with a shift in time horizon
(Np = 50) and control horizon (Nc = 2), note that these
horizons are long enough to realize the impact of predic-
tive disturbances. Consequently, the results obtained utilizing
constant disturbance predictions along the horizon are shown
in Figures 13 and 14. Thus, the disturbance is estimated in the
current instant during the minimization process and is kept
constant.

FIGURE 13. The power flow profile (scenario 2) for constant disturbances
prediction.

FIGURE 14. Storage levels (scenario 2) for constant disturbances
prediction.

Similarly, the power flows when future disturbances
are identified and included in the free-response estima-
tion, which is depicted in Figures 14 and 15. Since the
micro-grid operation anticipates the progression of the dis-
turbance, the power flows are more steady compared to when
the disturbance is not predicted perfectively, which affects
the micro-grid performance. Perfect disturbance prediction
is useful when incorporated into the AMPC formulation,
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FIGURE 15. The power flow profile (scenario 2) for perfect disturbances
prediction.

FIGURE 16. Storage levels (scenario 2) for perfect disturbances
prediction.

to prevent degradation and prolong micro-grid components’
lifetime. Moreover, by evaluating the cost function of both
disturbance prediction cases, we can, therefore, quantify the
improvement in the micro-grid performance. The cost func-
tion, J = 14.968 for the case of constant disturbance predic-
tion and J = 10.524 for perfect knowledge of disturbance
prediction of the AMPC controller, which signifies a 29.7%
improvement. Therefore, with the following illustration, it is
shown that the micro-grid operation can be improved by
the AMPC prediction capabilities, provided there is a good
forecast.

B. MICRO-GRID OPERATION WITH GENERATION
SOURCES, FUEL CELL, HYBRID STORAGE SYSTEMS, AND
THE EXTERNAL GRID
A new lithium-ion battery bank is added in this case to the
micro-grid system of case 1. For this configuration, a new

AMPC algorithm must be devised. The fuel cell is used as
a DG, with a cost associated with hydrogen usage (which is
not generated in the micro-grid) to demonstrate an example
of the generators capable of dispatching. The micro-grid is
composed of a PV plant, two different types of batteries, and
a fuel cell, as illustrated in Figure 2. The power exchanged
with the DC bus can be balanced using this Li-ion battery
using its DC/DC converter; so that a new manipulated, Pbat2,
variable will appear [5].

A new state variable is incorporated, SOC1 (t), corre-
sponding to the new li-ion battery, so the state vector is given
by x (t) =

[
SOC1 (t) SOC2 (t) LOH (t)

]T and the manip-
ulated variables are u (t) =

[
Pfc (t) Pgrid (t) Pbat2 (t)

]T .
The disturbance is similar to the preceding case: d (t) =
Pgen (t)−Pload (t). This battery’s SOC is constrained between
35 and 80%, with amaximum load/discharge capacity limited
to 3000 W. The control-oriented model is given in this case
as [4]:

SOC1 (t + 1) = SOC (t)

−
ηbat1Ts
C1max

(
−Pfc (t)−Pgrid (t)−d (t)

)
(84)

LOH (t + 1) = LOH (t)−
Ts

ηfcVmax
Pfc (t) (85)

SOC2 (t + 1) = SOC2 (t)−
ηbat2Ts
C2max

Pbat2 (t) (86)

Then, for a sampling time of Ts = 30s, the model in matrix
form is given as: SOC1 (t + 1)
LOH (t + 1)
SOC2 (t + 1)


=

 SOC1 (t)
LOH (t)
SOC2 (t)



+



ηbat1Ts
C1max

ηbat1Ts
C1max

ηbat1Ts
C1max

−
Ts

ηfcVmax
0 0

0 0
ηbat2Ts
C2max


 Pfc (t)
Pgrid (t)
Pbat2 (t)



+

 ηbat1TsC1max

0

 d (t) (87)

Discretizing the overall continuous structure defined by
Equation (87), the model in matrix form obtained for
discrete-time is as follows: SOC1 (k + 1)
LOH (k + 1)
SOC2 (k + 1)


=

 SOC1 (k)
LOH (k)
SOC2 (k)
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FIGURE 17. MATLAB/Simulink representation of scenario 1 without disturbance predictions.

+



ηbat1Ts
C1max

ηbat1Ts
C1max

ηbat1Ts
C1max

−
Ts

ηfcVmax
0 0

0 0
ηbat2Ts
C2max


 Pfc (k)
Pgrid (k)
Pbat2 (k)



+

 ηbat1TsC1max

0

 d (k) (88a)

Evaluating the Matrix expression of Eqn. (88a), it results in
Eqn. (88b): SOC1 (k + 1)
LOH (k + 1)
SOC2 (k + 1)


=

 SOC1 (k)
LOH (k)
SOC2 (k)


+

 46.87× 10−3 46.87× 10−3 46.87× 10−3

−225× 10−3 0 0
0 0 − 37.65× 10−3


×

 Pfc (k)
Pgrid (k)
Pbat2 (k)

+
 46.87× 10−3

0
0

 d (k) (88b)

This section utilized Figure 2 to analyze the three scenarios,
which are discussed in the following subsections.

Scenario 1: The AMPC formulation without integrat-
ing disturbance prediction

Scenario 2: The AMPC formulation with both constant
and perfect disturbance predictions

The cost function has the form given by Equation (49). The
value of α4 has been chosen to be large, as shown in Table 3,
in order to impose that, the lead-acid battery is primarily
utilized to sustain the DC but at its operating voltage and
does not contribute to the demand. The increments in power
are weighted by the β values given in Table 3. The chosen

FIGURE 18. The power flow profile with hybrid storage system
(scenario 1) without disturbances.

FIGURE 19. The level of storage with hybrid storage system (scenario 1)
without disturbances.

horizons are the time horizon (Np = 50) and control horizon
(Nc = 2). The results shown in Figures 17 and 18 indicate
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FIGURE 20. MATLAB/Simulink representation of scenario 2 with Perfect disturbances predictions.

that the DERs operate in a coordinated manner during the
day to meet demand. As the fuel cell consumes hydrogen,
it is switched off for most of the day and only operates at
midday (t > 12 hrs) when the energy stored in the Li-ion
batteries is not sufficient to fulfill the load (note that it
reaches its 30% lower limit). Note that the lead-acid battery
was not utilized for a few durations during the simulation.
Meanwhile, this could easily be modified by changing the
cost function weights α and β [1], [5]. Figure 17 depicts
the MATLAB/Simulink representation of scenario 1 without
disturbances prediction. The cost function was similarly eval-
uated for the case without any disturbances prediction and
J = 15.625. Consequently, it is evident in the cost evaluation,
a reduction in the cost to 57.4% of the baseline value, taking
into account the disturbances in the prediction model.

Similarly, the AMPC formulation also integrates the dis-
turbance predictions similar to case 1. The power flows and
the storage level of both the batteries are more steady, which
affects the performance of the micro-grid. As is evident in
Figures 21 and 22, the micro-grid operation is improved due
to the perfect disturbance prediction by the AMPC algo-
rithm. The lead-acid battery was used for the first 4hrs to
satisfy demand, and then the source of generation took over
from 4 hrs until 12 hrs of the simulation. The li-on bat-
tery maintained its State of Charge (SOC) of 50% until the
16 hours when the demand is quite high for only the lead
battery to satisfy the demand. At this point, the SOC of the
li-ion battery starts diminishing. Meanwhile, the grid tends
to be ignored in meeting the available demand. Therefore,
as the lead-acid battery charges up to SOC of 75%, it begins
to meet the load demand. Hence, the li-ion battery starts to
operate at 16 hrs until the SOC reaches its minimum limit
of 40%.

Figure 20 depicts the MATLAB/Simulink representa-
tion of the effects of perfect disturbance prediction on the
micro-grid performance with hybrid storage systems.

FIGURE 21. Power flows for perfect disturbance prediction with hybrid
storage system (scenario 2).

FIGURE 22. Storage levels for perfect disturbance prediction with hybrid
storage system (scenario 2).

Moreover, by evaluating the cost function of both dis-
turbance prediction cases, we can therefore quantify the
improvement on the micro-grid performance. The cost
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function, J = 9.426 for the case of constant disturbance pre-
diction and J = 6.654 for perfect knowledge of disturbance
prediction of the AMPC controller, which signifies a 29.4%
improvement.

XI. CONCLUSION AND FUTURE STUDIES
The availability of more reliable and effective energy
management techniques is one of the main reasons for
developing effective integrated systems based on distributed
generations. In this context, the EMS-based Adaptive MPC
algorithm is implemented for optimal management of micro-
grids based on various energy storage systems. The AMPC
solves an energy optimization problem with multiple types
of energy storage systems in a renewable energy micro-
grid, which exchanges electricity with the host grid. This
problem of optimization is solved at each sampling time
to determine minimum running costs while satisfying the
demand and considering technical and physical constraints.
The controller’s proposed behavior has been observed under
different external conditions, such as changes in weather
and demand. Different scenarios and configurations were
used to demonstrate the AMPC’s versatility and applicabil-
ity. The simulations, therefore, show how the AMPC was
able to adjust to different scenarios, offering a reasonable
solution for power-sharing among the DERs and taking into
account both the physical and operational constraints and the
optimization of the operational criteria imposed on it. For
different weights associated with each DER, different power
distribution results can be obtained. In micro-grid operation,
the presence of good predictions of disturbances is of great
significance as anticipated. Therefore, the implementation
of effective prediction approaches for sustainable genera-
tion and consumer demand and their incorporation into the
EMS will help improve micro-grid operating costs. AMPC’s
predictive capabilities make it an appropriate method for
incorporating accessible information of future generation and
demand evolution. This study has demonstrated how the use
of an AMPC-based EMS can enhance micro-grid operation,
provided there is effective forecasting. More so, it is evident
in the cost function, J , obtained from the three scenarios
conducted, the cost function was further minimized by intro-
ducing the lithium-ion battery storage into the micro-grid.
Therefore, as it is seen from the results, the cost function
obtained when we utilized hybrid energy storage was reduced
compared to when we used just only one battery during
the scenario of no disturbances. In addition, considering the
case with and without the integration of the information of
the disturbance prediction into the AMPC formulations, it is
also evident from the cost function minimization that the
perfect knowledge of the disturbance prediction is essential
for effective micro-grid operations.

Appropriate use of the hybrid ESS necessitates a controller
to be designed that takes into consideration all the constraints,
limitations, degradation concerns, and the economic costs of
each ESS. The high number of constraints and variables to
be optimized hinders the control problem, which necessitates

advanced control algorithms. Logical (binary) variables such
as the start/shutdown of the fuel cell and the electrolyser or
the charging/discharging states in the batteries and the ultra-
capacitor are incorporated in order to control the connection
and disconnection of the units (which significantly affects
the lifetime). More so, one of the main goals in micro-grid
operation is the optimization of the final energy price. It,
therefore, makes it very important to have an accurate energy
prediction algorithm from generation and consumption that
requires a suitable energy price forecasting system. The com-
plexity of the associated control problem of the integration
of micro-grids into the electrical market requires advanced
control algorithms such as Stochastic [75] and Economic
MPC [76]. Thus, a performance comparison of these con-
trol methods also requires more investigation. Meanwhile,
understanding how variations in parameters affect the output
of the model is another critical area that needs attention
as renewables uncertainties are major problems in micro-
grid operations. Sensitivity analysis of a renewable-based
micro-grid with Hybrid Energy Storage Systems with differ-
ent kinds of scenarios is essential to increase reliability and
robustness, reduces costs, and improves the performance of
the micro-grid.
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