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ABSTRACT Electroencephalography signals inherently deviate from the notion of regular spatial sampling,
as they reflect the coordinated action from multiple distributed overlapping cortical networks. Hence,
the observed brain dynamics are influenced both by the topology of the sensor array and the underlying
functional connectivity. Neural engineers are currently exploiting the advances in the domain of graph signal
processing in an attempt to create robust and reliable brain decoding systems. In this direction, Geometric
Deep Learning is a highly promising concept for combining the benefits of graph signal processing and
deep learning towards revolutionising Brain-Computer Interfaces (BCIs). However, its exploitation has been
hindered by its data-demanding character. As a remedy, we propose here a novel data augmentation approach
that combines the multiplex network modelling of multichannel signal with a graph variant of the classical
Empirical Mode Decomposition (EMD), and which proves to be a strong asset when combined with Graph
Convolutional Neural Networks (GCNNs). As our graph-EMD algorithmmakes no assumptions with respect
to linearity and stationarity, it appears as an appealing solution towards analysing brain signals without
artificially imposing regularities in either temporal or spatial domain. Our experimental results indicate
that the proposed scheme for data augmentation leads to substantial improvement when it is combined
with GCNNs. Using recordings from two distinct BCI applications and comparing against a state-of-the-
art augmentation method, we illustrate the benefits from its use. By making it available to BCI community,
we hope to further foster the application of geometric deep learning in the field.

INDEX TERMS Brain-computer interfaces, BCI, data augmentation, EEG, geometric deep learning, graph
CNN, GCNN, graph signal processing, neural engineering.

I. INTRODUCTION
Research on Brain-Computer Interfaces (BCIs) has experi-
enced an impressive growth in the recent past. The main
objective in BCIs is to provide a direct communication
pathway between the human brain and an external device.
A typical BCI system consists of a signal processing module
which can be further decomposed into three submodules
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(i.e. pre-processing, feature extraction and feature selection)
and a classification module which converts the resulting fea-
tures into machine commands.

The most common neuroimaging modality that is
employed in BCIs is the electroencephalography, a typi-
cally non-invasive neuroimaging technology that measures
the brain’s electrical activity using electrodes placed on
the human scalp. The produced recording, called electroen-
cephalogram (EEG), is not easy to interpret as it has a low
signal to noise ratio and its statistical properties change
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substantially with the course of time [1]. Moreover, EEG is
known to vary significantly across individuals and even to
depend on subject’s state during the recording.

Researchers within the computational neuroscience and
machine learning communities have put a lot of effort into
developing signal processing techniques and computational
intelligence algorithms that perform robust brain decoding
from EEG signals despite the aforementioned challenges.
The current state-of-the-art techniques include among others
Riemannian geometry-based classifiers [2], filter banks [3],
adaptive classifiers [4] and graph signal processing [5].
On top of them, and in complete harmony with the concurrent
trends in empirical data analysis, deep learning has come into
the picture. After radically changing the field of machine
learning in many aspects of our digitalized modern world
(like computer vision and speech recognition), by providing
flexible and general-purposemodels, deep learning nowadays
facilitates brain decoding practices undertaking jointly the
signal processing and classification modules [6]. The cor-
responding models however, require large amounts of data
to directly learn patterns and capture the ‘‘true’’ information
structure in the data in an efficient way that can be then
transferred and/or adapted to similar tasks.

Since electroencephalographic activity is a ‘‘fuzzy’’ signal
coming from a complex system and governed by the under-
lying structure of (and the functional connectivity within) the
cortical networks, neuroscientists and BCI researchers have
started to exploit the recent advances in the domain of graph
signal processing [7] so as to incorporate the functional prin-
ciples of the networked brain within signal analysis and build
reliable brain decoding systems [8]–[10]. In this context,
geometric deep learning, which collectively refers to adapting
and deploying deep learning on data manifolds, graph pat-
terns and signals registered over irregular grids, could sig-
nificantly enhance the performance in existing BCI protocols
and implementation pipelines. Indeed, in the last few years,
graph deep learning architectures have been very successful
in processing complex data such as social networks, meshes
and sensor-array signals, leading to state-of-the-art perfor-
mance on multiple public datasets [11]. Although geometric
deep learning appears to be most suitable for classifying EEG
signals, it is the lack of large datasets that constantly limits its
use in BCI applications.

As a matter of fact, neuroimaging data collection is still
expensive, time-consuming and the availability of large scales
of such data is even more restricted due to personal data reg-
ulations. Consequently, the corpus of data in neuroimaging
is rather small in terms of size compared to other domains
such as computer vision or speech recognition. Many public
EEG datasets typically contain only a small number of par-
ticipants up to a few dozens. Although some specific topics
such as sleep and epilepsy studies do have larger datasets
publicly available [12], in the particular field of BCI-related
applications the data are even more limited. In addition, poor
signal to noise ratio limits the amount of available informa-
tion contained in the recordings which are often inextricably

connected to the data collection protocol and hence do not
facilitate dataset curation by aggregation across different lab-
oratories. Finally, the models that have been developed for
images and speech even though they appear as technically
generic, they are not suitable for EEG recordings. This also
holds for many well-established strategies for training deep
learning models, which cannot be adopted per se in the BCI
domain, such as image augmentation methods [13].

An undeniable fact in the field of deep learning is that more
data can offer a substantial improvement in the classification
accuracy of a model. For the typically small EEG datasets,
it is difficult to use deep learning methods with satisfac-
tory results. Therefore, creating artificial EEG signals for
deep learning classification schemes emerges as a necessity.
Common signal processing tools like the Discrete Fourier and
the and the Wavelet transforms that are typically used in the
domain of signal processing are not adequate for augmenting
existing EEG datasets (e.g. by generating surrogate data), due
to the non-linear and non-stationary character of EEG signals.
Previous works, in the context of generating artificial EEG
signals, mainly employ stationary spectrum approaches, such
as adding Gaussian noise to the spectrum of the signal [14],
that oversee the inherent temporal characteristics of the EEG
signals. On the other hand, studies that augment the EEG
datasets by operating on the temporal domain, such as con-
catenating different temporal EEG segments [15], maintain
most of the temporal aspects of the EEG signals but fail
to preserve the properties of the EEG spectrum. Recently,
a more suitable strategy for EEG data augmentation, based
on the Empirical Mode Decomposition (EMD), has been
proposed [16] and tested successfully in conjunction with
Convolutional and Wavelet Neural Networks [17]. However,
all of the aforementioned methods share as shortcoming their
inadequacy to fully preserve the underlying complex dynam-
ics of the original EEG data, and this in turn constitutes
their employment in geometric deep learning an inefficient
strategy.

In this work we propose a data augmentation method-
ology with no assumptions regarding stationarity and lin-
earity, capable of capturing and preserving the inherent
structural and functional characteristics of the superficially
observed cortical activity. The novelty of our work is on
the exploitation of the spatiotemporal character of EEG sig-
nals which is taken into consideration by constructing a
sparse binary graph that incorporates both the topological
arrangement of the sensor array and the temporal continuity
between consecutive signal samples (by means of multi-
plex graph modelling). Subsequently, we use the aforemen-
tioned sparse binary graphs in conjunction with the Graph
EMD (GEMD)) [18] method for data-augmentation in order
to improve the classification accuracy in Graph Convolu-
tional Neural Networks (GCNNs). Our approach is validated
based on two distinct BCI-related datasets, where GCNNs
are trained, at a personalised level, with only few dozens
of trials initially available. The first dataset concerns the
classification of the reaction time of a driver, in a simulation

VOLUME 8, 2020 162219



F. P. Kalaganis et al.: Data Augmentation Scheme for Geometric Deep Learning in Personalized BCIs

TABLE 1. Notation table. Lowercase italics refer to scalars,
functions or signals whereas lowercase bold letters refer to vectors and
uppercase bold letters to matrices. Matrix elements are denoted as
uppercase characters accompanied by the corresponding indices as
subscripts. Calligraphic uppercase letters denote sets. The same symbol
appearing under different fonts usually refers to the same entity but in a
different form, e.g. a graph signal and its corresponding vector
representation.

environment, into fast and slow driving responses. The sec-
ond dataset includes EEG recordings of event related
responses and concerns the differentiation between attentive
and passive condition during a driving pc-game. The selection
of these two datasets was dictated by the need to exam-
ine and validate the introduced data-augmentation scheme
using brain activity signals reflecting different cognitive pro-
cesses and recorded via distinct BCI paradigms (with the
first/second dataset concerning endogenous reactions/evoked
responses and corresponding to asynchronous/synchronous
BCI). Furthermore, their inclusion in this article opens the
possibility for this work to pave the way for the adoption
of geometric deep learning in the realm of brain-to-vehicle
technology [19].

II. METHODOLOGY
In this section we initially describe briefly the basic notions
in the field of graph signal analysis and then we present the
employed GCNN architecture [20] that is used for classifica-
tion. We note that the term GCNN refers to a convolutional
neural network that operates on graphs. Next, we introduce
the proposed data augmentation approach starting with the
presentation of the GEMD [18] method which leads to a
novel strategy for generating artificial EEG epochs with
respect to the underlying graph structure that governs the
EEG signals. The term EEG epoch is used to express a
segment extracted from the continuous EEG traces. Finally
we present the construction of a spatiotemporal graph that
expresses the spatial and temporal relationships jointly. The
code which implements the proposed methodology is avail-
able at https://github.com/fkalaganis/graph_emd.

A. GRAPH SIGNAL PROCESSING PREREQUISITES
Let us denote by G = (V, E,W) a connected, undirected and
weighted graph where V denotes a finite set of |V| = N

vertices, E = {V × V} denotes the set of edges and W ∈

RN×N the corresponding weight adjacency matrix. The entry
Wi,j of the adjacency matrix indicates the weight of the (i, j)
edge whereas the absence of an edge is represented by a
zero value. Then, x : V −→ R represents a signal indexed
on the vertices of G and is usually termed as graph signal.
An alternative representation of the graph signal x is achieved
by the vector x ∈ RN where xi is the value of x at vertex i.
With the above formulations, we can now define the graph

Fourier Transform (GFT) that serves as the basis for the
graph signal convolution and filtering. The spectral analysis
on graphs is achieved by exploiting the graph Laplacian oper-
ator [21]. Let D ∈ RN×N be the degree matrix which is diag-
onal and its elements are calculated as Dii =

∑
jWij. Then,

the combinatorial and the normalized Laplacian matrices are
defined as LC = D − W and LN = IN − D−1/2WD−1/2

respectively with IN ∈ RN×N denoting the identity matrix.
As L, which denotes either the combinatorial or the nor-
malized graph Laplacian matrix, is a symmetric and positive
semidefinite matrix it admits an eigendecomposition, L =
U>3U, with a complete set of orthonormal eigenvectors
ul appearing in columns of U, known as the graph Fourier
modes, and the corresponding nonnegative ordered eigenval-
ues, λl appearing as the elements of the diagonal matrix 3,
known as the graph frequencies, with l = 1, . . . ,N . Then,
the GFT of a signal is defined as x̂ = xU> and the inverse
GFT as x = Ux̂ [7]. We note that the GFT is valid for both the
combinatorial and the normalized Laplacian matrices whose
choice concerns the exploitation of different bases.

B. GRAPH CONVOLUTIONAL NEURAL NETWORKS
Since a meaningful shifting operation cannot be directly
defined on the vertex domain, the convolution operator on a
graph G, denoted by ∗G , is defined on the spectral domain of
the graph as (x∗y)G = U((xU>)◦(yU>)) with (◦) denoting the
Hadamard product operator. Hence, a filter hθ can be applied
on x as

y = hθ (L)x = hθ (U3U>)x = Uhθ (3)U>x (1)

A non-parametric filter, where all parameters are free and
unconstrained, would have the form of

hθ (3) = diag(θ ) (2)

where θ ∈ RN is a vector containing the graph filter coeffi-
cients. However, the non-parametric filter approach leads to
filters that are not spatially (in terms of graph neighborhood)
localized. On top of that, the learning complexity of a non-
parametric filter is O(N ) with N expressing the dimension-
ality of data which may be forbidding for the scale of filters
required by the GCNN. In order to tackle these problems, one
can employ a polynomial filter

hθ (3) =
K−1∑
k=0

θk3
k (3)

162220 VOLUME 8, 2020



F. P. Kalaganis et al.: Data Augmentation Scheme for Geometric Deep Learning in Personalized BCIs

where the parameter θ ∈ RK now is a vector of polyno-
mial coefficients. Since (3) is a spectral filter defined by the
K -th order polynomial of the Laplacian matrix it is exactly
K -localized [22]. Moveover, the filtering complexity is now
in O(K ), the size of the filter as in classical CNNs.

The cost to apply the polynomial filter on a signal isO(N 2)
as it involves the multiplication with the GFT basis. So as
to further reduce the complexity of GCNNs the Chebyshev
expansion is typically employed to approximate the polyno-
mial filter of (3). As the Chebyshev polynomials form an
orthogonal basis for the Hilbert space of square integrable
functions over the interval [−1, 1], (3) can be parameter-
ized as

hθ (3) =
K−1∑
k=0

θkTk (3̃
k
) (4)

where Tk (3̃) is the k-th order Chebyshev polynomial evalu-
ated at 3̃ = 23/max{λl}−IN . 3̃ denotes the diagonal matrix
that holds the scaled eigenvalues within the range [−1, 1],
with l = 1, . . . ,N . We note that in (4), θ ∈ RK is a vector
holding the Chebyshev coefficients. As the Chebyshev poly-
nomials can be computed by the stable recurrence sequence
Tk (x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and T1 = x,
the filtering operation can be computed via sparse matrix
multiplications with cost O(K |E |) as

hθ (3)x = [x̄0, x̄1, . . . , x̄K−1]θ (5)

where x̄k = 2L̃x̄k−1 − x̄k−2 with x̄0 = x and x̄1 = L̃x.
This rationale becomes more evident by realizing that
x̄k = Tk (L̃)x. Having the above formulations established,
the backpropagation algorithm can be used efficiently in
order to learn the graph filters [20], i.e. the Chebyshev
coefficients.

C. GRAPH EMPIRICAL MODE DECOMPOSITION
We commence by reviewing the classical EMD algo-
rithm. Given a signal, EMD decomposes it into a finite
set of Intrinsic Mode Functions (IMFs) which are time-
varying roughly mono-component (i.e single frequency)
functions [23]. An IMF holds the following two properties:
i) the number of its extrema must be equal or differ mostly
by one compared to its number of zero crossings and ii) its
upper and lower envelopes, defined by the local maxima and
minima respectively, are symmetric with respect to zero.

Let x(t) be a signal in the time domain. The EMDalgorithm
starts by separating a local low frequency component, m1(t),
referred to as ‘‘the trend’’ from an IMF, denoted as d1(t),
which corresponds to a local high frequency. By applying
this step recursively to the remaining trend, the x(t) can be
rewritten as:

x(t) = mK (t)+
K∑
k=1

dk (t) (6)

The iterative process terminates when every IMF of x(t)
has been extracted. The separation of the slow oscillation

trend from the fast oscillating IMF is performed within
the EMD algorithm with the so-called sifting process. The
most conservative sift-stopping criterion for the EMD algo-
rithm is that the extracted fast oscillation is indeed an IMF
(i.e. holds all the aforementioned IMF properties). As this
is a very strong constraint, more relaxed sifting criteria are
typically employed that yield approximate IMFs [24].

In order to extend the EMD algorithm to graph signals we
will fist provide the definition of extrema and an interpolation
method for graph signals as we will need to calculate the
graph signal envelopes from local minima and maxima. For
a graph signal x defined on G = (V, E,W) the signal at node
i is a local maximum (or minumum) if its value is higher
(or lower respectively) than every value of its neighbouring
vertices.

Having the local extrema identified, the graph signal
should be interpolated (i.e generate the signal values on
the uknown, non-extrema, vertices) in order to obtain the
upper and lower graph envelopes. In order to maintain the
assumption-free characteristics of the classical EMDmethod,
the interpolation is treated as a discrete partial differential
equation on the graph [25]. As the envelopes are slow varying
components, the interpolated signal s needs to minimize the
total graph variation, s>Ls, with L being the graph Laplacian
matrix under the constraint that the graph signal values of the
known vertices remain unchanged. Let as denote by K the
set of vertices where the graph signal is known and by U
the set of unknown vertices. Then, in order to calculate the
new, interpolated, graph signal s we need to solve

minimize s>Ls subject to s(K) = x(K) (7)

By a simple rearrangement of vertices s can be rewritten,
in its equivalent vector expression, as s> = [s>K s>U ] with
sK and sU being the vector representations of s(K) and s(U)
respectively alongside with the rearranged Laplacian matrix

L =
[
LK R
R> LU

]
. Ultimately, the graph interpolation is a

Dirichlet problem on the graph and whose solution relies on
the following system of linear equations

LU sU = −RsK (8)

Having the graph extrema and the graph interpolation
process defined, the classical EMD algorithm can be eas-
ily extended to its graph signal counterpart. More con-
cretely, the GEMD method [18] is defined via the following
algorithm:

1) Initialize m = x.
2) If m meets the stopping criteria:

a) Return stored IMFs.
b) Stop the decomposition and terminate.

3) Set mprev = m
4) Calculate the upper and lower envelopes, e+ and e−

respectively, of mprev
5) Subtract the average envelope value µ =

e+ + e−
2

from mprev as mcurr = mprev − µ
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6) If mcurr does not meet the soft sifting criteria:
a) Set mprev = mcurr
b) Repeat from step 4.

Else:
a) Store mcurr as an IMF
b) Set m = m− mcurr
c) Repeat from step 2.

In order to avoid conservative sifting criteria that yield
exact graph-IMFs, inspired by [26], we employ the relaxed
graph-counterparts that yield approximate graph-IMFs. More
specifically the relaxed sifting criteria concern the Sift Rel-
ative Tolerance, which is a Cauchy-type criterion, and the
Energy ratio criterion which is based on the ratio of the
energy of the signal at the beginning of sifting and the average
envelope energy. Fig. 1A illustrates the decomposition of a
sample graph signal into its graph IMFs.

FIGURE 1. A) Decomposition of a graph signal into graph IMFs using the
GEMD algorithm. The red lines indicate the graph structure and the
vertical blue lines the graph signal value in the corresponding node.
B) Schematically depicting the proposed artificial graph signal generation
strategy.

D. EEG DATA AUGMENTATION
Given an arbitrary number of EEG epochs, the GEMD
method can be utilized in order to generate artificial EEG
epochs. Each EEG epoch is initially decomposed into a finite
set of graph IMFs with respect to a graph structure G. Then,
an artificial EEG epoch can be generated by combining the
graph IMFs from different epochs. Since the graph IMFs are
mono-component graph functions, the artificial EEG epochs
are expected to exhibit similar characteristics with the orig-
inating signals that contribute with their IMFs. In order to
create EEG epochs under the scope of improving a classifier,
the corresponding class information of each EEG epoch and
consequently its corresponding IMFs is taken into account.
Therefore, each artificial EEG epoch is generated by graph
IMFs stemming from a single class, hence, it is assigned with
the corresponding label.

More specifically, the proposed data augmentation is as
follows:

1) Randomly select the class-specific EEG epochs that
will contribute with their IMFs. As the number of
IMFs extracted from each signal is finite, the maximum
number of IMFs that a signal segment holds indicates
the number of randomly selected contributing EEG
epochs.

2) In order to generate an artificial EEG epoch, select
the first IMF from the first contributing EEG epoch,
the second IMF from the second contributing EEG
epoch and so on. If a contributing EEG epoch holds less
IMFs than required we consider its additional graph
IMFs to be the zero graph signals.

This procedure can be used to create a large number of
artificial EEG epochs (up to the number of EEG epochs to
the power of graph IMFs) and therefore augment the dataset.
Fig. 1B depicts the proposed artificial graph signal generation
process.

Finally, we present a note on the computational complex-
ity of the proposed data augmentation approach which is
based on the graph EMD. Since the most computationally
demanding operation in the graph EMDmethod is the matrix
inversion operation performed up to a constant number times,
the computational complexity of the proposed method is
O(n|V|3) with |V| expressing the number of vertices in G and
n the number of EEG epochs. This constitutes the introduced
methodology more computationally demanding than the ones
presented in [16], [17] which have a computational com-
plexity of O(nET 2), with E and T denoting respectively the
number of sensors and samples of the EEG signal. We note
that according to the graph construction we employ in our
study (refer to section II-E), the relationship that connects
|G|,T and E is |V| = ET .

E. SPATIOTEMPORAL GRAPH CONSTRUCTION
Although EEG signals are governed by a presumably static
underlying spatial structure, at least with respect to the topo-
logical structure of the recording sensor array, they also are
time-varying signals that significantly change in the course
of time. Hence, when constructing a graph to express the
overall characteristics of an EEG signal not only the spa-
tial but also the temporal dependencies should be consid-
ered. As the edges express the relationship between vertices,
the most straightforward way to embed temporal and spatial
relationships jointly in a graph is by employing binary edges
only [27].

Let G = (V, E,W) be a graph that expresses the topology
of the EEG recording sensor array withW ∈ {0, 1}E×E and E
being the number of sensors. The spatiotemporal graph that
expresses jointly the relationship of an EEG signal with T
time samples is defined through its adjacency matrix as

WST =W⊗ IE + S+ S> (9)

where (⊗) denotes the Kronecker product operator, IE the
E × E identity matrix and S an ET × ET matrix whose
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FIGURE 2. A) Spatial graph that represents the spatial connections of the recording sensor array. B) A multichannel EEG signal (top) can be defined
on a spatiotemporal graph (bottom) where each time-slice corresponds to the spatial connectivity and expresses one sample in time of the
multichannel EEG signal. All connections, in both spatial and spatiotemporal graphs, are binary. The colorcode indicates the electrode
correspondence. We note that the white vertical line at t=3 appears since the visualization of the EEG signal switches, from solid to dashed lines,
simultaneously for all sensors.

elements are calculated as Si,j = δi,i+E with δi,j being the
Kronecker delta. Actually, the Kronecker product appearing
on the right-hand side of (9) creates a multilayer graph.
Then, the additive terms, S + S>, transforms the multi-
layer graph into a multiplex one [28], which contains bidi-
rectional binary connections along the spatial dimension
according to W and temporal bidirectional binary connec-
tions only among consecutive time samples recorded at the
same spatial location (i.e. sensor). Figure 2 demonstrates
the spatiotemporal graph modeling of a given EEG epoch,
which actually constitutes a principal contribution of this
article.

III. DATASET DESCRIPTION
A. PREDICTING DRIVERS’ RESPONSES: FAST VS SLOW
Twenty seven subjects participated in a sustained-attention
driving task which took place multiple times on the
same or different days with a total duration of 90 min-
utes [30]. An extremely realistic Virtual Reality environment
was employed in order to simulate a realistic driving expe-
rience (Fig. 4). The experimental paradigm was based on
a visually monotonous driving experience during nighttime
on a trafficless highway with four lanes. The participants
were instructed to maintain the car’s course in the mid-
dle of the lane. At random time instants a lane-departure
event was taking place causing the car to drift from the

central lane to one of its adjacent lanes (deviation onset).
The drivers were instructed to immediately perform the corre-
sponding drivingmanouver by steering thewheel accordingly
(response onset) in order to bring the car back into the central
cruising lane (response offset). The elapsed time between
the deviation onset and the response onset, referred to as
response time, indicated the readiness and alertness of the
driver. An illustration of the experimental paradigm events
is depicted in Fig. 3A.

In order to avoid the implications of unrelated, with the
driver’s alertness, driving factors during the task participants
had only to react to the lane-departure event by controlling
the steering wheel solely. The accelerator and brake pedals in
the experiment were deactivated and therefore had no affect
in the car’s operational behavior. Each lane-departure event
defined a single-trial and included prestimulus activity, devi-
ation onset, response onset and response offset. Each driver’s
brain activity was monitored by means of a 30-channel
recording EEG at sampling rate of 500 Hz. For each par-
ticipant the prestimulus brain activity corresponding to the
25% of fastest and slowest of response times was isolated and
served as the data for the classification task were employed
in order to validate the proposed approach. The basic idea
revolves around predicting the fast and slow response times
in a personalised manner by utilising the prestimulus brain
electrical activity.
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FIGURE 3. Illustrating the experimental procedures in the employed datasets. A) While the car moves in the central lane a drift towards a neighbouring
lane occurs at random intervals. The driver has to restore the car’s cruise into the central lane by steering the wheel accordingly. B) Illustrating the
timeline of a single trial from the employed game-like BCI. The pc-game was developed by DIANA research group for the BRAINS project
(http://www.diana.uma.es/brains/ [29].

FIGURE 4. Depicting the experimental setup that was used during the
acquisition of the drivers’ responses during the simulated driving
experience. On top the driver’s point of view is presented while the
bottom images depict the employed simulation hardware. Image
source: [30].

B. GAME-LIKE BCI: PASSIVE VS ATTENTIVE TASK
Six subjects (2 males, 4 females) participated in a
pc-game-like BCI experiment [31]. During this experiment,

the participants were asked to drive a racing-car by using
their eye-movements. As the car was moving, a wall was
appearing suddenly either on the left or right side of the road
and the participants had to avoid it by moving their gaze
towards the opposite direction. At the beginning of each trial,
a fixation cross was appearing in the center of the screen.
Then, two seconds later, a wall with a checkerboard pattern
appeared on either side of the road. After four seconds,
the fixation cross disappeared, and the subject had to perform
an anti-saccade (i.e. eye movement towards the opposite side
of the checkerboard). A resting period of five seconds was
taking place between consecutive trials. Fig. 3B illustrates
the timeline of a single trial recording with actual images
from the employed BCI-game. The origin of the time axis
(i.e. 0-time instant) corresponds to the time instant of
checkerboard-pattern onset. A 64-channel EEG recording
device was employed in order to record the participants’
brain activity with a sampling rate of 1024Hz. Moreover,
an extra recording session took place where participants had
been instructed to passively perceive the visual stimuli and
to refrain from performing the anti-saccade. We will refer
to the first condition as ‘‘attentive’’ condition, whereas to
the second as ‘‘passive’’.
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FIGURE 5. This bar diagram demonstrates the obtained classification accuracy (vertical axis) for the fast vs slow classification task for each of the
participants (horizontal axis). The horizontal dashed lines indicate the mean classification values for the employed classification schemes. We note that
the average classification accuracy of SVM and SVM+graph EMD is almost identical and therefore their corresponding dashed lines are overlapped in the
figure.

From a neurophysiological perspective, 100 millisec-
onds after the appearance of the checkerboard pattern
(i.e. stimulus onset) a well-defined temporal pattern, known
as P100 response, arises in the sensor-space that enormously
contrasts between the ‘‘left’’ and ‘‘right’’ responses with
respect to the topographical laterality that builds over occip-
ital and parietal brain regions. In contrast, the differentia-
tion between attentive and passive responses, with the wall
appearing on the same side of the road, is a more challenging
classification task [32], at least at the level of a single-trial
analysis and is of great significance as it can be exploited in
endogenous BCIs. It is exactly this demanding classification
task (i.e. attentive vs. passive brain condition), that we attempt
to manage with the proposed methodological framework.

IV. RESULTS
In this section we present the results for the two classification
tasks that will serve as the basis for validating the proposed
method. The introduced data augmentation method is used
under two different classification schemes with emphasis in
the GCNNs, so as to investigate whether and under which
conditions the use of geometric deep learning can bring
tangible benefits with respect to baseline machine learning
schemes like Support Vector Machines. Moreover, the pro-
posed augmentation strategy is compared against the classical
EMD-based approach of [16] which has shown great potential
when combined with deep learning [17].

A. PREDICTING DRIVER’s RESPONSES: FAST VS SLOW
As already stated previously, the classification task con-
cerns the differentiation between fast and slow driver’s reac-
tion times. Actually, the aforementioned classification task
exhibits similar characteristics with detecting drowsiness and
alertness during driving. Many studies have demonstrated
that the analysis of the EEG spectrum is capable of accurately
indicating a driver’s alertness level. Typical spectrum-based
methodologies revolve around investigating the established
EEG frequency bands with the most prominent for this task
being the alpha (8-12Hz) and theta (4-8Hz) bands as they
have shown strong correlation with one’s cognitive perfor-
mance. The preliminary analysis we conducted indicated that
the mental states of interest (alertness vs drowsiness) mainly
contrast at 6-10Hz frequency range which overlaps with both
alpha and theta bands.

Prior to obtaining the EEG epochs that will be used for
the classification task, the signals were cleaned from arti-
facts using initially the Artifact Subspace Reconstruction
(ASR) [33] in order to remove large magnitude artifacts fol-
lowed by Wavelet-ICA denoising [34] for fine-grained arti-
fact rejection. Then, the signals were bandpass filtered within
the range of 6-10Hz and segmented into epochs. Each epoch
contained four seconds of prestimulus activity that was con-
verted into time varying energy signals using a one-second-
long sliding window and a sliding step equal to 0.2 seconds.
The extracted time varying energies constitute the, new,
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FIGURE 6. Averaged brain activation patterns, for the ‘‘Left’’ and ‘‘Right’’
responses for a single participant in both passive and attentive
conditions, at electrodes that exhibit the maximum SNR (namely the
PO3 and PO4 respectively). The corresponding topographic scalp
potentials of the average EEG traces at selected time instants (marked
with a dot), corresponding to peaks of the activation pattern, are also
presented. All the topographies included in the left(right) column of the
figure, share a common color-code, that extends according to the
averaged signal as shown in the middle panel.

multichannel signal that will be used for inference. We must
note here that the combination of ASR and Wavelet-ICA
denoising leads to artifact reduced signals, by introducing a
time delay that might be considerable in online scenarios.

The next essential step concerns the creation of a graph that
will express initially the spatial information of the recording
sensor array and then it will be extended so as to capture
the time dependencies according to the spatiotemporal graph
construction of section II-E. Based on the coordinates of
the recording electrodes, the spatial graph construction is
performed by means of a k-nearest neighbor graph. In our
case, the k is equal to six as, for the employed sensor topol-
ogy, it is the lowest value that leads to a connected spatial
graph.

Having all the prerequisites for the classification task
addressed, the EEG epochs for each participant were ran-
domly split into three subsets, namely the training, the val-
idation and the test set following a ratio of 80-10-10%
respectively. The data of the training set were used in order to
train the machine learning models whereas the validation set
to investigate and uncover the most suitable hyperparameters
of the classification schemes as well as the configuration for
the GCNN. The test set was only put in use after all the
models had been trained and established in order to produce
the reported results.

One of the most important aspect that should be uncovered
concerns the data augmentation ratio. As expected, the aug-
mentation ratio (i.e. the number of artificial EEG epochs
that should be generated) resulted by performing the classi-
fication task over the validation set under several different
augmentation ratios. Our experiments have shown that the
most suitable ratio for this task is equal to increasing the size
of the training set by a factor of five. We noticed that up
to the aforementioned augmentation ratio the classification
accuracy in the validation set was increasing until it reached
a plateau.

In order to validate the effectiveness of our method,
we present the classification results under two different clas-
sification schemes. The first classification scheme concerns
linear Support Vector Machines (SVMs) where the spa-
tiotemporal structure of EEG is not taken into account and the
extracted energy features from the multichannel EEG signal
are treated as a large multidimensional vector. The second
classification scheme corresponds to GCNN with two graph
convolutional layers followed by two fully connected layers
and the output layer (obtained though hyperparameter grid
search). These two schemes are tested under three different
augmentation approaches. The first approach concerns the
original training set with no augmentation at all, the sec-
ond concerns the classical EMD-based augmentation strategy
of [16], where the signals’ spatial information is not con-
sidered, and the third concerns the proposed, GEMD-based,
method. Figure 5 demonstrates that the baseline GCNNs
manage to achieve slightly better classification results than
all of the SVM-based approaches showing the importance
of taking into account the spatiotemporal information of the
signals. The best classification accuracy is actually achieved
by employing the proposed, GEMD-based, augmentation
methodology reaching on average 76.56% and surpassing
the classical EMD-based by 4.02% and the baseline GCNN
model (no augmentation) by 5.98%. As expected, the SVMs,
which typically require less data to achieve their top-limit
performance, do not exhibit the same improvement in clas-
sification performance by employing a data augmentation
strategy.

By taking a closer look at the results contained in Fig 5,
one can see that the classification performance varies signif-
icantly across the participants with accuracy values ranging
from 65% to 100%. In an effort to explain this large variance
we may consider the following. As we have already stated,
the two class problem (slow vs fast reaction) was the result of
keeping the 25% of slowest and the 25% of fastest responses
for each participant. Although the problem degenerates into
a binary classification task, there is no indication whether the
fastest and slowest response times differ (e.g. a participant
could have similar response times in each trial). By per-
forming a post-classification analysis of the results we were
able to associate the achieved classification accuracy with
the difference in the response times for each class (e.g. sub-
tracting the fastest response among the ones labeled as slow
from the slowest response among the ones labeled as fast).
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FIGURE 7. This bar diagram presents the obtained classification accuracy (vertical axis) for the attentive vs passive classification
task in a personalized manner (subject ID - horizontal axis) for both left and right trials. The horizontal dashed lines indicate the
mean classification value for each of the employed classification scheme.

Therefore, for participants where the achieved classification
accuracy is slow, the gap between the slow and fast responses
is very small (a few milliseconds) whereas in the cases of
high classification accuracy, this gap extends to the order of
several seconds. The aforementioned association is quantified
by a Pearson’s correlation coefficient r = 0.74.

B. GAME-LIKE BCI: PASSIVE VS ATTENTIVE TASK
We commence by presenting the neurophysiogical find-
ings in the ‘‘passive vs attentive’’ task. Fig. 6 presents the
brain activation patterns in the most prominent electrodes
(i.e. those where the brain activation pattern demonstrates
the highest signal-to-noise ratio) that occur after the stimulus
onset accompanied by the corresponding topographic scalp
potentials (averaged across trials for a single participant).
It becomes evident that although the ‘‘left vs right’’ trials
are easily separable due to the laterality of brain activation
patterns, the ‘‘passive vs attentive’’ task is more demanding
as the brain activation patterns are similar both in sensor-
space and the time-domain. Therefore, the classification task
concerns the discrimination of the passive vs the attentive
conditions when the checkerboard appeared on the same side
of the screen.

For the single trial classification the EEG epochs contained
300 milliseconds-long multichannel EEG signals starting
from the stimulus onset. The signals were bandpass filtered
within the alpha (8-12Hz) frequency range so as to isolate
the brainwaves that are mostly associated with the conditions
we aim to separate [35], [36]. Then the EEG epochs were
split into training, validation and testing sets in a 80-10-10%
ratio respectively for each participant independently. As in
section IV-B, the training set was used in order to train the
classificationmodels and the validation set so as to investigate
and uncover the hyperparameters and specify the GCNN’s
specific configuration. The test set was used solely for the
purpose of reporting the classification results.

Concerning the spatiotemporal graph construction, the spa-
tial graph was created as a k nearest neighbour (k = 6) graph
with respect to the recording sensor topographical distribu-
tion and then it was extended to capture time dependencies
also, according to the methodology of section II-E. We note
that in the ‘‘attentive vs passive’’ task, the graph signals used

for classification are the filtered raw EEG signals. Previous
studies have shown that these two conditions can be separated
by considering the brain’s functional connectivity [37] and it
is within our expectation that theGCNNwill be able to handle
this task more effectively. The particular GCNN architecture,
as obtained though hyperparameter grid search, for this task
concerns two graph convolutional layer, followed by a fully
connected layer with rectified linear units and an output layer.

Again, one important aspect of the classification procedure
concerns the augmentation ratio. Our experimental results
on the validation set uncovered that the best classification
performance is achieved when the training set is augmented
by a factor of five. The preliminary results showed that,
increasing the training set further offered no improvement in
terms of classification in the validation set.

In Fig. 7 we present the classification accuracy obtained
using both SVMs and GCNNs. Each classification approach
is combined with classical EMD as well as GEMD based
augmentation strategies. In order to examine the improve-
ment that each of the aforementioned augmentation strategies
offers, the classification accuracy, when no augmentation
strategy is applied, is also reported. The experimental results
on this dataset reveal not only that the GCNNs once again
meet a significant improvement in terms of classification
accuracy by the proposed augmentation strategy, but also that
the SVMs are inadequate for this task. It can be seen in Fig. 7
that the highest classification performance is achieved by a
combination of GCNNs with the proposed data augmentation
strategy in both ‘‘left’’ and ‘‘right’’ trials achieving 93% and
95% accuracy respectively. These results are significantly
improved, by 5% and 9% for the ‘‘left’’ and ‘‘right’’ trials
respectively, compared to the data augmentation approach
of [16] when GCNNs are used for classification. Although
these trends also hold for the SVMs’ case, their top perfor-
mance which is achieved by combining SVMs with GEMD-
based augmentation strategy does not exceed the 72% in
either ‘‘left’’ of ‘‘right’’ responses.

V. DISCUSSION AND CONCLUSION
In this article we introduce a novel data augmenta-
tion methodology suitable for graph signals and conse-
quently their corresponding, suitable, classification schemes.

VOLUME 8, 2020 162227



F. P. Kalaganis et al.: Data Augmentation Scheme for Geometric Deep Learning in Personalized BCIs

By exploiting the graph variant of empirical mode decom-
position we generate artificial EEG signals in an effort to
improve the classification accuracy of personalized BCIs
where the training samples are truly limited. Our experiments
indicate that the introduced augmentation strategy improves
significantly the classification accuracy of the GCNN mod-
els. Unsurprisingly, this trend is not maintained when SVM
models are employed. Although the performance of deep
learning models is inextricably connected with the size of
the training set this fact does not hold for the SVMs as they
are less dependant to the size of the training data corpus.
Moreover, the introduced augmentation strategy is tailored
so as to preserve the underlying structure of the EEG signals
that is inherently learnt and considered by the GCNNmodels
whereas being neglected in the case of SVMs.

It was among the scopes of this work to perform a fea-
sibility study concerning the exploitation of geometric deep
learning in the field of BCIs. The presented experiments on
the first dataset (i.e. fast vs slow driver’s responses) demon-
strate that the baseline machine learning schemes (SVMs in
our case) are on par, in terms of classification performance,
with the employed geometric deep learning models when no
augmentation approach is applied. However, data augmen-
tation strategies seem to significantly benefit the geometric
deep learning models, in contrast to the classical machine
learning schemes, allowing them to be effectively exploited
by unlocking their great decoding potential. For the second
dataset (e.g. attentive vs passive responses), which is known
that the contrasting conditions become more separable when
working with connectivity features, the baseline performance
is in favour of the GCNNs. Although both classification
schemes benefit from the proposed augmentation strategy the
GCNNs demonstrate the most significant improvement.

It is within our expectations that the presented, encourag-
ing, results will promote the employment of geometric deep
learning not only in the field of BCI but also in computa-
tional neuroscience broadly. However, it should bementioned
that the theoretical validation of the introduced augmentation
strategy remains an open issue. Moreover, in order to fur-
ther foster the combination of geometric deep learning and
computational neuroscience we leave as a future work the
development of weighted, instead of binary, spatiotemporal
brain modeling. Recent works that facilitate the analysis of
graph structural data that also evolve in time [38] appear
as promising alternatives capable to bring forth additional
benefit.
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