
Received August 6, 2020, accepted August 28, 2020, date of publication September 3, 2020, date of current version September 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021498

A Stepwise Rate-Compatible LDPC and Parity
Management in NAND Flash Memory-Based
Storage Devices
SEUNG-HO LIM 1, (Member, IEEE), JAE-BIN LEE1,
GEON-MYEONG KIM1, AND WOO HYUN AHN2
1Division of Computer Engineering, Hankuk University of Foreign Studies, Seoul 02450, South Korea
2School of Software, Kwangwoon University, Seoul 01897, South Korea

Corresponding author: Woo Hyun Ahn (whahn@kw.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government [Ministry of
Science and ICT (MSIT)] under Grant NRF-2019R1F1A1057503, the Hankuk University of Foreign Studies Research Fund, and the
Research Grant of Kwangwoon University in 2020.

ABSTRACT The storage capacity of the NAND flash memory has increased rapidly, and accordingly,
the error rate for data writing and reading to the flash memory cell has also escalated. Error-correcting
code (ECC) modules, such as low-density parity-check (LDPC), have been applied to flash controllers
for error recovery. However, since the error rate increases rapidly, compared to the aging factor and
program/erase (P/E) cycle, fixed ECCs and parities are inappropriate methods for resolving this proliferating
error, according to the P/E cycle. Therefore, the design of a dynamic ECC scheme and a proper ECC parity
management system to increase the lifespan of flash memory storage devices remains in great demand.
Herein, an LDPC encoding and decoding scheme is designed to obtain a step-by-step code rate according to
the P/E cycle by applying a stepwise rate-compatible LDPC. In addition, an ECC parity management scheme
for the increasingly excessive stage-wise ECC is proposed to reduce management and read/write operational
overheads. The ECCmanagement scheme also includes the ECC cache system. The proposed LDPC, as well
as its management system, will improve the recovery ability of the NAND flash storage device according to
the P/E cycle, while it can reduce system read and write overheads due to additional parity data growth.

INDEX TERMS NAND flash memory, flash storage, P/E cycle, RC LDPC, PCHK, parity, ECC cache.

I. INTRODUCTION
The NAND flash memory has been subjected to inter-cell
interference due to the rapid increase in its integration. As the
number of bits stored per cell increases, the error occurrence
rate has remarkably increased due to the interference [1], [3].
Moreover, the longer the time of use, the worse the physi-
cal characteristics of the cell become, which leads the error
occurrence rate escalates [2], [4]. Program/erase(P/E) cycle
is a sequence of events in which data is written, and it is used
as a criterion for endurance of flash storage device. Recent
advances in 3D stacking technology have enhanced the ease
of securing cell-to-cell spacing compared to the conventional
2D approach, resulting in a slight increase in the maxi-
mum available P/E cycle. However, despite 3D technology,

The associate editor coordinating the review of this manuscript and

approving it for publication was Tuo-Hung Hou .

the P/E cycle remains at approximately thousands, which is
a significant disadvantage of flash storage-based computer
systems [5], [6].

In general, error correction code(ECC) module is embed-
ded in the flash controller to recover from errors that occur
during read and write processes. The ECC module uses par-
ity to correct errors, in which the parity is generated from
a specific encoding method. Recently, low density parity
check(LDPC) [9], [13] has been applied to flash controller as
a ECCmodule. The LDPCgenerates a codeword that includes
parity and source data in which parity is generated through
matrix operation on a parity checkmatrix called PCHK. In the
flash memory, a page consists of a data area and a spare area,
and user data is stored in the former, while the parity is stored
in the latter. Each time a page-write action occurs, parity is
generated by applying LDPC encoding to the source user
data, and it is stored together data in the page.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 162491

https://orcid.org/0000-0003-3096-0785
https://orcid.org/0000-0002-9686-7076


S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

The amount of parity can be determined according to
the code rate of ECC module. The code rate is defined
as a ratio between data and codeword, so lower code rate
represents larger amount of parity. The LDPC is designed
and implemented as a hardware module within flash mem-
ory controller, so the (LDPC) code rate is generally fixed.
However, the fixed code rate could be unsuitable for the
flash storage since it raises the error rate as the P/E cycle
increases. That is, generating large ECC parities for early P/E
cycles, which incurs few errors, result in storage overhead
in capacity as well as parity management overheads due to
excessive ECC parity. In the latter P/E cycle wherein many
errors occur, the error recovery rate decreases due to the
relatively small amount of parity. It is required to apply
a dynamic LDPC codec scheme, which can generate ECC
parity dynamically in accordance with the number of P/E
cycles. In order to increase the error correction rate, there
has been an existing studies [29], [30] in which a method of
generating additional parity is applied. If more parity is cre-
ated to increase the error correction rate, the additional parity
cannot be stored in the page along with the data. The parity
should be stored in a separate space separate from the data,
which results in additional read/write overheads to the flash
device.

We propose the design of an LDPC scheme that has several
different code rates according to the P/E cycle, as well as
its parity management system. The method designed here is
based on the quasi-cyclic(QC) rate-compatible(RC) LDPC,
in which it is an LDPC technique that can change code rate
step-by-step, according to predefined P/E cycles. Since it is
designed to have an RC manner, it is possible to expand
parities step by step to existing parity. In the decoding step,
by applying the decoding step by step, only the parity required
for each step can be read, so read overhead can be signifi-
cantly reduced. Compared to the existing RC LDPC method,
the proposed scheme changes a wider code rate to the base
PCHKand reduces the bias of 1’s elementwithin the extended
PCHK.

In addition to the LDPC scheme, we also designed ECC
parity management system. The excessive parities generated
from higher step LDPC should be stored elsewhere from
the original data if the length of parity exceeds that of the
page unit. In our system, parts of parity that exceed the
page length are stored and managed separately from the page
data written. That is, those excessive parities are aggregated
together in another flash blocks. Mapping information for
the separated parities is maintain in the FTL. Furthermore,
an ECC cache management scheme is applied to excessive
parities. At the decoding stage, decoding is applied in the
order of low-level to high-level in accordancewith RCLDPC.
For each level, the exact data and parity are retrieved to
decode at the level, so if decoding is successful at low level of
LDPC, it is unnecessary to retrieve the excessive parity for the
high-level decoding. Thus, it reduces the excessive parity read
overhead, while preserving error recoverability with parities
for high-level LDPC.

The organization of this paper is as follows: The
background and related works are described in Section 2.
The proposed stepwise RC LDPC technique and its manage-
ment system are explained in Sections 3 and 4, while the
experimental results of the proposed system are described in
Section 5. The conclusions are presented in Section 6.

II. BACKGROUND AND RELATED WORK
A. NAND FLASH MEMORY AND MANAGEMENT SYSTEM
NAND flash memory has two distinct unit called page and
block. Page is the unit for read and write, while block is the
unit for erase. The typical page size of NAND flash memory
is one of that 4KB, 8KB, or 16KB, varying according to
the structure of the cell. The block is composed of dozens
of pages, i.e., 64 pages or more. The NAND flash memory
performs read, write, and erase operations. The actual data
transfer occurs on a read or write command, while the erase
operation does not cause the actual data transfer. In general,
a NAND flash storage device includes a plurality of flash
memory chips, as well as a flash memory controller that
handles requests from the host computer. The read request
extracts data from the flash memory chip to the host com-
puter, whereas the write request enters the data received from
the host to the flash memory chip.

In NAND flash memory usage, there are two major issues:
Firstly, the read and write units are different from the erase
units, and secondly, the write operation requires that the cor-
responding flash memory cell be in erased status. A special
NAND flash memory software, called the flash translation
layer (FTL) [14], is used to solve this mismatch, and it is
run on the flash controller. The primary role of the FTL is to
manage the translation tables that convert logical addresses
on the host into physical addresses in the flash memory.
In addition, the FTL is responsible for NAND flash memory
block wear leveling, garbage collection, and error handling.
The main functions of the FTL are address andmapping man-
agement between the logical address of the host data and the
physical address of the flash memory. Several research works
have been performed to develop FTLs and their mapping
management [15]–[19].

B. ENDURANCE OF FLASH MEMORY
Increasing the flash memory density narrows the spacing
between adjacent cells, thereby heightening the interference
between cells, which has led to a sharp increase in data errors
that can occur during read and write processes. In general,
there is a P/E cycle, which is an indicator of the flash memory
life. To write data to flash memory cells, an erase operation
should have been performed first for that cells. So, program
and erase operation make a sequence in which data is written
to flash memory. As the P/E cycle increases, the characteris-
tics of the cell become worse, which leads to a rise in the rate
at which errors occur during the read/write operation. Raw
Bit Error Rate(RBER) is defined as the fraction of bits that
contain incorrect data [1], [23]. As the P/E cycle increases,

162492 VOLUME 8, 2020



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

the RBER increases rapidly, when P/E cycle is exceeded
over some point, error recovery is impossible so it can no
longer be used. The available P/E cycle was maintained at
approximately 100,000 for the single-level cell (SLC), but
at less than 10,000 for the multi-level cell (MLC), as well
as 1000 to thousands for the triple-level cell (TLC) and
quad-level cell (QLC).

One of the main factors affecting the flash endurance is the
P/E cycle, which is due to the rapid increase in RBER with
the P/E cycle. However, due to diversification of themanufac-
turing process of flash memory, factors for RBER variation
have also diversified [20]–[23]. Even in the same P/E cycle,
the RBER varies depending on the location and state of the
flash cell in the block or page. For example, as the retention
time of data increases, the RBER of the page increases.
In multi-level cell flash memory, RBER varies depending on
the location of the bit. Also, RBER is diversified by stacking
layer in recent 3D stack flash memory compared to planner
2D flash memory [23].

To recover from data errors in read and write operations,
ECC modules, such as LDPC, are embedded in the NAND
flashmemory controller. When data is received from the host,
the NAND flash controller generates a parity through the
ECCmodule, combines the parity and data tomake up a code-
word, and stores the codeword in the NAND flash memory.
The pages of the NAND flash memory are composed of data
and spare areas. Generally, ECC parity data are stored in the
spare area in conventional flash memory devices. If the ECC
module creates an ECC parity larger than the spare region,
the excessive ECC must be stored in a different area than the
same page. This is referred as excessive ECC in this paper.
Some previous studies have been conducted to improve the

lifetime of NAND flash memory devices by designing ECC
parity management schemes rather than directly dealing with
ECC encoding/decoding methods. In [29], as the P/E cycle
increases, the code rate is elevated by reducing the data area
and increasing the spare area, thereby improving the correc-
tion capability in the event of an error. Since these studies
do not consider the actual ECC encoding scheme, they may
be inefficient in the actual parity generation and restoration
methods. Zhou designed the ECC cache management system
for the excessive ECC and analyzed its (excessive ECC) per-
formance and the ECC cache [30]. However, the ECC encod-
ing and decoding technique was not applied. Additionally,
because it was not an ECC cache management system based
on dynamic ECC according to the P/E cycle, the overhead
for the excessive ECC was not considered according to the
P/E cycle.

C. LDPCs FOR FLASH MEMORY
While there are many error correction algorithm, two typical
ECC scheme have been applied to flash memory controllers,
that is Bose-Chaudhuri-Hocquenguem (BCH) and LDPC [7],
[9], [32]. The BCH code forms a cyclic ECC class constructed
using polynomials in finite fields. Any level of error correc-
tion is possible and includes efficient codes for uncorrelated

error patterns. The open source Linux platform provides the
BCH ECC coding driver, and the chip designer develops a
chip that implements BCH bit error coding. Recently, how-
ever, it may be unsuitable for the error correction of a recent
status of flash memory errors.

LDPC is a data encodingmethod that generates codewords,
including parity data from source data, using a parity check
matrix (PCHK). In coding theory, the PCHK for a linear
code is defined as a matrix describing a linear relationship
that components of a codeword must satisfy matrix multi-
plication. The set of valid codewords for a linear code can
be specified by describing a PCHK H having m rows and
n columns. The codewords can be the vector x of length n,
in which Hx = 0. Note that the PHCK for a given linear code
is not unique and can be constructed by various methods,
which usually involves a randompositions of where to put 1 in
the PCHK [9]–[11].

For the binary PCHK,most of the elements constituting the
matrix are zeros, and only a few elements have a value of one.
The size of the PCHK is determined according to a code rate,
a ratio of data to codeword. The LDPC code has been widely
adopted in flash memory controllers because of its excellent
error correction. LDPC has received a lot of attention in the
industry, with many presentations made at recent flash con-
ferences such as [13], [26], [33]. For instance, in [28], [34],
an LDPC decoding method optimized for the flash memory
was proposed, and in [35], Tanakamaru et al. showed that
the lifespan of the solid-state drive (SSD) could be extended
by 10 times using LDPC coding. K. Zhao proposed three
techniques to mitigate the response time delay of LDPC
decoding [8].

When source data is encoded by LDPC with specific
PCHK, the generated parity are usually mixed with source
data in resulting codeword. Therefore, if LDPC encoding of
the same data is performed on LDPC with different PCHK
having different code rate, the resulting codeword has totally
different order of bit sequence. On the other hand, rate-
compatible(RC) LDPC is possible to extract increasing par-
ity by parity in accordance with code rate changes. Many
research works have proposed the RC LDPC encoding tech-
nique to improve the real-time error correction of commu-
nication channels where noise can change rapidly in real
time [36]–[38], as well as memory systems, such as NAND
flash memory [26]–[28], [39]–[41]. The RC LDPC basically
extends the matrix depending on the base PCHK. Most of
the existing methods for extending the base PCHK entail the
addition of an identity matrix laterally in the lower-right diag-
onal direction of the base PCHK, which distributes a value
of one only to rows added below the base PCHK. PCHKs
extended in this manner may be deteriorated compared to
the general PCHK, wherein the error correction rate of the
extended PCHK has the same code rate because the value
of one is biased. There were some research works for error
management of 3D flash memory which has large variation
of RBER. [23] designed RBER-aware lifetime prediction
scheme for 3D flash memories by applying machine learning

VOLUME 8, 2020 162493



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

technologies, and in [31], they proposed multi-granularity
progressive LDPC in accordance with RBER variations of 3D
flash memories.

The proposed LDPC scheme in this paper is based on
rate-compatible manner. Although rate-compatible coding
schemes already developed and applied to many dynamic
error management systems, our approach is different from
others at some points. First, compared to the existing RC
LDPC method, the proposed scheme adds a wider code rate
to the base PCHK. Second, in the structure of the extended
PCHKs, element value 1 is not biased to specific columns.
As a result, the RC-based LDPC developed in this paper
does not suffer much from the performance degradation in
comparison with the PCHK without RC. It is suitable for a
NANDflash memory that has an increasing error rate accord-
ing to the P/E cycle and a fixed input/output unit of page.
This paper also deals with parity management and caching
method, as well as LDPC encoding and decoding scheme.

III. A STEPWISE RATE-COMPATIBLE QC LDPC
A. BASE PCHK AND LDPC
The LDPC generates a codeword including parity and data
through matrix multiplication on a PCHK or a PCHK cor-
responding generator matrix from source data. As described
above, the PCHK, especially binary PCHK, is amatrix having
a small elemental value of one, and a Tanner graph [10] is
applied to LDPC coding based on the PCHK. If the element
of one is concentrated in a specific row or column with
the PCHK, the characteristic of the Tanner graph may be
deteriorated. So the quasi-cyclic (QC) [12] method can be
applied to enable the efficient distribution of one’s element.
Figure 1 describes QC matrix with size of 3 by 3. The PCHK
can be made of clustering several QC matrixes in which each
QC matrix is different from others by reordering columns.
The schematic diagram of the basic PCHK constructed by
applying the quasi-cyclic pattern is also shown in Figure 1.

FIGURE 1. Structure of base PCHK with quasi-cyclic(QC) sub-matrix and
codeword generation from the corresponding generator matrix.

The PCHK is of a (m + k) × m matrix structure, where
the sizes of the message(data) and parity bits are k bits and m
bits, respectively. The small unit of the PCHK has quasi-cycle

pattern with different one’s position. The PCHK is divided
into A and B parts, where A is composed of a m × m
non-singular QC matrix and B is a m × k QC matrix. The
LDPC encoder can create a generator matrix based on the
PCHK configured by multiplying A−1 and B matrix. It con-
sequentially generates a codeword having a size of (m + k)
consisting of a data and parity through amatrix multiplication
operation of the generator matrix and message bits. The
resulting codeword is divided into D and P, where D is exactly
same as data and P is parity, so LDPC can separate message
from parity if we construct PCHK described in Figure 1. The
basic structure of the PCHK is called base PCHK in this
paper.

B. EXTENDED PCHK FOR RATE-COMPATIBLE LDPC
To construct an RC LDPC from the base PCHK, we should
note the following issues when creating a base PCHK: Firstly,
when a codeword is generated through LDPC encoding, data
bits and parity bits must be completely separated. Secondly,
to have an RC feature, the matrix A must be configured to
have a non-singular feature, i.e., it must be configured in a
form having an inverse matrix.

After configuring the base PCHK to have this feature,
Figure 2 shows how a PCHK can be extended to separate the
added parity from the existing one. As shown in the figure,
extending the PCHK from the base PCHK entails the addition
of specific columns and rows to the base PCHK. That is,
to generate additional e parity bits to existing m message
and k parity bits, we add the e column and e row to the
base PCHK. In the figure, O and I , denoted by the additional
columns, represent the zero matrix and the identity matrix,
respectively. The D and E matrix added to the row are com-
posed of a QC matrix, such as A or B. For the D matrix, like
the A matrix, a non-singular matrix can be added to further
expand it. The structure of the PCHK made by extension
from base PCHK is referred as extended PCHK in this paper.
If LDPC encoding is performed using the extended PCHK,
a separate parity is created from the base parity generated by
the existing base PCHK.

FIGURE 2. The pchk extension method for stepwise rate-compatible
parity.

We can also construct next-step RC PCHK by extend-
ing the extended PCHK as same manner. Figure 3 shows a

162494 VOLUME 8, 2020



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 3. Extended PCHK structure using N stepwise rate-compatible QC
LDPC technique. It can generate N separate parities ranging from base to
N steps.

diagram that extends a three-step RC PCHK from the base
PCHK. Although the figure describes only the three-step
extension method, the n-step PCHK extension can be applied
in the same way. In the figure, e1, e2, and e3 represent the
first, second, and third extensions, respectively. As shown in
the figure, to extend the RC PCHK for generating en parity
data separated from the existing codeword from the (n-1)th
step PCHK, the O, I , Den, and Een matrices are added to
the proper location from (n-1)th step PCHK. The Den and
Een should be basically configured to have a QC matrix as
well, andDen should be configured to be non-singular matrix.
The Den QC matrix added at each step can be configured
such that the distribution of elements having a one value is
relatively unbiased to some columns. This can minimize the
performance reduction for error correction compared to the
previous RC LDPC scheme. It is because the values of one
are less biased on the columns, making the characteristics of
the Tanner graph tolerable.

C. EXTENDED PARITY GENERATION
We can obtain G and Ge generator matrices from PCHK and
PCHKe, as well as generate parity data for each step through
the matrix operation of source data. Figure 4 illustrates the
results for a codeword generated by performing LDPC encod-
ing and the generator matrix using three-step RC PCHK

FIGURE 4. Structure to generate N separated parities from generator
matrix, which correspond to N step extended PCHK.

extensions. As shown in the figure, when using an RC LDPC
with the base PCHK and the extension based on it, the original
message data and the parity data can be separated, and the
parity can be generated such that it remains unmixed even if
the encoding is extended.

In our system, the PCHK extension method is configured
to have a large difference in code rate at each step. That
is, PCHK extensions are applied to some limited number
of P/E cycle changes such as two or three, so we can get
large parity enough to correct increasing errors due to the
P/E cycle increases. As a result, there are large difference
in code rate between each PCHK step. This large code rate
difference between each PCHK extension step is appropriate,
considering the structure of the NAND flash memory, such as
page size.

IV. EXCESSIVE ECC MANAGEMENT SYSTEM
A. BLOCK ALLOCATION AND FTL MAPPING
MANAGEMENT
In general, parity generated from LDPC encoding with base
PHCK is stored to flash page with its corresponding data,
specifically, data is stored in data area and parity is stored
in spare area, respectively. However, the parity generated by
LDPC encoding with the extended PCHK is larger than base
parity, so it cannot be stored in one page together. The parity
generated by extended PCHK can be completely divided into
several parities according to the extension level. For instance,
parity of LDPC encoding with two step PCHK is divided into
base parity, extended parity one and two. In this case, base
parity can be stored to flash page together its corresponding
data, while others cannot be stored together. We refer those
parities as excessive ECC parity.

In our system, the LDPC encoding level is determined
by the predefined P/E cycle threshold values. When each
block reaches a certain P/E cycle value, the PCHK of the
corresponding level is applied. If the 3-step extended PCHK
technique is applied, it has two P/E cycle thresholds as config-
uration parameters to apply PCHK in each step. FTLmanages
the P/E cycle value of each block, and FTL increases the P/E
cycle value of each block whenever an erase operation of
the block occurs. At the beginning, every block uses LDPC
coding with base level PCHK. When a block reaches the
threshold P/E cycle value, 1-step extended LDPC coding is
applied to the block. Likewise, when the block reaches to
the next level threshold P/E cycle value, next-level extended
LDPC coding is applied.

The excessive ECC parity should be stored in a separate
space from data. For this, firstly, we allocate blocks that
collect and store the excessive ECC parities separately from
the data blocks that store data. Secondly, mapping informa-
tion about an address where the excessive ECC parity is
placed is managed in the mapping table. Finally, the cache
management for excessive ECC parity is added to the system
to reduce the read/write overhead due to the excessive parity.
The block containing excessive ECC parity is referred as ECC

VOLUME 8, 2020 162495



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

block, and cache for excessive ECC parity is referred as ECC
cache, respectively. Those management schemes exist within
FTL.

The overall excessive parity management and operation is
described in Figure 5, in which one step extended PCHK
is applied to LDPC module. When data is written by host,
at first, FTL allocates a physical address for the logical
address of the data transmitted from a host. Then, a parity is
generated through the LDPC module, in which the generated
parity is divided into two parts, base parity and excessive
parity since one step extended PCHK is applied. As shown
in Figure 5, the data and base parity is stored to physical
page assigned by FTL, while the excessive parity cannot
be stored together. Since read and write operation of flash
memory is done in units of pages, the excessive ECC parity
must be collected to a buffer until it is filled with other
excessive ECC parities, so the excessive parity is written to
the flash memory along with other excessive ECC parities of
other data. For instance, if an excessive parity of 256 bytes
is generated for 4KB data, 16 excessive ECC parities for
16 data pages can be stored in one page together. When the
buffer is filled with the excessive parities, it is written to a
specific page of the ECC block. The corresponding physical
address that stores the excessive parities is managed in the
FTL separately from the existing mapping table. As shown
in Figure 5, the parity address information is defined with
page number and its offset within the page. That information
is added to the existing FTL mapping table.

FIGURE 5. The write process of host data in a stepwise rate-compatible
LDPC-based flash storage management system.

Although the figure only depicts the extended parity by one
level of the extended LDPC, it can be generalized and used
in the same way even if next-level expansion is applied. Even
when the expansion step for the extended LDPC scheme is
increased, the base ECC parity is stored with data together in
one page, while other excessive ECC parities are stored in a
part of a specific page in the ECC block.

B. CACHE MANAGEMENT
In general, flash storage devices have internal DRAM caches
for user data caching to improve IO responsiveness and
reduce flash memory read/write operations. In our system,

to reduce read overhead for excessive parity caused by
extended PCHK, a portion of DRAM is allocated and man-
aged as a cache for ECC, that is, excessive parities. As a
result, DRAM is divided into data cache and ECC cache,
in which data cache is for caching user data while ECC cache
is used for caching excessive parities.

The extended parity generated by the extended LDPC
increases the error correction rate of the data, but additional
flash read and write overhead occurs because the excessive
ECC parity is stored in a separate page from data. The DRAM
cache structure, which consists of a data cache region and an
ECC cache region, is illustrated in Figure 6. In the ECC cache
region, only the excessive ECC parities are cached, while
base ECC parities are not cached since those are read from
data together as a page unit. The data cache and ECC cache
is managed by separate replacement lists and replacement
policies. That is, the excessive ECC parity associated with a
particular data is not always caching or uncaching altogether.
Since the same physical DRAM is shared between the data
cache and the ECC cache, the size of each cache can affect
each other, so the cache size between the two regions is
configured so that it can be changed in the device settings.

FIGURE 6. The DRAM cache structure, which consists of a data cache
region and a parity cache region.

Although the effective replacement policies from many
existing studies [24], [25] can be applied, the basic least
recently used (LRU) replacement policy is applied in this sys-
tem. The data cache replacement and its corresponding ECC
cache operation is shown in Figure 7. When the requested
data is not in the data cache, the victim page is selected
from LRU list. and it is flushed to flash if the victim is dirty.
After then, we should consider whether its excessive ECC
should be generated or not. If the victim’s excessive ECC
is already exist, which means the victim’s data is already
in flash and it is not set to be dirty, we do not need to
generate excessive ECC. In this case, cache replacement is

162496 VOLUME 8, 2020



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 7. The data cache replacement and its corresponding ECC cache
operation.

done without generation of excessive ECC. If the victim’s
excessive ECC is not exist, the excessive ECC is generated
by extend LDPC encoding and it is cached in the ECC cache.

The read and write operations are carried out as follows:
In the case of data write operations, data are simply cached
in the data cache area immediately if it is possible without
any eviction of other cached data. In this case, no LDPC
encoding is performed since there is no flash write. The ECC
parity is actually generated when the cached data are evicted
into flash. At this time, the excessive ECC parity is generated
by LDPC if extended PCHK is applied. The generated ECC
parity is cached into ECC cache. For data read operations,
there are several cases according to the cache status of the
requested data, as shown in Figure 8. If data exist in the
data cache, it can be sent directly from the cache to the host
without a flash read. If the data are not in their cache, they
should be retrieved from the flash memory. The excessive
ECC parity for the corresponding data may be in the ECC
cache even though the data is not cached, since the ECC
cache is managed by a separate list and replacement policy
from the data cache. If LDPC decoding with extended PHCK
is required during retrieving data from flash, it can be per-
formed without additional flash reading if the corresponding
ECC parity exists in the ECC cache region. It reduces read
overhead that is derived from the excessive ECC parity.

FIGURE 8. Several cases of data read operations with data cache and ECC
cache.

C. DATA RETRIEVAL AND LDPC DECODING PROCEDURE
According to the system, the LDPC encoding with n-step
extended PCHKs is applied for the specific predefined P/E
cycle. For example, if the flash device is set to apply two
PCHK extensions for blocks with P/E cycle 2000 and 4000,
LDPC encoding with base PCHK is applied to flash blocks
having P/E cycles under 2000, and the one-step extended
LDPC encoding is applied to blocks having P/E cycles from
2000 to 4000, while the two-step extended LDPC encoding
is applied to blocks having P/E cycles over 4000.

On the other hand, when data are read from flash mem-
ory, they are restored by performing a step-by-step LDPC
decoding from the base PCHK to the maximum step extended
PCHK. The procedure of reading and decoding the data
is as follow. When a read occurs from the flash memory,
firstly, a page in which the data are stored is read and LDPC
decoding with base PHCK is performed with the data and
the base ECC parity stored in the spare region of the page.
If decoding is successful with any inaccuracy, the data can
be transmitted to the host normally without any error. In this
case, since the data were read without the help of excessive
ECC, no additional work associated with the excessive ECC
is necessary. If decoding fails with only the base ECC par-
ity, further decoding should be done with next-step PCHK,
which entails that the excessive ECC parity is required. The
excessive ECC is first checked whether it exists in the ECC
cache or not. If it exists therein, LDPC decoding is performed
by combining the excessive ECC parity with previously read
data and base parity. If decoding is successfully performed by
those, the data can be transferred safely without additional
flash memory read operation for the excessive ECC parity.
If the parity does not exist in the ECC cache, an additional
read operation should be performed to read the excessive
ECC parity from the NAND flash memory. Then, the ECC
parity is combined with the associated data and the base par-
ity, and LDPC decoding is performed using them. In this case,
the decoding error is recovered although there is additional
read overhead for reading excessive ECC parity.

In summary, through the stepwise RC LDPC encoding
and decoding with extended PCHK as well as the excessive
ECC management with cache, adaptive data restoration in
accordance with P/E cycle can be applied to enhance error
recoverability.

V. EVALUATION
A. IMPLEMENTATION AND EVALUATION SETUP
The proposed stepwise RC LDPC-based ECC module and
its excessive ECC management system were implemented in
FlashSim simulator [42], [43], which is SSD device simulator
that models the NAND flash memory chip, flash controller,
DRAM, and several FTLs. However, since it does not have the
ECCmodule, we added the ECCmodule by implementing the
LDPC simulator [44]. The added LDPC module can define
the desired PCHK and can encode and decode the source data
by using the generator matrix derived from the PCHK. For
FTL, the page-level mapping management-based DFTL [18]
existing in this simulator was used, and it was assumed that
all the mapping tables existed in the DRAM. In the FTL,
additional mapping information for excessive parities was
added to the existing page-mapping table. In addition, caches
for data and ECCparity have been implemented in theDRAM
buffer. Basically, the cache performs caching and replace-
ment on a block basis, and the LRU replacement policy is
applied. Data and ECC cache are independently managed
with separate replacement lists. The characteristics of the

VOLUME 8, 2020 162497



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 9. Evaluated RBER according to the P/E cycles for planner TLC NAND [3] and RBER variation of 3D TLC NAND
according to retention time [23].

flash memory applied to the simulator are as follows: The
page size is 4 KB data region with additional 1KB spare
region, the block size is 256 KB, and it has a total capacity
of 1 GB.

This simulator has a model for the latency for the page
read and write, and block erase operations, however, it has
no error rate model. It is more essential to measure the error
rate that occurs when reading and writing each page, thus,
we added a model that generates errors when reading and
writing for each page. For this, in the simulator, each time
the page is read, the raw bit error rate (RBER) corresponding
to the P/E cycle of the page is generated. RBER is the bit
error rate before using ECC, which reflects the basic stability
state of NAND Flash cell itself. In order to apply the aspect
of large RBER variability, the RBERs of both of planner TLC
NAND and 3D TLC NAND, which was measured in the
previous studies, was used in our experiments. Figure 9(a)
shows the RBER according to the P/E cycle measured in
the planner TLC NAND flash memory [3], while the RBER
variation according to the P/E cycle of the 3D flash memory
is plotted in Figure 9(b) [23]. Although Figure 9(b) shows
the variability of RBER according to retention in the same
P/E cycle, since the RBER variation per each P/E cycle is
widely distributed with four kinds of retention period, which
can represent the RBER variability in accordance with other
cases such as the layers of the 3D stack and the bit position
in the flash memory cell.

B. EVALUATION OF THE STEPWISE EXTENDED PCHK
Firstly, to show the feasibility of the stepwise LDPC ECC
scheme, uncorrectable bit error rate (UBER) of three-step
LDPC with extended PCHK is compared with that of
legacy QC LDPC, by changing P/E cycle value. The exper-
iment was conducted on a total of four LDPC configura-
tions, including three legacy LDPCs with code rates of 0.8,
0.67, and 0.57, and the extended PCHK LDPC scheme.
The extended PCHK having three stages of LDPC with
code rates of 0.8(4 parity-20 data), 0.67(8 parity-24 data),
and 0.57(12 parity-28 data) were constructed. The PCHK
extensions are applied for P/E cycles with 2000 and 4000.
That is, the base PCHK with a code rate of 0.8 is applied
to P/E cycles from 0 to 1500, and PCHKe1, a one-step

extension, is applied to have a code rate of 0.67 for P/E
cycles from 2000 to 3500. For the P/E cycles from 4000 to
5000, PCHKe2, a two-step extension, is applied to have a
code rate of 0.57 based on PCHKe1. Since the PCHK for
a given code is not unique, we created ten extension cases
to evaluate the performance variation of different extended
PCHK examples. The stepwise extended LDPC is compared
with three legacy LDPCs [12], [44] having code rates of 0.8,
0.67, and 0.57, respectively. These are independent PCHKs.
These are created so that they are not related to each other.
We also created ten cases for each legacy LDPC and estimated
the UBER for each of them.

The experiments are described as follows. While increas-
ing the P/E cycle from 0 to 5000, in steps of 500, hundreds of
thousands of pages are written and read for each P/E cycle.
For write operations, random data is encoded with each of
LDPCs and errors are injected to the encoded data according
to the RBERs for the P/E cycle. For read operations, each
of LDPCs performs decoding, attempts to recover an error
caused by the RBER, and measures the number of times that
it cannot be decoded meaning that error occurs. These values
are denoted as the uncorrectable bit error rate (UBER) [1].

Figures 10 and 11 plot the experimental results of the
decoding experiments for six LDPCs with RBER values
of Figure 9(a). Figure 10 shows the UBER value versus
P/E cycles for each LDPC configuration. Among ten candi-
dates, three cases of extended PCHK scheme were separately
plotted from Figure 10(a) to 10(c) to compare each with the
legacy LDPC, and the average UBERs for ten cases of
each LDPC configuration are represented in the Figure 10(d).
As shown in the figures, in the case of the LDPC with
extended PCHK, even though there is some variation, UBER
is lowered in the P/E cycle wherein PCHK expansion is
applied. This is because the LDPC with extended PCHK
improves decoding ability by increasing parities at the spe-
cific P/E cycle, so UBER is lowered. For P/E cycles from 0 to
1500, the Ext. PCHK show similar UBER with legacy LDPC
with 0.8 code rate, while the UBER of Ext. PCHK is lowered
at P/E cycle 2000, wherein one step extension is applied
for LDPC encoding. The UBER of LDPCs having extended
PCHK is almost same as legacy LDPC having 0.67 code
rate during P/E cycles from 2000 to 3500. As some cases,

162498 VOLUME 8, 2020



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 10. Estimated uncorrectable bit error rate(UBER) results for the RBER of LDPC configurations according to changes in the P/E cycle; No ex.
ECC(0.8), Legacy LDPC(0.67), Legacy LDPC(0.57), and Stepwise RC(Extended) PCHK cases.

FIGURE 11. The decoding probability distribution according to the P/E cycle for stepwise RC LDPC Case1, 2, and 3. For each P/E cycle,
the probability was plotted by measuring which PCHK decoding was a success in each step for stepwise RC LDPC to analyze at which PCHK
stage decoding was successful.

the UBER of Ext. PCHK is lower than that of legacy, and
some cases the UBER of Ext.is higher than that of legacy.
In our experiments, the average UBER of first expansion of
PCHK is almost same as that of legacy LDPC, which means
that our Ext. PCHK can provide almost same error recover-
ability for the first expansion. For the second expansion of
PCHK, the average UBER of Ext. PCHK is worse than that
of legacy LDPC, as shown in the Figure 10(d). It is the limit
of rate-compatible manner-based coding scheme. However,
the UBER gap is not much to not consider of applying our
Ext. PCHKmethod, and even some case of Ext. PCHK could
give better UBER than that of legacy, as shown in the case 3.

Since the decoding procedure of extended LDPC is per-
formed from lowest PCHK to highest PCHK until the decod-
ing is successful, the decoding success level is different from
each other for the Ext. PCHK scheme, which is the strength
of Ext. PCHK. Thus, to determine which step was success-
ful, the level of PCHK was counted when decoding was
successful at each decoding. Figure 11 shows the decoding
probability according to the P/E cycle for three extension
cases. As shown in the figure, during P/E cycles from 0 to
1500, only the base PCHK exists, so all decoding probability
depend on the base PCHK. For P/E cycles from 2000 to
3500, the decoding probability of the base PCHK gradually
decreases, while the decoding of one-step extended PCHK
compensates for the failure of the base PCHK. The distribu-
tion of the decoding probability for the base PCHK, PCHKe1,
and PCHKe2 is plotted for P/E cycles from 4000 to 5000,
in which we identify that the decoding probabilities using
base PCHK and PCHKe1 occupy large portion. From these

results, it is identified that even though the RBER rises as the
P/E cycle increases, in many cases, decoding is success with
LDPC having lowPCHK, i.e., the base PCHKor lower step of
the PCHK. That is, even if the RBER is high, it is worth using
lower level of PCHK for successful decoding in many cases.
If the low PCHK fails, a decoding with higher PCHK can be
used. Since lower PCHK has less parity and less decoding
overhead than higher PCHK, if decoding is successful using
a low level PCHK with small amount of parity, the overhead
of the flash device can be reduced.

We also performed experiments that applied extended
PCHK LDPC to flash memory with RBERs having variation
for each P/E cycle as plotted in Figure 9(b). Figure 12 plots
the experimental results of the decoding experiments for four
LDPCs, that is No. Ex. ECC, legacy LDPCs with code rate
of 0.67 and 0.57, and Ext. PCHK. In the case of Ext. PCHK,
the extend PCHKmethod having average error recoverability
of ten cases in the previous experiment was applied. To ana-
lyze the effect of RBER variation, error rate was applied with
evenly distribution of the four RBER variations for each P/E
cycle, then LDPC decoding was performed to correct the
errors and counted the decoding success of for each RBER.
Figure 12(a) plots the number of successful decoding for each
step of Ext. PCHK for each of the four RBERs. As shown
in the figure, even in the same P/E cycle, the number of
successful decoding in the same step of Ext. PCHK varies
according to the RBER, and this difference between RBER
variations increases as the P/E cycle increases. However,
the failed decoding in the lower steps can be decoded at
the next step of Extend PCHK, as a result, we identify that

VOLUME 8, 2020 162499



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 12. It plots the experimental results of the decoding experiments with variable RBERs in each P/E cycle for four LDPCs, No. Ex. ECC, legacy
LDPCs with code rate of 0.67 and 0.57, and Extended PCHK.

the difference in the total number of decoding successes
according to RBER variation for each P/E cycle decreases.
Thus, it can be confirmed that the effect of RBER variation
is reduced by applying extend PCHK. That is, it can be
identified that the error recoverability using the additional
parities of Extend PCHK is effective to cover the variance
of errors due to RBER variation. Figure 12(b) shows the
their average UBER value versus P/E cycles for each LDPC
configuration. As can be seen in the figure, although the
error recovery rate is reduced rather than that of the planner
flash, the error recoverability of the Ext. PCHK improves as
extended step increases.

C. EVALUATION OF FLASH DEVICE PERFORMANCE
1) EVALUATION OF READ
The stepwise LDPC provides increasing encoding accord-
ing to the P/E cycle, and decoding performs step-by-step
decoding. Since parities are additionally generated with the
extended LDPC encoding, the parities increased by the LDPC
extension adds overhead to read/write and storage. compared
to existing system, our extended LDPC and its management
system not only lowers errors by using extended parities
according to P/E cycle, but also reduces read/write overheads
for excessive parity through step-by-step decoding and cache
management. We performed a read/write IO experiments to
analyze the overhead of the proposed system by comparison
with legacy LDPC and existing work [12], [30]. In these
experiments, we analyzed the IO overhead according to the
IO patterns for the six LDPC configurations applied in the
previous experiments. In the LDPC configurations, the legacy
represents the basic QC LDPC having code rate 0.8, which
does not generate any excessive parities. The SCORE [30]
is existing work that creates and manages excessive parities
all the times regardless of the P/E cycle. SCORE (0.67) and
SCORE (0.57) indicate SCORE with code rates of 0.67 and
0.57, respectively. Ext. PCHK is the method in which step-
wise extended PCHK is applied.

In this experiment, the flash simulator was set as same
configuration as above experiments except cache configura-
tion. Specifically, for DRAM cache, the size of the DRAM

for data cache was set to 64 MB, while the ECC cache
size was changed to 0, 8 MB, 16 MB, and 32 MB to
analyze the caching effect for the excessive ECC parity.
To analyze performance variations according to the request
pattern, four IO request patterns were conducted: Random
Request 100%, Sequential Request 100%, Random70%-
Sequential30%, and Random30%-Sequential70%. In the
case of a random request, the requests having page size were
randomly generated for the whole logical LBA area, while
the requests having page size were continuously generated
for the sequential request. These four request patterns were
applied to each of the six LDPC configurations, that is, for
each LDPC configuration, the four request patterns were
performed by increasing the P/E cycles from 0 to 5000. For
all configurations and experiments, before the experiment,
a write request was performed once in all logical addresses
of the flash simulator, and then 50,000 IO operations were
performed, while repeating write request and read request
according to request pattern.

The additional read overhead generated by the excessive
ECC was measured during IO operations for four request
patterns, however, among the four request patterns, we plotted
the amount of additional ECC page reads only for random
request in Figure 13, since random request patterns show
worst case read overhead. In the figure, the x-axis represents
the P/E cycle value, while the y-axis represents read ampli-
fication factor, which means the degree of amplification of
the amount of internal read operations compared to data read
requests from the host side. Since internal read operations
are amplified due to the additional reads for excessive ECC,
this metric can show how much the read overhead due to the
excessive ECC.

To analyze the overhead in terms of the pure flash memory
read operation, an experiment without ECC cache was per-
formed, and the results are shown in Figure 13(a). As shown
in the figure, it can be confirmed that read amplification
stays at one in the case of the legacy, which is one that does
not have any excessive ECC parities. For the two existing
LDPC techniques SCORE(0.67) and SCORE(0.57), we can
identify that the amount of read has been doubled compared
to the legacy one. For random read, the excessive parities

162500 VOLUME 8, 2020



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 13. It shows the experimental results of additional ECC reading amount compared to data reading as P/E cycle increases for random
100% requests, at cache size 0M, 8M, 16M, and 32M, respectively. The read amplification represents the degree of amplification of the amount of
internal read operation cause by excessive ECC read compared to data read of the host side.

FIGURE 14. It shows the read amplification factors of the five LDPC configurations for each ECC cache 0,8,16, and 32MB size, for request patterns
of Random100, Sequential100, Random70-Sequential30, Random30-Sequential70. The Data cache is fixed with 64MB.

must be read along with the corresponding data to decode,
which results in double of reads. Since the excessive ECC
page associated with a data page is also randomly chosen due
to the random request patterns, the read amplification became
two at worst case.

On the other hand, for the three cases to which the extended
LDPC, is applied, i.e., Ext. PCHK case 1∼3 it can be seen that
read amplification increases gradually in each step wherein
each extension is applied. Since there is no excessive ECC in
the P/E cycles from 0 to 1500, where no extension is applied,
each of the data read is made as one page read. In the P/E
cycles of the 2000∼3500 section, where the first step exten-
sion is applied, the read amplification is ranging from 1.31 to
1.51, which is much lower than that of SCORE(0.67). This
is because in the case of the Ext. PCHK, LDPC decoding is
firstly attempted by reading only data and parity of the spare
with the data, i.e., only one page. If the decoding is successful
with only the page, there is no need to read the page that
contains excessive ECC. The read amplification increases as
the P/E cycle grows because the decoding success with only
base parity decreases due to an increase in the RBER, and the
read of excessive ECCs correspondingly rises. We identify
that the P/E cycle of 4000∼5000 with two-step extension
shows a similar trend. Since this section has a low probability
of LDPC decoding due to high RBER, the read amplification
increases from 1.63 to 1.79 in this section.

We did experiments with increasing cache size from 8M
to 32MB to identify the cache effects on read overhead for
excessive ECC. The read amplification for cache sizes of 8M,
16M, and 32M are plotted in Figure13(b), Figure13(c), and
Figure13(d), respectively. As shown in the figure, when ECC
caching is used, the read amplification of the existing LDPC
decreases from two as the cache size increases. Similarly,
in the case of the proposed extended LDPC, it is observable
that read the amplification gradually decreases as the cache
size increases. Since the ECC cache area is used for caching
the excessive ECC, the number of flash memory read opera-
tions on the excessive ECC data can be reduced as ECC cache
size increases.

It is noteworthy that even the Ext. PCHK having less ECC
cache has less read overhead than the existing method that
uses more ECC cache. It means that some area of ECC
cache can be altered to data cache to help improve data
read/write without any loss of read overhead in comparison
with SCORE. To further analyze the cache effect, the read
amplification factor was plotted by changing the ECC cache
size by 0,8,16, and 32MB for each request pattern, while
the cache size for data cache is fixed with 64MB. Figure 14
shows the read amplification factors of the five LDPC con-
figurations for each ECC cache 0,8,16, and 32MB size. In
the figures, legacy system, that is, No ex. ECC (0.8) shows
no additional reads for the excessive ECC, so there is no

VOLUME 8, 2020 162501



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 15. It shows the amount of data reads and ECC reads when the random read operations are performed
while the ratio of Data Cache:ECC Cache is changed to 64:0, 56:8, 48:16 and 32:32, respectively, with the 64MB total
cache size, and the hit ratios of the data cache and ECC cache at this time.

read overhead. In the case of SCORE, as the ECC cache
size increases, read overhead decreases, but not much lessen.
In numerical value, read amplification of SCORE, which
was approximately two when there was no cache, improved
the performance by 20% to 1.6 when the cache size was
32M. On the contrary, for the extended LDPC with two step
extension, that is Ext. PCHK(0.67), the read amplification
is from 1.31-1.32 in the case of no cache, and it decreases
to 1.16-1.19 with the 32M cache size, which represents a
performance improvement of approximately 25%∼35%. For
three step extension, that is Ext. PCHK(0.57), If there is no
cache, the read amplification is 1.62-1.63, but if the cache size
is 32M, the read amplification is lowered to approximately
1.34-1.38, which presents a performance improvements of
approximately 16%∼19% in case of three-step extensions.
The three step extensions give more read overhead than two
step extensions, however it also gives high error correction
capability.

From the results, it is noteworthy that even the Ext. PCHK
having no cache is better than that of the original that has
32M ECC cache. It means that even if the ECC cache is
not used, the read overhead of Ext. PCHK is lower than
legacy system having cache. Certainly, we have known by
the previous research [30] that ECC cache can reduce read
overhead for excessive ECC, however, the extended LDPC
scheme gives more effects on lowering read overhead than
using ECC cache.

In addition, we also measured the read performance with
fixed total cache size to see the performance impact with
different size distribution between data cache and ECC cache.
In each of LDPC system, the amount of read wasmeasured by
distributing the ratio between data cache and ECC cache from
64:0 to 32:32. Figure 15(a) shows the amount of data reads
and ECC reads when the random read operations are per-
formed while the ratio of Data Cache:ECC Cache is changed
to 64:0, 56:8, 48:16 and 32:32, respectively, with the 64MB
total cache size, and Figure 15(b) is plotted by measuring
the hit ratios of the data cache and ECC cache at this time.
As shown in Figure 15(a) and Figure 15(b), as the data cache
size decreases, the hit ratio for the data cache decreases,
so the amount of data read increases, while as the ECC cache
increases, the ECC cache hit ratio increases which reduce the

amount of ECC reads. It should be noted that the amount ECC
reads for Ext. PCHK scheme is much smaller than that of
SCORE, so if the ECC cache is reduced in size and altered
it to data cache, the overall read performance can be more
improved.

In summary, there are two factors influencing the perfor-
mance improvement for the extended LDPC scheme. Firstly,
since many decoding operations can succeed with lower lev-
els of PCHKs, higher-level excessive ECC does not need to
additionally read in many cases. This reduces the reading
operation itself for the excessive ECC parities. Secondly,
the ECC cache activation is relatively low due to the reduced
number of reads. By properly reducing the size of ECC
cache and increasing it to the data cache, it can contribute to
improvements on data caching, in comparison with the exist-
ing work, that is, fixed excessive ECC and caching scheme.

2) EVALUATION OF SPACE, WRITE AND GC OPERATION
In general, flash storage is designed to have more physical
space than the user’s space. The space other than the user’s
valid data is regarded as an invalid area or a free area. The
extended LDPC scheme can be subject to space overhead
due to excessive parities generated by the LDPC. The storage
overhead can be estimated as displayed in Figure 16, in which
storage becomes more demanded as the excessive parities
increases. However, in terms of storage usability, user effec-
tive data is generally lower than storage capacity, so, more
important issue is that the actual amount of physical writes
increases compared to the effective amount of writes due
to the excessive parities, rather than space overhead. As the

FIGURE 16. It shows storage overheads for LDPC configurations over
P/E cycle.

162502 VOLUME 8, 2020



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 17. Plots of the write count generated in the flash storage device when the host write operation is performed while increasing the P/E
cycle from 0 to 5000 by 500, for each request pattern; random100, sequential100, random70-sequential30, random30-sequential70.

FIGURE 18. It plots the rate of increase of the P/E cycle and relative frame error rate according to the increase in the amount of excessive ECC
writes.

amount of writing increases, the space also consumes, which
has a negative effect for flash storage usage such as GC,
due to the decrease in the free area. So, as another terms of
space overhead, wemeasured howmuch flashwrite increased
compared to host write, and howGC overhead was, caused by
the excessive ECC.

To analyze the write overhead, we have measured the
amount of writes in flash device for the host write requests.
The measured the amount of writes for four request pat-
terns are depicted in Figure 17. In the figure, the results
for No ex. ECC represents base guideline for the amount
of writes since it does not any excessive ECC. The LDPCs
having excessive ECC that does not provides rate-compatible
manner along with P/E cycles, such as SCORE(0.67) and
SCORE(0.57), generate write overheads regardless of P/E
cycles. Specifically, SCORE(0.57) generates larger amount
of writes than SCORE(0.67) due to generating larger exces-
sive parities. On the other hand, it is noticeable that,
in case of Ext. PCHK method, the write overhead increases
each time the expansion level is raised. For the extended
LDPC cases, the write overhead increases at the P/E cycle
of 2000 wherein the first-step expansion is applied, and the
number of writes further rises in the P/E cycle of 4000 where
the second-step expansion is applied. That is, as the P/E

cycle of the device increases, the system that has extended
LDPC module gradually increases the overhead of the write
operation.

The Figures from Figure 17(a) to Figure 17(d) show the
amount of writes according to the request patterns;random,
sequential, ran70-seq30, and ran30-seq70. In the case of a
random request, if the amount of excessive ECC is large,
the overall number of writes increases rapidly, as shown
in Figure 17(a). Figure 17(b) reveals that in the case of
sequential requests, the number of writes does not signifi-
cantly increase regardless of the amount of excessive ECC.
Since random requests have a lower cache hit ratio than
sequential requests, more writes occur for the flash storage
side. The write amplification factor is much greater for ran-
dom request because of the huge garbage collection (GC)
overhead. Furthermore, the free region is much reduced due
to the excessive ECC, which adds more overhead of the write
operation.

To see the lifetime change of the Flash device due to the
excessive amount of ECC writing, the rate of increase of the
P/E cycle according to the increase in the amount of exces-
sive ECC write is estimated and is plotted in Figure 18(a)
and Figure 18(b) for sequential and random requests, respec-
tively. In the figure, the x-axis represents the relative amount

VOLUME 8, 2020 162503



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

FIGURE 19. For the LDPC settings, the number of valid page copies per
GC was plotted for each of the four request patterns; random100,
sequential100, random70-sequential30, random30-sequential70.

of written pages performed in the simulator. The left y-axis
in the figure shows the increase in P/E cycle as the amount of
written pages increases, and the right y-axis plots the UBER
for the corresponding P/E cycle. As shown in the figure,
the higher the amount of excessive ECC writes, the higher
the P/E cycle increase rate as the amount of writes increases.
In particular, in the case of the Ext. PCHK, since the amount
of excessive excessive ECC is amplified whenever the step
of the Ext. PCHK is increased, the increase rate of the P/E
cycle is getting higher than that of the no excessive ECC
method. This trend can be seen by comparing Figure 18(a)
and Figure 18(b) that the random request is more promi-
nent than the sequential request. However, looking at the
error rate plotted together in the figure, it can be seen that
the error rate of Ext. PCHK is lower than legacy method
even though the P/E cycle of the Extend PCHK increases
faster than the existing method. It means that the Ext. PCHK
method has a lower UBER than legacy method at same
amount of writing, and it also imply that Ext. PCHK method
could lengthen the lifetime of the flash device than legacy
method.

To analyze the GC overhead induced by excessive ECC,
we measured the number of valid page copies per GC, which
is a metric of the GC overhead. The GC algorithm used in the
simulator is the greedy algorithm. At two P/E cycles 2000 and
4000, the number of valid page copies per GC for each of
the four request patterns are measured for 6 LDPCs, and the

results are plotted in Figure 19. As shown in Figure 19(a),
in the case of the P/E cycle of 2000, it is shown that the
SCORE(0.57) has the highest GC overhead for all request
patterns while the SCORE(0.67) and extended LDPC have
the similar amount of excessive ECC. Since There is one-step
extended LDPC for P/E cycle of 2000, it gives similar
degree of GC overhead with SCORE(0.67). For the P/E cycle
of 4000, as shown in Figure 19(b), the extended LDPC also
shows a GC overhead similar to that of SCORE(0.57) since it
is applied with two-step expansion. Incidentally, the reason
that the GC overhead is too large might be a fundamental
cause of the high storage consumption due to the excessive
ECC, as well as the naive GC policy applied to the excessive
ECC area. This poses a need for further research to study the
effective GC policy for the excessive ECC region.

VI. CONCLUSION
One of the main problems of the flash storage is the increase
in errors due to a rise in integration density. In particular,
when the usage time of the storage device lengthens, i.e., the
P/E cycle of the flash block increases, the error occurrence
rate escalates. Moreover, the error rate increases rapidly
compared to the aging factor and P/E cycle. Conventional
fixed ECC and parity management schemes are inappropriate
methods for the rapidly increasing errors according to the P/E
cycle. In the early P/E cycle, excessive ECC parity degrades
read/write performances since it has to be stored in a separate
space, and each time data are read, the associated ECC must
be read, which incurs ample overhead costs. On the other
hand, less ECC parity in the later part of the P/E cycle
reduces the ability of error recovery and shortens device
life.

Herein, we designed and implemented a step-by-step RC
LDPC coding technique that can generate appropriate exces-
sive ECC for P/E cycle increase. Also, a flash storage system
also proposed to manage the increasing excessive ECC parity.
The stepwise RC LDPC increases the error recovery rate
through adaptively increased parities according to the P/E
cycle. In addition, since stepwise RC LDPC generates exces-
sive ECC by the RC method, LDPC decoding can be firstly
attempted by reading only one page of the stored data and the
original ECC itself; and if this fails, additional decoding is
performed by reading the excessive ECC on a separate page.
The excessive ECC can also be managed by FTL and ECC
cache. Thus, it is possible to reduce the read overhead much
more than the conventional approach. Even if ECC cache is
used, the stepwise RC LDPC system shows a much better at
read performance than the fixed excessive ECC management
system.

In the experiment, we have confirmed that the stepwise RC
LDPC and its parity management system adaptively lowered
the UBER according to the P/E cycle, and the read/write
overhead is reduced in comparison with existing work. From
a flash device perspective, read and write operations involve
data transfer between the flash controller and the flash mem-
ory itself, and this latency has a significant effect on the

162504 VOLUME 8, 2020



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

overall performance of the flash device. So, we experimented
mainly with read and write operations. However, in terms of
stepwise RC LDPC encoding and decoding, it is necessary
to analyze the increased latency of LDPC encoding/decoding
itself. Furthermore, the error analysis and correction method
considering the characteristics of data retention and read
disturbance of the memory cell should be considered. These
will be our further work.

REFERENCES
[1] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,

F. Trivedi, E. Goodness, and L. R. Nevill, ‘‘Bit error rate in NAND flash
memories,’’ in Proc. IEEE Int. Rel. Phys. Symp., Phoenix, AZ, USA,
Apr. 2008, pp. 9–19.

[2] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, ‘‘Program interference in
MLC NAND flash memory: Characterization, modeling, and mitigation,’’
in Proc. IEEE 31st Int. Conf. Comput. Design (ICCD), Asheville, NC,
USA, Oct. 2013, pp. 123–130.

[3] E. Yaakobi, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf, ‘‘Char-
acterization and error-correcting codes for TLC flash memories,’’ in Proc.
Int. Conf. Comput., Netw. Commun. (ICNC), Maui, HI, USA, Jan. 2012,
pp. 486–491.

[4] A. Tai, A. Kryczka, O. S. Kanaujia, and K. Jamieson, ‘‘Who’s afraid of
uncorrectable bit errors? Online recovery of flash errors with distributed
redundancy,’’ in Proc. USENIX Annu. Tech. Conf., Renton, WA, USA,
Jul. 2019, pp. 977–992.

[5] J. H. Yoon, G. Tressler, and H. Hunter, ‘‘3D-NAND scaling & 3D-SCM—
Implications to enterprise storage,’’ presented at the Flash Memory Sum-
mit, Aug. 2017.

[6] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, ‘‘Improving 3D
NANDflashmemory lifetime by tolerating early retention loss and process
variation,’’ in Proc. Abstr. ACM Int. Conf. Meas. Modeling Comput. Syst.
(SIGMETRICS), New York, NY, USA, Jun. 2018, p. 106.

[7] Micron Technology, Inc., ‘‘Enabling Software BCH ECC on a Linux
platform,’’ Tech. Note TN-29-71, Apr. 2012.

[8] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng, ‘‘LDPC-
in-SSD: Making advanced error correction codes work effectively in solid
state drives,’’ inProc. 11th USENIXConf. File Storage Technol., Feb. 2013,
pp. 243–256.

[9] G. R. Gallager, ‘‘Low density parity check codes,’’ in Monograph.
Cambridge, MA, USA: MIT Press, 1963.

[10] R. Tanner, ‘‘A recursive approach to low complexity codes,’’ IEEE Trans.
Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.

[11] D. J. C. MacKay, ‘‘Good error-correcting codes based on very sparse
matrices,’’ IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[12] S. Myung, K. Yang, and J. Kim, ‘‘Quasi-cyclic LDPC codes for fast encod-
ing,’’ IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2894–2901, Aug. 2005.

[13] J. Yang, ‘‘Novel ECC architecture enhances storage system reliability,’’
presented at the Flash Memory Summit, Aug. 2012.

[14] Intel Corporation, ‘‘Understanding the flash translation layer (FTL) spec-
ification,’’ Appl. Note AP-684, Dec. 1998.

[15] J. Kim, J. Min Kim, S. H. Noh, S. Lyul Min, and Y. Cho, ‘‘A space-efficient
flash translation layer for CompactFlash systems,’’ IEEE Trans. Consum.
Electron., vol. 48, no. 2, pp. 366–375, May 2002.

[16] J. U. Kang, H. Jo, J. S. Kim, and J. Lee, ‘‘A superblock-based flash
translation layer for NAND Flash memory,’’ in Proc. 6th ACM & IEEE
Int. Conf. Embedded Softw., Oct. 2006, pp. 161–170.

[17] S. W. Lee, W. K. Choi, and D. J. Park, ‘‘FAST: An efficient flash trans-
lation layer for flash memory,’’ in Proc. Int. Conf. Embedded Ubiquitous
Comput., Aug. 2006, pp. 879–887.

[18] A. Gupta, Y. Kim, and B. Urgaonkar, ‘‘DFTL: A flash translation layer
employing demand-based selective caching of page-level address map-
pings,’’ in Proc. 14th Int. Conf. Architectural Support Program. Lang.
Oper. Syst., Mar. 2009, pp. 229–240.

[19] D. Ma, J. Feng, and G. Li, ‘‘LazyFTL: A page-level flash translation layer
optimized for NAND flash memory,’’ in Proc. ACM SIGMOD, Jun. 2011,
pp. 1–12.

[20] F. Wu, Y. Zhu, Q. Xiong, Z. Lu, Y. Zhou, W. Kong, and C. Xie, ‘‘Charac-
terizing 3D charge trap NAND flash: Observations, analyses and applica-
tions,’’ in Proc. ICCD, Oct. 2018, pp. 381–388.

[21] L. Shi, Y. Di, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha, ‘‘Exploiting
process variation for write performance improvement on NAND Flash
memory storage systems,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 24, no. 1, pp. 334–337, Jan. 2016.

[22] X. Jimenez, D. Novo, and P. Ienne, ‘‘Wear unleveling: Improving NAND
Flash lifetime by balancing page endurance,’’ in Proc. FAST, 2014,
pp. 47–59.

[23] R. Ma, F. Wu, M. Zhang, Z. Lu, J. Wan, and C. Xie, ‘‘RBER-aware
lifetime prediction scheme for 3D-TLC NAND flash memory,’’ IEEE
Access, vol. 7, pp. 44696–44708, 2019.

[24] N.Megiddo and D. S. Modha, ‘‘ARC: A self-tuning, low overhead replace-
ment cache,’’ in Proc. USENIX Conf. File Storage Technol. (FAST), 2003,
pp. 115–130.

[25] S.-Y. Park, D. Jung, J. Kang, J.-S. Kim, and J. Lee, ‘‘CFLRU: A replace-
ment algorithm for flash memory,’’ in Proc. Int. Conf. Compil., Archit.
Synth. Embedded Syst., Oct. 2006, pp. 234–241.

[26] S. Qi, D. Feng, N. Su, W. Liu, and J. Liu, ‘‘A new solution based on multi-
rate LDPC for flash memory to reduce ECC redundancy,’’ in Proc. IEEE
Trustcom/BigDataSE/ISPA, Helsinki, Finland, Aug. 2015, pp. 918–923.

[27] S. Bates, ‘‘Using rate-adaptive LDPC codes to maximize the capacity of
SSDs,’’ in Proc. Flash Memory Summit, Aug. 2013, pp. 1–12.

[28] Y. Zhang, C. Zhang, Z. Yan, S. Chen, and H. Jiang, ‘‘A high-throughput
multi-rate LDPC decoder for error correction of solid-state drives,’’ in
Proc. IEEE Workshop Signal Process. Syst. (SiPS), Hangzhou, China,
Oct. 2015, pp. 1–6.

[29] S.Wang, F.Wu, Z. Lu, Y. Zhou, Q. Xiong,M. Zhang, and C. Xie, ‘‘Lifetime
adaptive ECC in NAND flash page management,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Lausanne, Mar. 2017, pp. 1253–1556.

[30] Y. Zhou, F. Wu, Z. Lu, X. He, P. Huang, and C. Xie, ‘‘SCORE: A novel
scheme to efficiently cache overlong ECCs in NANDflashmemory,’’ACM
Trans. Archit. Code Optim., vol. 15, no. 4, Dec. 2018, Art. no. 60.

[31] Y. Du, Y. Zhou, M. Zhang, W. Liu, and S. Xiong, ‘‘Adapting layer RBERs
variations of 3D flash memories via multi-granularity progressive LDPC
reading,’’ in Proc. 56th Annu. Design Autom. Conf. (DAC), Jun. 2019,
pp. 1–6.

[32] T. K. Moon, Error Correction Coding, Mathematical Methods and Algo-
rithms. Hoboken, NJ, USA: Wiley, May 2005.

[33] E. Yeo, ‘‘An LDPC-enabled flash controller in 40 nm CMOS,’’ presented
at the Flash Memory Summit, Aug. 2012.

[34] R.Motwani and C. Ong, ‘‘Robust decoder architecture for multi-level flash
memory storage channels,’’ in Proc. Int. Conf. Comput., Netw. Commun.
(ICNC), Maui, HI, USA, Jan. 2012, pp. 492–496.

[35] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi, ‘‘Over-10x-extended-
lifetime 76%-reduced-error solid-state drives (SSDs) with error-prediction
LDPC architecture and error-recovery scheme,’’ in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, 2012,
pp. 424–426.

[36] T. V. Nguyen, A. Nosratinia, and D. Divsalar, ‘‘The design of rate-
compatible protograph LDPC codes,’’ IEEE Trans. Commun., vol. 60,
no. 10, pp. 2841–2850, Oct. 2012.

[37] Y.-H. Liu, ‘‘Rate-compatible QC-LDPC codes based on PEXIT,’’ Electron.
Lett., vol. 54, no. 19, pp. 1120–1122, Sep. 2018.

[38] Y. Zhang, K. Peng, Z. Chen, and J. Song, ‘‘Construction of rate-
compatible raptor-like quasi-cyclic LDPC code with edge classification
for IDMA based random access,’’ IEEE Access, vol. 7, pp. 30818–30830,
Mar. 2019.

[39] H. Sun, W. Zhao, M. Lv, G. Dong, N. Zheng, and T. Zhang, ‘‘Exploiting
intracell bit-error characteristics to improve min-sum LDPC decoding for
MLC NAND flash-based storage in mobile device,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 24, no. 8, pp. 2654–2664, Aug. 2016.

[40] K. Haymaker and C. A. Kelley, ‘‘Structured bit-interleaved LDPC codes
for MLC flash memory,’’ IEEE J. Sel. Areas Commun., vol. 32, no. 5,
pp. 870–879, May 2014.

[41] P. Chen, K. Cai, and S. Zheng, ‘‘Rate-adaptive protograph LDPC codes
for multi-level-cell NAND flash memory,’’ IEEE Commun. Lett., vol. 22,
no. 6, pp. 1112–1115, Jun. 2018.

[42] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, ‘‘FlashSim: A simulator
for NAND flash-based solid-state drives,’’ in Proc. 1st Int. Conf. Adv. Syst.
Simulation, Porto, Portugal, 2009, pp. 125–131.

[43] M. Bjorling. Extended FlashSim. Accessed: Jan. 15, 2019. [Online]. Avail-
able: https://github.com/MatiasBjorling/flashsim

[44] R. M. Neal. Software for Low Density Parity Check Codes. Accessed:
Jan. 15, 2019. [Online]. Available: https://github.com/radfordneal/LDPC-
codess

VOLUME 8, 2020 162505



S.-H. Lim et al.: Stepwise Rate-Compatible LDPC and Parity Management in NAND Flash Memory-Based Storage Devices

SEUNG-HO LIM (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Division
of Electrical Engineering, Korea Advanced Insti-
tute of Science and Technology (KAIST), in 2001,
2003, and 2008, respectively. He worked in the
memory division of Samsung Electronics Com-
pany Ltd., from 2008 to 2010, where he was
involved in developing a high performance SSD
(solid state disk) for server storage systems. He is
currently a Professor with the Division of Com-

puter Engineering, Hankuk University of Foreign Studies. His research inter-
ests include operating systems, embedded systems, non-volatile memory,
flash storage systems, mobile computing, high performance computing,
interconnect networks, and parallel computing.

JAE-BIN LEE received the B.S. degree from the
Division of Computer Engineering, Hankuk Uni-
versity of Foreign Studies. His research interests
include LDPC encoding and decoding, SSD archi-
tecture, distributed storage systems, and embedded
architecture for AI.

GEON-MYEONG KIM received the B.S. degree
from the Division of Computer Engineering, Han-
kuk University of Foreign Studies. His research
interests include LDPC codec, embedded storage
system, non-volatile memory systems, and big
data processing systems.

WOO HYUN AHN received the B.S. degree from
the Division of Electrical Engineering, Kyung-
book National University, in 1996, and the M.S.
and Ph.D. degrees from the Division of Electri-
cal Engineering, Korea Advanced Institute of Sci-
ence and Technology (KAIST), in 1998 and 2003,
respectively. He worked in the Software Research
Center, Samsung Electronics Company Ltd., from
2003 to 2005. He is currently a Full Professor with
the School of Software, Kwangwoon University.

His research interests include operating systems, embedded systems, and
web engineering.

162506 VOLUME 8, 2020


