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ABSTRACT The reconstructed image of the size-invariant visual cryptography (VC) is inevitably accom-
panied by the loss of secret image information and the degradation of perceptual quality. Here, the halftone
technique comes to the forefront since it can realistically simulate the grayscale image from a discrete binary
image. Thus, by combining VC sharing with grayscale image halftone technique, this paper proposes a
size-invariant VC scheme for grayscale image underpinned by the efficient direct binary search (EDBS)
algorithm, in which the multi-pixel encryption VC sharing is adopted into the EDBS halftone process.
Through local optimizations and global iterations, the optimal reconstructed image is obtained. To further
enhance the contrast of the reconstructed image with limited computational power, the image information
is probabilistically extracted according to the inverse mapping in the codebook. It is theoretically proved
that the proposed scheme is as secure as the traditional VC, while its effectiveness is validated through
experiments and comparative analyses.

INDEX TERMS Efficient direct binary search, grayscale image, multi-pixel encryption, perceptual quality,
size-invariant, visual cryptography, visual secret sharing.

I. INTRODUCTION
In 1994, Naor and Shamir [1] introduced the idea of secret
sharing into digital images and thus initialized the research on
visual cryptography (VC). This approach was different from
the traditional cryptography consuming considerable com-
puting resources during decryption. The key characteristics
of VC are absolute security and simplicity in reconstructing
image. For specific sets of participants, no computational
resources but human visual system (HVS) are required to
decode the secret image, whereas for the remaining ones,
no information regarding the secret image can be leaked.
The design of a VC scheme mainly focuses on three aspects,
namely reducing pixel expansion, improving perceptual qual-
ity, and ensuring security. These aspects are mutually restric-
tive. In general, security is a hard constraint in the design of
a VC scheme.

There exist two approaches for parameter optimiza-
tion on the premise of ensuring strict security. One is to
reduce the pixel expansion toward the pixel-expanded VC
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schemes [1]–[6], which are collectively referred to as deter-
ministic VC. The deterministic VC schemes can optimize
the pixel expansion to some extent but cannot achieve the
goal of pixel invariant. With the increasing number of par-
ticipants, the expansion dilates exponentially, which brings
substantial burden for share storage, transmission, and com-
putation; hence, it cannot meet application needs. The other
is to improve the perceptual quality of the reconstructed
image toward size-invariant VC schemes. The idea of such
schemes is to balance the inherent contradiction between the
perceptual quality and the size of the reconstructed image
by combining the size-invariant VC sharing with the digital
image processing method to optimize the perceptual quality
of the reconstructed image. This has become the research
hotspot of VC, and is also the research objective of this paper.

The main implementation methods of size-invariant
VC include the random grid (RG), the probabilistic method
and the multi-pixel encryption method. Based on the func-
tion operation, Kafri et al. [7] proposed a RG scheme
and realized the secret image sharing via three functions:
randomization, equality, and inversion. The secret image
can be revealed by the superposition of sharing images.
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On this basis, Chen et al. [8] extended the RG to the threshold
structure. Concerning to perceptual quality, Wu et al. [9] con-
structed a contrast-enhanced RG scheme and post-processing
to obtain an even reconstructed image. Hu et al. [10]
improved the contrast of (k, n) RG by carefully arranging
pixel positions. Wu et al. [11] defined the XOR operation for
color pixels to generate the color shares.

Ito et al. [12] stochastically selected one column from
the basis matrices of the deterministic VC to realize a size-
invariant scheme. Yang et al. [13] formally defined the prob-
abilistic VC, in which the secret pixels are recovered with a
certain probability by statistical principles. Hou et al. [14]
proposed a progressive VC using the elementary matrices
to construct the sharing matrices. The quality of shares was
promoted, except the reconstructed image. Wu et al. [15]
utilized colors to generate size-invariant shares, which was
inapplicable to grayscale image. The effect of the recon-
structed images using the RG is visually similar to that of
the probabilistic method. Yang et al. [16] proved the equiv-
alence of RG and probabilistic method in theory. Although
the perceptual effect of the RG and the probabilistic method
was gradually improved, their results could still not achieve a
satisfying effect due to independently processing each pixel
and disregarding the correlation of pixel distribution in the
neighborhood.

As the name suggests, the multi-pixel encryption VC
(MEVC) uses multiple pixels as the basic block and maps
a secret block into a block containing the same number of
pixels in the sharing images, to realize the size-invariant VC.
Hou et al. [17] proposed an MEVC scheme, in which the
basis matrices of the deterministic VC scheme were used as
the sharing matrices for the concurrent encryption of m con-
secutive pixels, while the corresponding sharing matrix was
selected by the proportion of black pixels in the secret block.
The selection of the basis matrix in [17] was not stochastic
when encrypting a block with i black pixels (i ∈ [0,m]).
The former i blocks are encoded by B1, and the remaining
m-i blocks are encoded by B0, which may result in periodic
stripes in the reconstructed image. Liu et al. [19] optimized
the matrix selection approach such that any secret block with
i black pixels has a probability of i/m to select matrix B1
and that of (m− i)/m to select matrix B0. The improvement
eliminated periodic texture in [17]. Regarding to variable-size
secret pixel block, Zhang et al. [20] put forward a multi-pixel
encryption scheme incorporating deterministic VC and prob-
abilistic VC. However, the selection of sharing methods
depending on secret image content may render the shares to
leak the contour information, which cannot comply with the
security requirement.

Chen et al. [21] proposed a scheme to build the multi-level
grayscale basis matrices and the block with high average gray
value in the halftone image is mapped to the block with high
gray value in the reconstructed image. Thus, the reconstructed
image obtained stronger representation by profiting from
more than two-level grayscale levels. Lee et al. [22] selected
different mapping combinations leveraging the histogram

feature of the grayscale secret image, which inexplicitly real-
ized the histogram equalization and thus improved the visual
quality of the reconstructed image.

Halftone VC encodes the secret image into meaningful
halftone shares. Zhou et al. [23] combined the halftone
methods with extended VC sharing to generate good quality
halftone shares. In similar, Wang et al. [24], Yan et al. [25]
and Hodeish et al. [26] all focused on improving the quality
of sharing images. By contrast, Yan et al. [27] creatively
proposed the AbS framework integrating the error diffusion
method and the size-invariant VC to spread the error between
the reconstructed and the secret images to a high-frequency
band, and generated the reconstructed image with blue noise
characteristics.

The problem with the above-given schemes lies in two
main aspects. First, most efforts focusing on the grayscale
images perform the halftone before VC sharing. The halftone
process decreases the information payload and VC shar-
ing reduces the contrast of the reconstructed image. These
processes exert a direct influence on the final perceptual
effect and separating the halftone from VC sharing is not
conducive to realistically simulate the feature information of
the secret image. Second, the reconstructed image has low
contrast. VC sharing is secure due to randomization, which
inherently reduces the contrast and thus greatly affects the
visual effect. Besides, the upper limit of the VC contrast
optimization is constrained by the basis matrices. Thus,
the contrast of the existing solutions has not been effectively
improved.

In consideration of these problems, this paper proposes
a novel scheme integrating the VC sharing process and the
halftone of a grayscale image. Specifically, we combine the
MEVC sharing with the efficient direct binary search (EDBS)
algorithm to directly optimize the reconstructed image, and
achieve realistic simulation of the grayscale secret image. The
recovery algorithm follows the traditional VC decryption,
i.e., the image reconstruction relies on the superposition of
sharing images. For the environment with limited comput-
ing power, this paper also designs an information extrac-
tion process to obtain a more visually pleasing observation
effect. The reconstructed image is probabilistically optimized
according to the inverse mapping of the pre-shared codebook;
hence, the image contrast is significantly enhanced. In theory,
the proposed scheme is as secure as the deterministic VC. The
experimental results and the comparative analyses validate
the effectiveness of the proposed scheme.

The contributions of this paper can be summarized as
follows:
• We propose a structural model combining the MEVC
with the EDBS for grayscale image which significantly
improves visual quality of the reconstructed image. This
model compensates the deficiency of the perceptual
effect of the reconstructed image, which not only ensures
the unconditional security and simplicity in reconstruct-
ing image, but also is effective to improve the perceptual
effect.
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• We design an information extraction process in which
the secret information is probabilistically recovered and
the contrast of the reconstructed image is considerably
enhanced with limited computational power.

The remainder of this paper is organized as follows:
Section II presents the definition of the size-invariant
VC for grayscale images and the basic principles of EDBS.
In Section III, we propose the structural model and pro-
vide the pseudo code. The results of the experiments and
comparative analysis are elaborated in Section IV. Finally,
we summarize and conclude our work in Section V.

II. BASIC CONCEPTS
The traditional deterministic VC scheme developed for black-
and-white secret image cannot cover the case for grayscale
images. Hence, this section first defines the size-invariant
VC for grayscale images and then introduces the optimization
strategy of EDBS, as well as several image quality evaluation
metrics.

A. DEFINITION OF THE SIZE-INVARIANT VC FOR
GRAYSCALE IMAGES
A VC scheme for grayscale image is utilized to encrypt a
grayscale secret image and generate n sharing images Si ∈
ZM×N2 , i ∈ [1, n] which are then distributed to n participants.
Only the specific combinations of participants, i.e., autho-
rized subsets, can decode the information directly by the HVS
through overlapping sharing images, whereas the remaining
ones, i.e. forbidden subsets, cannot obtain any information
about the secret image. For a (k, n) threshold scheme, the
authorized subset is a set of all possible combinations with
at least k participants. The definition of (k, n) size-invariant
VC for grayscale image, (k, n)− SIGVC, is given below.
Definition 1 (k, n)SIGVC: let B0 ∈ Zn×m2 and B1 ∈ Zn×m2

be the basis matrices of (k, n) deterministic VC. Blocks ϕ and
ε represent arbitrary two non-overlapping regions with the
same number of secret pixels of the grayscale secret image.
Without loss of generality, suppose w (ϕ) > w(ε), where
w(·) represents the average grayscale level of the block. Let
vϕi and vεi (i ∈ [1, n]) be the vector in n sharing images
of the corresponding areas ϕ and ε. Let P = {i1 . . . i} denote
the participant set. Vectors ϕ′ and ε′ represent the result of
the stacking vector vϕid and vεid (id ∈ P). If the following
two conditions are met, the secret sharing algorithm can be
regarded as a valid (k, n)− SIGVC.
1) Contrast condition. For λ ≥ k,

ϕ′ = V iλ
i=i1

vϕi , ε′ = V iλ
i=i1

vεi (1)

satisfies w(ϕ′) ≥ w(ε′). The symbol
∨

represents element-
wise OR operation.

2) Security condition. For λ < k ,

f` =
[
v`i1 , . . . , v

`
iλ

]T
, ` = ϕ, ε, (2)

satisfies fϕ ∼ fε, i.e., they have the same statistical charac-
teristics. That is, given the vector fl , one cannot derive any
additional information about the secret image.

The first condition guarantees that the secret image can be
correctly recovered when there are k participants. It should be
noted that w(ϕ′) ≥ w(ε′), not w(ϕ′) > w(ε′). The second
condition implies that the result of stacking less than k sharing
images would not disclose any information about the secret
image.

B. THE OPTIMIZATION STRATEGY OF THE EDBS
The direct binary search (DBS) [28], a heuristic optimization
technology, aims to minimize the visual error between the
halftone and the original images by realistically simulating
the characteristics of the original image. The global opti-
mization of the DBS algorithm is built upon local optimiza-
tions which are realized by the central pixel inversion and
eight-neighborhood exchange, as shown in Fig.1, and the
transformation result minimizing the local square error is
retained. Through the local optimizations and global itera-
tions, the halftone image with a minimum square error is
finally obtained.

FIGURE 1. The local optimization strategy.

The specified order of eight-neighborhood scan is as
follows:

Seq =
[
−1 −1 −1 0 0 1 1 1
−1 0 1 −1 1 −1 0 1

]
= [u1, . . . . . . .u8] . (3)

The HVS is a complex low-pass filter, which can automat-
ically filter out the high-frequency noise components in an
image. To maximize the approximation of the original image,
the optimization strategy simulates the perception ability of
the HVS with vision system model which is mathematically
represented by the point spread function (PSF). The original
and halftone images are respectively represented as G and Ĝ,
and the two-dimensional PSF is denoted as G, and ⊗ stands
for the convolution. Therefore, we can obtain the following
optimization problem:

E = min
∥∥∥G ⊗ (G− Ĝ)∥∥∥2 . (4)

One of the shortcomings of the DBS algorithm is its
high computational complexity occurring due to square error
calculation in every inversion/exchange. As the number of
iteration increases, the halftone image gradually approxi-
mates to the original image, and the number of effective
inversion/exchanges of each iteration gradually decreases.
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However, the consumption of computing resources does not
lessen. Analoui and Allebach [28] introduced the autocorre-
lation and cross-correlation coefficients into the DBS, which
is denoted as the EDBS, to determine the effectiveness of
each inversion/exchange by measuring the extent of sensory
changes in a specific area. Hence, the calculation of the
change quantity is converted into a linear operation. The
variation of the local square error,1E , can be formulated as:

1E =
(
1+ a21

)
cp̃p̃ [0]

−2
(
a0cp̃ẽ

[
uj
]
+ a1cp̃ẽ [ui]− cp̃p̃

[
ui − uj

])
, (5)

where i, j ∈[0,8]&i 6= j, u0 is the central pixel. The cp̃p̃ is
the autocorrelation coefficient, a constant associated with the
PSF, and the cp̃ẽ is the cross-correlation coefficient updated
every time the local optimal value determined. More details
can be found in [31].

C. EVALUATION METRICS
The traditional perceptual evaluation index of the VC is based
on relative difference [1], which only works with binary
secret image. With the same basis matrices, the global rel-
ative difference of the MEVC is the same as that of the
probabilistic one. Benefiting from more evenly distributed
minority pixels, the former achieves a better perceptual effect.
To describe such distinction, Hou et al. [18] introduced vari-
ance to reflect the smoothness of the local area as well as
the relative difference to evaluate the reconstructed image.
The variance-based metric is also applicable to binary secret
image.

There are three types of objective evaluation methods
in digital image processing [32]: non-reference, reduced-
reference and full-reference. The non-referencemeasurement
characterizes the features of the image, such as pixel dis-
tribution uniformity, dark and light tone. The full-reference
measurement describes the similarity between the target
and original images, i.e., fidelity. To objectively reflect the
visual quality of the reconstructed image, this scheme uti-
lizes radially average power spectral density (RAPSD) as a
non-reference evaluation index, while mean structural simi-
larity (MSSIM), and peak signal-to-noise ratio (PSNR) are
used as full-reference evaluation indexes.

1) Spectral characterization. The visual rendering quality
of a halftone image is closely associated with its frequency
domain characteristics, and the distribution of minority pixels
in the image can be revealed in the frequency domain. Since
the HVS is more sensitive to the low-frequency noise, and
the visually-friendly noise model usually has the charac-
teristics of sparse low-frequency energy and concentrated
high-frequency energy. In computer graphics, the noise con-
forming to these characteristics is named as the blue noise.
For example, the image generated by the error diffusion
halftone technique, whose pixels are evenly distributed,
accommodates the typical blue noise characteristics, and thus
presents a satisfying visual effect.

The power spectrum density is estimated by the average
periodogram, and the halftone process is divided into K
overlapping periodograms with a length of each cycle graph
being N . Hence, the power spectral density can be obtained
by:

P (f ) =
1
K

∑K

i=1

|F {∅i}|2

N
, (6)

where ∅i(i ∈ [1,K ]) represents K sample vectors, and F
refers to a two-dimensional Fourier transform. By decom-
posing the spectral domain and splitting the two-dimensional
frequency domain into a series of rings, two easily observ-
able one-dimensional representations: RAPSD Pp(fp) and
anisotropy Ap(fp) can be obtained. The basic characteristics
of a ring are described by the width of the ring1f , the radial
frequency fp on the center radius, and the frequency sample
Np(fp). The RAPSD can be expressed as:

Pp
(
fp
)
=

1
Np(fp)

∑Np(fp)

i=1
P (f ) . (7)

2) Fidelity. For the full-reference evaluation index, the
tone and structure similarity of target and original images are
measured. The MSSIM [29], an acknowledged measurement
standard, considers the combination of local luminance com-
parison, the local contrast comparison, and the local corre-
lation of two images as one metric. The tonal similarity is
often measured by the PSNR. To simulate the intrinsic low-
pass filtering characteristics of the HVS [30] and make the
calculation results more in line with the perceptual observa-
tion, the input signal is processed by the Gaussian low-pass
filter with a standard deviation of σ , and the corresponding
indicators are calculated afterward.

III. CONCEPTUAL DESIGN
In this section, we introduce the design of the EDBS-based
size-invariant VC scheme for grayscale image, provide its
pseudo-code, and theoretically prove its effectiveness.

A. STRUCTURAL MODEL
The proposed scheme combines the MEVC sharing with the
EDBS to make up for the deficiency of the perceptual effect
of the reconstructed image. The access structure is an (n, n)
threshold and the algebraic structure is the ‘‘OR’’ operation.
Besides, since the color convention of VC is not suitable for
combing halftone algorithm and VC, this paper adopts light
transmittance to represent the pixel color.

As shown in Fig.2, the model consists of three main parts:
the left part implementing the parameter initialization, the
right-upper part performingMEVC sharing and the simulated
superposition operation, and the right-lower part executing
the EDBS algorithm. The operational process of the proposed
scheme can be summarized as follows:
• First, generate a stochastic seed image in the initializa-
tion part, then partition the seed image with a block of
size b × b = m, and then encode the blocks using
MEVC and generate n sharing images after quantization.
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FIGURE 2. The structural model of the proposed scheme.

Hence, the reconstructed image R0 which is denoted as
R afterward and serves as the optimization objective of
the EDBS algorithm, is obtained by superimposing the
sharing images.

• Each optimal value is obtained through the block-based
EDBS. Then, the MEVC algorithm encodes the optimal
value according to Coordinate and State Tag, the coordi-
nate and the color of optimal value, and synchronously
updates the sharing images and R. It should be noted that
we use the reconstructed block rather than the optimal
value as the result of each local optimization. With local
optimizations and global iterations, the target image R is
ultimately determined until there’s no changeable value.
Ultimately the reconstructed image R and n sharing
images are outputted.

• The initial correlation coefficients are produced with R0

at the very beginning of the loop. The cross coefficient
updated after each local EDBS optimization acts as the
key part to determine whether the current exchange
values are valid. The Gaussian model is used as the PSF.

It is assumed that the images can be completely segmented.
The goal of this scheme aims to minimize the difference
between the reconstructed image R and the secret image G,
which can be boiled down to the following optimization
problem:

E = min ‖G ⊗ (G-R)‖2. (8)

1) Quantization Qc. The input of the quantization is a
binary vector block of size b×b = m, thus the grayscale set is
ζ = {0, 1, 2 . . . .b2 with element number of |ζ | = b2+ 1. Let
the set in the reconstructed image be ψ . In general, the sets
ζ and ψ have the following inclusion relation ψ ⊂ ζ , and
the mapping ζ → ψ is a surjection and non-injection. Thus,
more than one element in ζ are mapped into an element in ψ ,
and the codebook c is utilized to characterize the mapping
relationship. It is noted that such a mapping relationship
results in the loss of secret information in a size-invariant
VC scheme.

2) Gamut mapping. Gamut mapping is to uniform the color
space of multiple images performing the linear operation.
Since the color space of R is ψ , the dynamic range of the
grayscale secret imageG should be adjusted to match withψ .

There are two common methods to realize such conversion,
namely linear mapping and non-linear mapping. The former
can completely maintain the relative contrast between the
grayscale levels of the original image. The latter diffuses or
compresses the certain parts of the grayscale level to empha-
size or weaken the intensity of some colors. This scheme
adopts the linear mapping method to completely simulate the
features of the secret image.

3) Block-based EDBS. In this scheme, we take a pixel
block of size b× b as the operation unit. Therefore, the local
optimization range is among a 3 × 3 pixel-block. The secret
pixel block should first be quantified and then the local
optimization is performed according to the optimization
strategy.

FIGURE 3. Block-based local EDBS optimization.

Fig.3 describes the block-based local optimization strat-
egy by taking a 2 × 2 block as an example. The block
inversion/exchange is used to find the possible optimal solu-
tion. Let us assume that the grayscale value of the central
block is M0, and each local optimization operation performs
the central block inversion and the eight-neighborhood block
exchange. The object of central block inversion is the element
β ∈ ψ{M0}, i.e., all elements in setψ exceptM0. Hence, each
local optimization needs to calculate the local square error
|ψ | + 8 times at most, and retain the result of decreasing the
local square error most. If there is no such result, the central
block is kept unchanged.

4) Information extraction. The information extraction aims
to further improve the contrast of the reconstructed image
in an environment with limited computational power. For
the grayscale set ζ =

{
0, 1, 2 . . . .b2

}
of the secret image,
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Algorithm 1 EDBS-Based (n, n) SIGVC
Input: (1) grayscale secret image G of size M × N

(2) basis matrices Ci ∈ Zn×m2 , i ∈ [0, 1] of (n, n) VC
(3) Gaussian filter G∈RL×L

(4) codebook c
Output: sharing images Si ∈ ZM×N2 , i ∈ [1,n] ,R ∈ ZM×N2 ,

R̃ ∈ ZM×N2
Step 1. initialize parameters
Step 2. encode I ’ using the MEVC and simulated stacking

to obtain R0

Step 3. generate the cross-correlation:

e = R0 − G′, (e, cG̃G̃)
yields
−→ cG̃ẽ

Step 4. for every block of size b× b in R
Step 5. apply the EDBS to search for local optimal

value and update cp̃ẽ
Step 6. encode the changed block using MEVC, update Si

and R
Step 7. if count =0, turn to Step8; else, turn to Step 4
Step 8. loop termination, output Si and R
Step 9. calculate the mean grayscale value T of the pixel

block of size b× b
Step 10. for every block B in image R of size b× b
Step 12. ifw (B) > T , replace it with a = (a ∈ ζ 1&p(a)p1)
Step 13. else, replace it with a = (a ∈ ζ 2&p(a)p2)
Step 14. output the optimized image R̃

the block is mapped into a grayscale level set ψ according
to the codebook. The information extraction is the inverse
process.

The mapping from ψ to ζ is also a surjection and non-
injection, where an element in ψ may correspond to multiple
elements in ζ . Assuming that ψ = {g1, · · ·gt }, the map-
ping relationship between ψ and ζ is shown in Fig.4 where
the element in ζ i is recovered with the probability of
1/ |ζi| , (i ∈ [1, t]).

FIGURE 4. Mapping relationship.

Our scheme adopts the two-level grayscale, i.e., |ψ | = 2.
Now, suppose that ψ = {g1, g2}, and the elements in
subset ζ 1 = {0, 1, 2 . . . β} are mapped into g1, and the
elements in subset ζ 2 = {β + 1, . . . .b2} are mapped into
g2. Hence, the element in ζ 1 is revealed with the prob-
ability of p1 = 1/ |ζ1| at the grayscale level g1, and thus
p2 = 1/ |ζ2| for g2. The corresponding pseudo-code is given
in Algorithm.

FIGURE 5. The abstracted diagram of the structural model.

B. PROOF OF VALIDITY
To facilitate an understanding and expression, the structural
model is abstracted as in Fig.5, where S represents the EDBS
algorithm, and Ĝ denotes the halftone image corresponding
to the reconstructed image R, i.e., Ĝ = S(G). Let a vector z
in G denote as ẑ in Ĝ, z̃ in G̃, and z′ in R.
Lemma 1 [19]: For a (k, n) MEVC scheme for a binary

secret image, two secret blocks, x and y of the same size
are denoted as x ′ and y′ in the reconstructed image. For
the number of participants λ ≥ k , if w(x) > w(y), then
w(x ′) > w(y′).
Theorem 1: The proposed EDBS-based (n, n) SIGVC

scheme meets the contrast requirement.
Proof: The average grayscale of a block in G→ Ĝ→G̃

possesses a chain reaction. Suppose that ϕ and ε are two un-
overlapped blocks with the same size in the secret image G.
If w(ϕ) > w(ε), then w(ϕ̂) ≥w

(
ε̂
)
and w(ϕ̃) ≥w(ε̃).

According to Lemma 1, w(ϕ′) ≥w(ε′) holds.
Theorem 2: The proposed EDBS-based (n, n) SIGVC

scheme meets the security requirement.
Proof: For λ <n, suppose that PB1 and PB0 stand for the

collection of all possible column permutation by restricting λ
rows of matrices B1 and B0. Each block in G̃ are encoded
by the matrices in PB1 and PB0. According to the security
condition in [1], PB1 and PB0 have the same sample space
and the probability distribution. In other terms, these two
collections are the same; thus, fϕ ∼ fε, and = w

(
ϕ′
)
w(ε′)

holds.
It can be observed that the effectiveness of the proposed

scheme is equivalent to that of the Naor-Shamir VC [1].

IV. EXPERIMENTS AND RESULT ANALYSIS
In this section, first the effectiveness of the proposed scheme
is validated through experiments. Then, we analyze the per-
ceptual quality and fidelity of the reconstructed image and
compare it with typical size-invariant VC schemes. Finally,
the computational complexity is analyzed.

To ensure the persuasiveness of comparisons, the following
conditions have to be met: i) reference algorithms strictly
abide the security condition of VC; ii) the encryption object
is a grayscale image; iii) the algebraic structure is an ‘‘OR’’
operation; iv) the content of comparison is the perceptual
quality of the reconstructed image. Based on the above condi-
tions, we pick Yang et al. (2004) [13], Liu et al.’s (2011) [19]
Construction III and Yan et al. (2019) [27] as comparative
references. Among them, [19] is the improved version of
Hou et al. (2004) [17], hence we do not compare with [17]
anymore. Construction IV of [19] is based on weak secu-
rity condition, thus no comparison is made either. Besides,
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multi-level VC is applied in [27], so we no longer consider
Chen et al. (2007) [21] and Lee et al. (2014) [22].

A. VALIDATION
We use the grayscale image Lena of size 512× 512 from the
standard image dataset to validate the effectiveness. The pixel
block is of size 2× 2, and the basis matrices are as follows:

B0 =

[
1 0
1 0

1 0
1 0

]
, B1 =

[
1 0
0 1

1 0
0 1

]
. (9)

Fig.6a is the grayscale secret image, while Fig.6b and Fig.6c
are the two sharing images generated out of it. Any sharing
image is a noise-like image with evenly distributed black
and white pixels. The shares do not reveal any information
about the secret image, which satisfies the security condition.
Fig.6d is the reconstructed image obtained by superposing
the two shares together, which satisfies the contrast condition.
The structure is realistically revealed in Fig.6d, and the tex-
tures are also clearly displayed. In terms of hue, the contrast
of the reconstructed image is evident between the light and
dark areas. Apart from maintaining the structure of Fig.6d,
the optimized image in Fig.6e, greatly enhances the contrast.
Since the inverse mapping extracts information with a certain
probability, the similar bright areas are recovered with the
elements in the same subset, which leads to the unevenly dis-
tributed minority pixels. These results verify the effectiveness
and feasibility of the proposed scheme.

FIGURE 6. The experimental results obtained with Lena.

B. IMAGE QUALITY ANALYSIS
For the quality analysis of the constant images, we select four
representative grayscale values and perform perceptual obser-
vation, RAPSD spectrum analysis and average grayscale
comparison to assess the pros and cons of each scheme. The
sample set of the constant grayscale images of size 512×512
is J = {51, 119, 153, 221}.

Table 1 shows the reconstructed images of different con-
stant images. To ensure fairness, the optimized image of
this scheme is beyond the scope of comparison. Besides,
to avoid image distortion caused by scaling, the results shown

TABLE 1. The Reconstructed Images of the Constant Images.

in Table 1 are the originals intercepted by 70 pixels vertically
and horizontally. The halftone images with the error diffusion
method are utilized as the encoded object in both Yang et al.’s
and Hou et al.’s algorithms. The overall pixel distribution of
the former is more uniform than the latter for low grayscale
levels. With the increase of the grayscale value, more black
pixels turn into white, and the minority pixels are enriched
locally, which deteriorates the perceptual quality. Yan et al.’s
algorithm diffuses the error between the reconstructed and the
secret images to its neighborhood blocks. Hence, the deterio-
ration in perceptual quality caused by the aggregation of the
minority pixels is effectively alleviated. In doing so, the visual
quality is significantly improved compared to Hou et al.’s
algorithm.

In this scheme, when the grayscale level is low, there
occurs the phenomenon of local concentration and global
even distribution of minority pixels due to block-by-block
sharing. The first image shows a grid-like pattern, which can
lead to a high energy density at certain frequencies. With the
increase of the grayscale level, the number of white pixels
also increases, which weakens the impact of the block-based
sharing. The perceptual quality of the reconstructed image
does not deteriorate with the increase of the grayscale value.

The results of the proposed scheme are visually friendly
and consistent with the characteristics of the blue noise.
In terms of hue, the brightness of each grayscale level is
perceptually higher than that of Yan et al’s scheme. This
phenomenon can be interpreted by the different principles of
the EDBS and the error diffusion. The central block performs
flipping during local optimization, which makes an adaptive
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adjustment with the tone of the secret image. This mechanism
can realistically simulate the original image and improve the
contrast of the reconstructed image.

FIGURE 7. Comparison of the RAPSD.

From the visual point of view, we make a qualitative anal-
ysis on the constant image. Subsequently, from the frequency
domain point of view, the performance of the reconstructed
images is exhibited more intuitively. Fig.7 is the PAPSD
diagram of Table 1 for the four grayscale values. Compared
to other schemes, Liu et al. produce the most concentrated
low-frequency energy at low grayscale values, which is in line
with the poor perceptual observation effect in Table 1. The
low-frequency energy gradually declines with the increasing
grayscale values. Yang et al.’s scheme is with flat but high
energy on the low-frequency band for all grayscale values.

The oscillogram of the proposed scheme is similar to that
of Yan et al.’s in the wave trend, which shows obvious blue
noise characteristics and good graphic property. When the
grayscale value is 51, there is a steep pulse signal in the
frequency map, which indicates that the energy density is
mostly concentrated in these frequencies. It is easy to asso-
ciate such phenomenon with the grid-like graphic features in
the reconstructed image. Similar local areas produce similar
spectral powers and lead to power focus at certain frequen-
cies. Regarding the above analysis, the visual observation
in Table 1 and the RAPSD oscillogram in Fig.7 validate each
other, and demonstrate the good performance of the proposed
scheme.

The brightness of the image reconstructed by the proposed
scheme is visually higher than that of the reference schemes.
We verify the conjecture by comparing the average grayscale
values. As shown in Fig.8, the diamond-shaped dashed line is
the grayscale value, J = {g|g = 17× i, i ∈ [0, 15]}, of the
constant image. For the (2, 2) threshold, the contrast of the
reconstructed image normally declines by half, i.e., the aver-
age grayscale value of the reconstructed image is half of the
constant image. As seen, the average grayscale values of the

FIGURE 8. Comparison of the average grayscale values.

three reference schemes are concurring, exactly equal to the
half of the constant values.

The local optimization strategy of the EDBS can largely
simulate the tone of the original image. It can be found that the
average grayscale value of the proposed scheme is higher than
that of the reference schemes, and is also closer to the original
image for each grayscale level. Therefore, the difference in
brightness is verified both qualitatively and quantitatively.

C. FIDELITY ANALYSIS
Two representative evaluation metrics, PSNR and MSSIM,
are selected as the measurement indexes to analyze the
fidelity of natural images in terms of image tone and image
structure.

FIGURE 9. Comparison of the reconstruction effect.

Fig.9a shows the secret image, while Fig.9b, c, d, and e cor-
respond to the superimposed results of the schemes proposed
byYang et al., Liu et al., Yan et al., and this paper. Fig.9f is the
image optimized by the information extracted from Fig.9e.
The low-frequency band energy of Liu et al.’s. gradually
declines with the increase of the grayscale value, while the
probabilistic method is not improved. For the brighter area of
Fig.9a, the distribution of minority pixels in Fig.9c is more
uniform than that of Fig.9b. Therefore, the overall perception
of Fig.9c is superior to Fig.9b. Based on theMEVC,Yan et al.
employ the error diffusion technique to push the noise to
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the high-frequency band. Apart from the contrast reduction
and color distortion caused by VC sharing, the presentation
of Fig.9d possesses fair perceptual quality with evenly dis-
tributed minority pixels and fine structural features.

The display of this scheme is close to Yan et al.’s structure
and detail presentation. Compared to Fig.9d, the brightness
is higher in Fig.9e for the areas with higher local grayscale
values, such as the front part of the hat. Thus, the overall con-
trast of the proposed scheme is higher than that of Yan et al.’s,
which is also in line with the results in Fig.8. Therefore,
the proposed scheme achieves good performance on tone
and structure features and obtains a realistic presentation.
Furthermore, the Fig.9f has enhanced contrast thanks to the
information extraction, and is more approximate to the secret
image in tone.

FIGURE 10. The test atlas with a size of 512 × 512, indexed in a raster
scanning order.

FIGURE 11. Quantitative comparison on the test atlas.

Based on the qualitative analysis above, we use the PSNR
and MSSIM to quantify the comparison results in terms
of tone and structural similarities. The test atlas shown
in Fig.10 consists of 20 commonly used standard grayscale
images indexed by the raster scanning order in the field
of digital image processing. Fig.11a reveals that the struc-
tural similarity of Yan et al.’s and our proposed scheme are
approximately similar, and the information extraction has no
obvious impact on the structure improvement. By contrast,
the performance of Yang et al. and Liu et al. is generally poor.

Fig.11b shows that the PSNR values of Yang et al.,
Liu et al., and Yan et al. are almost equal without an obvious
difference, which is consistent with the results of the aver-
age grayscale value. The performance of the PSNR value
of our scheme outperforms the reference schemes, i.e., the
reconstructed image approximates to the secret image more.
Furthermore, the optimized image is significantly improved
in terms of contrast, and is closer to the grayscale secret image
in tone. To sum up, the proposed scheme is superior to the
reference schemes with regards to both tone and structure
performance. Additionally, Fig.11 reveals that MSSIM is
more effective than the PSNR in representing the perceptual
effect of the reconstructed image. For the sameMSSIMvalue,
the higher the PSNR value is, the better the perceptual effect
will be.

D. COMPUTATIONAL COMPLEXITY
The time complexity of the proposed and the reference
schemes are linear functions of the secret image size, i.e.,
O(MN ) with M and N denoting the row and column width
of the grayscale secret image, which can be estimated by
the number of basic operations or steps performed during
algorithm execution.

Let the operation time of one addition/subtraction be Tadd ,
one multiplication/division be Tmul, and one random number
generation be Trnd . The time complexity of Yan et al.’s
scheme varies with different block size and the result is
determined according to the current settings. Let the kernel
size of PSF be K and the total iterations of this scheme be c.

TABLE 2. Comparison of Computational Complexion.

The total time complexity of [13] and [19] is 5MNT add +

4MNT mul+MNT rnd both. It is 7MNT add+9.25MNT mul+

MNT rnd in [27] and (75c+ 2)MNT mul + (c+ 1)
MNT rnd+ (20c+ 2K + 1)MNT add) in this scheme. Table 2
discloses that the time complexity of our scheme is the highest
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among the reference schemes. For Lena image, the actual
running time of [27] and this paper is respectively 1.87s and
8.13s on a laptop with Intel i7 CPU and 16GB memory.

V. CONCLUSION
This paper proposes a structural model combining theMEVC
sharing with the EDBS halftone technique for grayscale
images to improve the perceptual quality of the reconstructed
image, which nests the VC sharing into the EDBS optimiza-
tion loop to guarantee the contrast and security conditions by
the MEVC sharing and promote the perceptual quality by the
EDBS. We also design an information extraction process to
improve the contrast of the reconstructed image by the inverse
mapping of the mapping relationship in the codebook.

The experiment and result analysis show that the minority
pixels in the reconstructed image are uniformly distributed
with visually-friendly observation, which conforms to the
blue noise feature. The structure of the secret image is well
recovered, the tone of the secret image is genuinely simulated,
and the contrast of the reconstructed image is higher than
the reference schemes. The information extraction process
further enhances the contrast of the reconstructed image and
produces an optimized imagemore similar to the secret image
in terms of tone characteristics. The structural model of the
proposed scheme has strong scalability; thus, it can be com-
bined with other size-invariant methods, such as probabilistic
VC and RG. In our future studies, we consider to integrate the
multiple-level VC into the EDBS to generate a more exquisite
presentation of the reconstructed image.
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