
Received August 9, 2020, accepted August 27, 2020, date of publication September 3, 2020, date of current version September 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021415

Dynamic Control Method for Tenants’ Sensitive
Information Flow Based on Virtual
Boundary Recognition
XIN LU , LIFENG CAO , AND XUEHUI DU
He’nan Province Key Laboratory of Information Security, Zhengzhou 450001, China
Zhengzhou City Science and Technology Department, Zhengzhou 450001, China

Corresponding author: Lifeng Cao (caolf302@sina.com)

This work was supported in part by the National Natural Science Foundations of China under Grant 61502531 and Grant 61702550, and in
part by the National Key Research and Development Plan under Grant 2018YFB0803603 and Grant 2016YFB0501901.

ABSTRACT In the cloud environment, owing to the large-scale sharing of the upper application instance
and the underlying virtual machine resources, the tenants’ information flow boundary in the shared virtual
machine is fuzzy and difficult to identify. In addition, protection of tenant information flow between
processes is inadequate, resulting in the leakage of sensitive information of tenants. Therefore, a dynamic
control method for tenants’ sensitive information flow based on virtual boundary recognition is proposed.
By analyzing the behavior and operation log of tenants, the behavior feature vectors of tenants are
constructed, and an automatic recognition algorithm of tenant virtual boundary based on the dynamic spiking
neural network is designed. This algorithm can realize dynamic identification of the tenant virtual security
boundary when the application service demand changes dynamically. Further, combined with the concept of
centralized and decentralized information flow control, a dynamic control method of sensitive information
flow is established. The security label is formally defined by using the lattice structure, and the control rules
of tenants’ information flow and the rules of tenant label encryption–declassification are designed. Thus, the
independent, dynamic and secure control of tenants’ information flow inside and outside the tenant virtual
boundary. Finally, the detailed design of a dynamic security control application system for cloud tenants’
sensitive information flow is provided. Experiments confirm that the proposed algorithm can identify the
security boundary of tenants more accurately and efficiently than the traditional spiking neural network
classification methods. Further, the security and effectiveness of the method is verified by the intransitive
noninterference theory and the experiment of information flow control.

INDEX TERMS Tenant boundary identification, spiking neural network, information flow control, security
label, label encryption and declassification, label tracking.

I. INTRODUCTION
Currently, cloud computing is a major innovation of the
information technology service mode, realizing multi-tenant
sharing and distribution on demand [1]. However, although
the characteristics of cloud computing bring great conve-
nience to tenants, they pose a serious threat to the security
of tenants’ sensitive data [2]. The cloud platform has the
following characteristics [3], [4]:

1. Public infrastructure. This breaks down the barriers
between physical resources, rendering the security boundary

The associate editor coordinating the review of this manuscript and

approving it for publication was Jing Bi .

of tenants in the virtual network environment fuzzy andweak.
As a result, it is difficult to effectively identify the virtual
security boundary of tenants, leading to challenging security
isolation of tenants’ data.

2. Cloud management of tenant information. In cloud ser-
vice outsourcing, the applications and information of tenants
are not controlled and managed by tenants themselves but
handled by cloud management. This can easily lead to ille-
gal access and disclosure of internal information of virtual
machines by untrusted programs in the cloud; thus, effective
security of sensitive information cannot be ensured.

3. Large scale, high degree of openness, multi-tenant
resource sharing. The relationship between tenants is

162548 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6486-3460
https://orcid.org/0000-0002-4605-8545
https://orcid.org/0000-0002-4923-900X
https://orcid.org/0000-0002-4610-0141

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

complex, and malicious tenants can break the virtual isola-
tion boundary of other tenants and illegally obtain sensitive
information.

Given the cloud platform characteristics and the existing
security problems, this paper summarizes the following secu-
rity requirements of cloud tenants: 1. The dynamic upper-
level tenants’ application behavior, the sharing of physical
instance resources, and the decentralized distribution of vir-
tual machines require that the virtual security boundary of the
tenants under the software definition can be identified accu-
rately; 2. Tenants cannot fully trust the programs and services
provided by the cloud platform and need to protect sensitive
information from disclosure or illegal use autonomously;
3. Tenants cannot fully trust other tenants sharing cloud
resources with them, so they need to prevent illegal flow
of information to other tenants and be able to dynamically
control the security sharing of information. To meet the
above-mentioned requirements, this study investigates and
contributes in the following aspects:

1.We propose a dynamic control method for tenants’ sensi-
tive information flow based on virtual boundary recognition.
This method combines the automatic learning algorithm of
tenant virtual boundary recognition and the dynamic control
method of cloud tenants’ sensitive information flow to realize
security protection of tenant’s sensitive information in cloud.

2. We extract the key characteristics of tenants through
deep mining of the behavior of tenants and analysis of the
operation log. After quantification, normalization, and coding
of the key features, we construct the behavior characteristic
vectors of tenants. Based on an improved dynamic spiking
neural network learning algorithm to train and learn sam-
ple data, we perform automatic identification of the tenant
operation process in a shared virtual machine instance, which
establishes the virtual security boundary between tenants.

3. We propose a dynamic control method of sensitive infor-
mation flow of cloud tenants on the basis of the identification
of the virtual boundary of tenants combined with the concept
of centralized and decentralized control mechanisms of infor-
mation flow. This method can realize self-control of tenant
information flow within the boundary as well as dynamic
control and security sharing of information flow between
tenants.

4. Based on the effective identification of the tenant virtual
boundary and the dynamic control method of tenant infor-
mation flow, we provide a detailed design of the dynamic
security control application system of cloud tenants’ sensitive
information flow.

5. We build a cloud platform through OpenStack, monitor
virtual machines on it, analyze tenants’ resource information
and log information, and obtain sample data. By using the
sample data for performing several training and testing exper-
iments, we verify the accuracy and efficiency of the boundary
recognition algorithm.

6. In this study, we use the intransitive noninterference
theory to confirm the efficiency of the security control appli-
cation system of cloud tenants’ sensitive information flow.

With the help of Linux security module (LSM) [5] frame-
work, the security verification experiment of tenant informa-
tion flow control is carried out.

II. RELATED WORK
‘‘Multi-tenant architecture’’ refers to the architecture mode of
sharing the same system or program components in a multi-
user environment and is one of the most basic features in
cloud computing. Multi-tenant architecture requires tenants
to ensure the mutual isolation of information among tenants
on the premise of sharing physical resources [6], [7]. There-
fore, security isolation of tenant data is the key to design
multi-tenant architecture and the most important aspect to be
considered to ensure security isolation of sensitive informa-
tion among tenants.

The protection of tenants’ sensitive information based on
tenant isolation mainly refers to preventing the illegal flow
of information among tenants by dividing the tenant security
domain and combining with a system isolation method to
ensure that tenants’ sensitive information and private busi-
ness are not interfered with by other tenants [8]. Through
the analysis of the above definitions, we can see that the
key to the implementation of tenants’ sensitive information
protection is as follows: 1. Realize the effective division of
the tenant security domain, and 2. control the legitimate flow
of information inside and outside the tenant security domain
to prevent leakage of sensitive information.

1. The identification of the tenant system boundary is the
basis of division of the tenant security domain; the tenant
system boundary can effectively establish the scope of tenant
security domain and serve as the basis of tenant information
flow security control. Tenant system boundary identifica-
tion mainly includes two parts: identification of the physical
boundary and the virtual boundary. The physical boundary
refers to the multi-tenant system-level boundary. Each tenant
can use one or more virtual machines to carry application
programs and save data. Its identification includes different
network addresses such as system IP address. The most typi-
cal method for identifying the physical boundary is to divide
VLANs [9]; each tenant has a VLAN, but the number of
VLANs is limited, so the requirement of large-scale tenants
cannot be met. The boundary identification is mainly through
manual static identification of IP, with complex configuration
and low efficiency. Therefore, overlay network architecture,
which is a type of virtualization technology mode super-
imposed on the network architecture, emerges as a current
requirement. Its typical technical implementation includes
VXLAN (Virtual eXtensible LAN) and NVGRE (Net-
work Virtualization using Generic Routing Encapsulation)
[10, 11]. The VXLAN protocol greatly increases the number
of VLANs and realizes cross-regional two-layer interconnec-
tion. However, the burden of the VTEP node (i.e., virtual
tunnel terminal) is extremely heavy, affecting the overall
performance of the network. The NVGRE protocol is mainly
encapsulated by using the generic routing encapsulation pro-
tocol (GRE). Its maximum number of subnet divisions is the

VOLUME 8, 2020 162549

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

same as that of VXLAN, and its broadcast mode is more
flexible. However, it does not use the standard transmission
protocol, resulting in high equipment requirements. These
two network types can effectively realize isolation of multi-
tenant systems and expand the number of tenant networks.
However, the identification of the tenant network boundary
mainly depends on the artificial judgment of rental relation-
ship and static identification through the IP address and other
ways, so the methods cannot better adapt to the dynamic
changes of the boundary.

The virtual boundary mainly refers to the virtual secu-
rity boundary based on software definition. Greater empha-
sis is placed on the effective identification of the process
level boundary when the tenant application shares the same
system instance (such as virtual machines). That is to cut
the upper application environment of different tenants at
the bottom process level and ensure the mutual isolation
of tenant process communication. The software-defined net-
work (SDN) [12], [13] mainly refers to a new network
architecture based on network virtualization, which separates
the control plane and the data plane of network equipment.
By increasing the programmability of the network, it inno-
vates the current partial static and configures a complex
network architecture; further, the network can be dynami-
cally constructed according to the application requirements
of the upper tenants. Because of its high flexibility and
dynamic nature, the tenant security boundary is fuzzy and
difficult to be identified on the basis of software defini-
tion. The software-as-a-service (SaaS) [14], [15] platform
provides software services through a network by deploying
the application system on the suppliers’ own servers and
delivering application services to various tenants based on
tenant subscription. Multiple tenants share the same physical
instance under the application, because they share the SaaS
platform. In addition, because of the complexity of tenant
identity and information interaction, the virtual communi-
cation security boundary between bottom tenants becomes
fuzzy. In addition, most of the existing cloud management
technologies [16], [17] mainly focus on improving efficiency,
reducing cost, and maximizing revenue, and they do not fully
consider the identification of the data security boundary and
the security of data flow when tenants share cloud data center
resources.

Owing to their learning characteristics and adaptability,
neural networks are well suited for tenant boundary classifi-
cation and recognition [18]. The traditional neural network
requires prior knowledge of the number of neurons in the
hidden and output layers; in order to improve the reliability
of training, such as in the backpropagation neural network
and fixed spiking neural network, it is necessary to know
the proportion of distribution of all samples in advance.
However, in the cloud environment, the number of tenants
and virtual machines is constantly changing. In addition,
the tenant behavior is complex and the virtual security bound-
ary of tenants changes dynamically, making collection of
samples at one time difficult. As a result, the traditional

neural network cannot meet the needs of adaptive identifi-
cation of the tenant boundary.

As the third generation of artificial neural networks,
spiking neurons are more biomimetic than traditional neu-
rons [19]. However, the number of neurons in the hidden
and output layers of a spiking neural network with a fixed
structure is determined in advance, which can only be used
when the number of classes is known. In view of contin-
uously changing data, a dynamic adaptive spiking neural
network [20] is proposed to realize the dynamic increase of
output layer neurons and meet the requirements of tenant
boundary dynamic identification. However, there are still
some problems in the existing research. Thorpe [21] proposed
a spiking neural network learning algorithm based on the
firing order (Rank order); it was emphasized that the first
firing pulse sequence of neurons cannot reflect the pulse
information well, and the effect of imprecise time on classifi-
cation is ignored.Wang [22] proposed a learning algorithm of
spiking neural networks based on precise time (only precise).
Although it improves the classification accuracy, it increases
the classification time, affecting the classification efficiency.
Therefore, it is not suitable for large-scale tenant data training
in a cloud environment.

2. In view of the security flow of information inside and
outside the tenant security domain, it is mainly realized
by the way of access control. The traditional access con-
trol model [23], [24] includes mandatory access control and
autonomous access control. The traditional mandatory access
control method strictly regulates the one-way flow of data;
it is high in security but low in flexibility and practicability.
By contrast, the autonomous access control model cannot
guarantee the security of data after they are accessed by using
the access control list that controls the access of subjects
to objects. Therefore, information flow control technology
has become essential. It mainly tracks and controls the flow
of data in the system by ‘‘sticking’’ the label with policy
requirements on the data so as to ensure the data’s safe use.
The most classical method of information flow control is
the lattice [25] model proposed by Denning in 1976. The
lattice structure is used to formally describe the information
flow strategy, the system state, and the transition relation-
ship among the states. The security policy in the traditional
information flow control mode can only be formulated by
a security administrator, thus it has poor flexibility. In case
of an error, the security or the availability of the system
can be easily reduced. In view of the defects of traditional
information flow control, Myers [26] proposed a decentral-
ized label model and an extended security-type programming
language (Java information flow, JIF), which realize decen-
tralized information flow control. The security strategy is
developed by the programmers themselves and considers the
problem of declassification, which is not considered in the
traditional information flow control method. However, it can-
not effectively solve the security problem caused by untrusted
nodes. Smalley [27] proposed an information flow control
system ‘‘SELinux’’, which is essentially a domain-type and

162550 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

multilevel security-based Mandatory Access Control (MAC)
security system. However, it does not support dynamic adjust-
ment of tags and policy. Asbesto [28] proposed a decentral-
ized declassification method, which defines the owner and
decryption of data, and defined the receiving and sending
tags of processes. However, it does not consider the sharing
of system resources among processes, and it cannot real-
ize dynamic adjustment of tags. Based on the research of
Asbesto, Histar [29] provided a memory sharing mechanism
between processes and solved the problem of covert channels
through the method of explicit adjustment of tags. Flume [30]
proposed a method to control the information flow of the key
resources of the operating system; this method can realize the
dynamic adjustment of tags but requires high compatibility
between the application software and the system. Weir [31]
proposed a decentralized information flow control system; it
however has a problem of coarse control granularity and does
not support a user-defined information flow control strategy.
Wu [32] presented a novel dynamic defense model (DDM)
to reduce security risks brought by these suspicious data or
codes for the open operating systems. In the model, dynamic
label marking, dynamic label tracking, dynamic label modu-
lating, and run-time controlling were given, which provided
a good idea for the tracking and control of information flow,
but this model was mainly aimed at the security protection of
a single operating system, and only the system application on
Android was given.

Based on the above research, considering the charac-
teristics of a cloud environment, information flow control
technology has been extensively researched. CloudFence [33]
realized fine-grained tracking of sensitive data in the cloud
based on a pin plug-in platform; this approach effectively
guarantees user data isolation and security sharing in the
cloud, but it cannot support user-independent policy config-
uration and information flow control. FlowK [34] and FlowR
[35] implemented process-level coarse-grained data propaga-
tion control in the cloud tenant operating system layer. Priebe
[36] provided a lightweight monitoring framework ‘‘Cloud-
SafetyNet’’ in the cloud environment; it enables tenants to
monitor the flow of information between applications and
detect the risk of information leakage by using the motivation
of cooperation between tenants, but it is used mainly for the
security detection of information flow. Wu [37] proposed a
two-layer information flow control model for a cloud envi-
ronment; the model realized the combination of centralized
information flow and decentralized information flow control;
however, no identity for the virtual security boundary of the
tenant exists in the model. Pasquier [38] realized the combi-
nation of distributed information flow control technology and
trusted platform technology and applied it to cloud data secu-
rity enhancement; however, this method does not consider the
protection mechanism of cloud platform service providers.
LV [39] proposed noninterference for cloud architecture in
which concurrent access and sequential access coexist, which
realized the security control of information flow between
security domains when concurrent and sequential actions

were executed in the cloud, but the boundary of security
domain was not clear, and the availability and security were
not verified by experiments. According to the characteristics
of cloud computing, Ma [40] formalized the process of the
tenant information flow in the cloud computing system,
proposed the corresponding separation rules, and verified the
security of the separation rules through the noninterference
theory. However, the separation rules mainly emphasized the
isolation of resources among tenants, but did not design the
rules of information flow security control between tenants
and between tenants and the cloud platform in a fine-grained
way, and also lacked experimental verification.

Although the above-mentioned research has been involved
in aspects such as integrity and confidentiality assurance,
policy management, label declassification, and mark propa-
gation, it fails to fully consider these capability requirements.
Therefore, in the face of the data security needs of cloud
tenants and the real-time and dynamic nature of the tenant
boundary, it is necessary to study a fine-grained autonomous
dynamic control strategy for tenant information flow, which
can not only realize the security flow of information within
the tenant boundary but also ensure the security of infor-
mation flow among tenants and between tenants and cloud
service programs.

III. DYNAMIC CONTROL METHOD DESIGN OF TENANT
SENSITIVE INFORMATION FLOW BASED ON VIRTUAL
BOUNDARY RECOGNITION
The identification of the tenant boundary mainly serves the
security control of tenant information flow. Based on the
accurate identification of the virtual security boundary of
tenants, combined with the security control method of the
sensitive information flow of tenants, the security of the
information flow inside and outside the tenant boundary is
guaranteed and leakage of the sensitive information of tenants
caused by malicious attack is prevented.

A. AUTOMATIC RECOGNITION OF TENANT VIRTUAL
SECURITY BOUNDARY
1) TENANT BOUNDARY IDENTIFICATION PROBLEM
DESCRIPTION
Figure 1 shows that one or more shared application instances
are deployed to provide customized application services for
tenants, allowing different tenants to share the same upper
application instance and providing the bottom shared service
resources for supporting applications. However, because the
tenants must share the underlying virtual machine resources
and the information flow between the tenants’ processes in
the shared virtual machine is transparent for the upper appli-
cation, the service processes under different tenants may be
distributed on the same virtual machine instance. In addi-
tion, the number of tenants and the dynamic changes in the
upper application requirements are likely to cause frequent
migration of tenant application services in the shared virtual
machine. This renders the security boundary of tenant data

VOLUME 8, 2020 162551

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

FIGURE 1. Tenant virtual security boundary based on software definition.

in the shared virtual machine fuzzy and difficult to identify
dynamically. The traditional artificial static audit method
for boundary identification cannot adapt to the dynamically
changing virtual security boundary of tenants in real time.
Therefore, this paper designs a dynamic control method for
tenant sensitive information flow based on virtual boundary
recognition (D_SNNBAR).

2) TENANT BEHAVIOR FEATURE EXTRACTION AND
PROCESSING
In this study, the operation logs of tenants are collected and
the key features of tenants are extracted for building the fea-
ture vectors for neural network learning. To mine the tenant
feature information, first, the tenants and virtual machines in
the cloud platform are monitored and the log information is
analyzed to obtain tenant information, including the tenant
related information obtained through monitoring of the vir-
tual machine. Subsequently, the process of tenant connection
is monitored, the key features are extracted together with
tenant operation log information, and the feature vector is
constructed.

Herein, we first use the virtual machine monitor (VMM) to
obtain tenant registration and permission information, includ-
ing tenant category (user group) Ttype. Then, we extract the
virtual machine related information, including the virtual
machine identification number Vid, and obtain the process
number PID of the virtual machine connected with the ten-
ant. Further, we analyze log information to obtain operation
information, including file name FNAME, file path FPATH,
operation type FOM, opening time FOT, and closing time FCT.

After collecting the tenant’s key feature information, we con-
struct the feature vector ϕ = (Ttype, VID, PID, FNAME, FPATH,
FOM, FOT, FCT) = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8). Accord-
ing to the different types and units of the above features,
the vector is quantized and normalized before neural network
learning.

a: QUANTIZING EIGENVALUES
Here, first, tenant categories aremapped; for example,Type =
{Administrator, Senior, VIP, Normal. . . } is mapped to ϕ1 =
{1,2,3,4, . . . }. For VID, the quantization of PID can be used
directly, that is, ϕ2 =VID and ϕ3 = PID. For the quantization
of FNAME and FPATH, we mainly use hash algorithm to map,
that is, ϕ4 =HASH(FNAME) and ϕ5 =HASH(FPATH). In this
paper, considering the hash operation of strings, we adopt the
hash operation method based on multiplication. When the
multiplier is set to 33, it has a good hash effect on English
words. The hash algorithm design is shown in Table 1. For
the quantization of FOM, the operation type FOM = {new,
read, write, update, delete, clear, . . . } is also mapped to
ϕ6 = {1,2,3,4,5, . . . }. For the operation time FOT and FCT,
the unified time format is used for counting, with the unit
seconds; that is, ϕ7 = T(FOT) and ϕ8 = T(FCT).

b: NORMALIZATION
To reduce the effect of different value range of variables in the
feature vector for the neural network, neural network learning
is facilitated, and considering each feature variable with the
same importance, each feature variable is normalized.We use
the method of deviation standardization, that is, x= (x-min)/

162552 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

TABLE 1. Design of hash algorithm.

(max-min), where max and min are the maximum and mini-
mum values of the characteristic variable, respectively; all the
characteristic values are controlled within [0,1].

c: INFORMATION ENCODING
In the dynamic spiking neural network, we use the method of
Gaussian group coding to transform each eigenvector to be
input in a multiple-pulse pattern. This method is based on the
Gaussian receptive field, which represents a series of opera-
tions related to a Gaussian function. According to this coding
method based on the Gaussian hypothesis, suppose that the
eigenvalue obeys multiple Gaussian distributions in the data
sample space. First, different distributions are obtained by
calculating different values ofmean and variance of the eigen-
value. Then, the probability corresponding to the eigenvalue
is calculated. Finally, multiple pulses corresponding to the
eigenvalue are obtained according to the probability and the
coding function. The coding process is as follows:

Assuming that the number of Gaussian receptive field is n,
each eigenvalue will be encoded into n pulses, and the dimen-
sion of the eigenvector ism, then the encoded eigenvector will
become m×n pulses. The formula of mean uji and standard
deviation δji of the i-th feature in the j-th acceptance domain
are described as equation 1 and equation 2:

uji = ϕ
i
min +

(2j− 3)(ϕimax − ϕ
i
min)

2(n− 2)
(1)

δi =
1
β

(ϕimax − ϕ
i
min)

(n− 2)
(2)

Among them, ϕimax and ϕ
i
min are the minimum and maxi-

mum values of the i-th eigenvalue, respectively; β is a param-
eter that affects the coverage of the Gaussian receptive field
by affecting the standard deviation. The above values of mean
and variance jointly determine the Gaussian function, which
is described as equation 3:

ρ
j
i = e

−
(ϕi−u

j
i)
2

2(δji)
2

(3)

According to the results of Gaussian function calculation,
the pulse time of each eigenvalue, that is, the pulse time of
each input neuron, is calculated as equation 4:

t ji =

{
[T (1− ρji)], ρ

j
i 6= 0

−0.01, ρ
j
i = 0

(4)

3) ALGORITHM FLOW DESIGN
The process of the tenant virtual security boundary recogni-
tion algorithm, as shown in Figure 2, includes network initial-
ization, eigenvector processing and input, information coding
(Gaussian group coding), dynamic spiking neural network
learning, and tenant boundary review and confirmation.

a: STRUCTURE OF DYNAMIC SPIKING NEURAL NETWORK
The dynamic spiking neural network structure includes an
input layer, a coding neuron layer, and an output neuron layer,
as shown in Figure 3. The input neuron of the coding layer
uses Gaussian coding to transform the input eigenvalue into
a series of pulse time.
n in Figure 3 represents the number of Gaussian receptive

fields. The neurons in each coding layer generate a pulse time,
which is transmitted to the next layer. The coding layer and
the output layer are connected in a fully connected way. The
number of neurons in the coding layer is determined by the
dimension of the eigenvector and theGaussian receptive field.
At the beginning, there is no connection between the coding
layer and the output layer of the neural network. When a
new sample is input, the output layer will dynamically add
a neuron. According to the pulse time of the coding layer,
the weights of neuron connections are established. In the
learning process, each neuron in the output layer will repre-
sent a category label. Finally, the neuron in the output layer
will be updated or merged according to the dynamic learning
algorithm.

b: LEARNING STRATEGY OF TENANT BOUNDARY
AUTOMATIC RECOGNITION
In the process of automatic identification of the tenant bound-
ary, the weight vector of an output layer neuron represents
the clustering center of the tenant boundary category. The
automatic recognition learning strategy of the tenant bound-
ary includes two parts: initial weight adjustment and dynamic
adjustment strategy of output layer neurons.

1) Initial weight adjustment
The weight connection formula between the output layer

neuron and the coding layer is as equation 5:

wij = w0 + rexp(−
ti
τ
) (5)

Among them, wij is the synaptic weight between coding
layer neuron i and output layer neuron j, w0 is the initial
weight, ti is the pulse time, and τ is the time constant.

2) Dynamic adjustment strategy of neurons
In the training process, the existing information in the

neural network is compared with the information presented
by the input samples. Learning strategies are then chosen
according to the comparison results:

a. Addition of neurons: when the similarity between the
existing output neuron category and the input sample data is
lower than the threshold, new neurons are added to the output
layer to represent the new category.

VOLUME 8, 2020 162553

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

FIGURE 2. Tenant boundary identification process.

FIGURE 3. Structure of neural network learning.

b. Merge neurons: when the similarity between the input
tenant sample data and the existing neuron tenant category
exceeds the threshold, new neurons and the most similar
neurons are merged and the weight of the merged neurons
is updated; that is, the neurons are merged according to the
similarity between the output neurons, thus achieving the
classification effect.

c. After the classification is determined, the classifi-
cation is identified. Here, the triple is used to define
the classification (security boundary) identification number
Sec_boundary_ID:

Sec_boundary_ID=(TID, VMID, PID), TID, VMID and
PID are respectively tenant ID, virtual machine ID and pro-
cess ID.

c: DETAILED PROCESS OF ALGORITHM IMPLEMENTATION
After quantizing and normalizing the sample data, the set
of eigenvectors to be input is ψ . The algorithm is shown
in Table 2.

Each output neuron represents a tenant boundary.
Lines 3–12 calculate the weight vector of the output neuron
connected with the coding layer; lines 14–18 classify the
unclassified processes; lines 19–30 dynamically update the
classified processes. The algorithm process indicates that

the number of feature vectors and the number of Gaussian
acceptance regions are determined, and the two values are rel-
atively small, so the time complexity of the algorithm is O(n).
In addition, the training process of the recognition algorithm
does not need iteration, and only uses the key information
and dynamic adjustment mechanism underlying the spiking
neural network; thus, the efficiency of data classification is
greatly improved.

B. DYNAMIC CONTROL METHOD FOR SENSITIVE
INFORMATION FLOW OF CLOUD TENANTS
1) SECURITY ISSUE DESCRIPTION OF CLOUD TENANTS’
SENSITIVE INFORMATION FLOW
Tenant sensitive information refers to private tenant data with
a sensitivity level in the virtual machine. The sensitivity level
mainly reflects the importance of the tenant’s private data,
such as tenant account information, tenant calculation data,
and data information of different departments or users of
the tenant, which requires fine-grained security control. The
importance and use of tenant data information of different
sensitivity levels differ; therefore, tenant sensitive informa-
tion should be handled by specified service levels to avoid
cross operation and flow, thereby preventing leakage.

In the process of renting cloud services, tenants upload
their own data to the cloud platform for processing and lose
the direct control of their own sensitive information to a
certain extent, which seriously threatens the security of tenant
data. If the security protection of tenant data depends only on
the identification of the data security boundary and lacks an
effective information flow control method, the data will be
vulnerable to the cross-border attack of untrusted programs
in the virtual machine or other tenants, resulting in the dis-
closure of sensitive information of tenants.

Due to the large scale of sharing of virtual machine
resources among different tenant applications in the upper
layer and the weakening of tenants’ control over their own
data, there is a possibility of illegal flow of information
between processes inside and outside the tenant virtual
boundary. Figures 4-¬ ­ ® depict the different security
threats faced by the tenant information flow: ¬ A malicious

162554 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

TABLE 2. Algorithm flow of D_SNNBAR.

process of other tenants under the same virtual machine
illegally accesses the information in the authorized process
of a tenant, resulting in the outflow of sensitive information.
­ Among different virtual machines, an untrusted process
outside the boundary steals the authorized process within
the boundary, resulting in the leakage of tenant sensitive
information.® Information is illegally shared among tenants,
for example, through virtual machine escape attack or DDoS
attack.

For the security of the information flow within the bound-
ary of a cloud tenant, the security strength of the data and
the permission of the application in the virtual machine are
determined by the cloud tenant itself, aiming to realize the

centralized control of the information within the boundary by
the tenant. The control strategy of information flow among
cloud tenants is jointly formulated by participating tenants,
and cloud tenants can only formulate their own information
flow or data sharing security strategy with other cloud tenants
for achieving distributed dynamic control of information flow
among tenants.

2) DESIGN OF SECURITY LABEL
Definition 1: Security label L represents a set of security
policies, each of which represents a tenant’s security require-
ments for information, including confidentiality and integrity
security requirements.
L is composed of the policy subject owner (i.e., the infor-

mation owner or policy maker, identified by the boundary
ID of the tenant) and value domain R (a collection of policy
executors, determined by the owner). It is formally expressed
as L = (ID : R), and it includes two types: confidentiality
label Lc and integrity label Li. Lc = (ID→ R) indicates that
the owner of the information marked by the confidentiality
label only allows the information to flow to the subjects in
R; for example, Lc = (ID1 → r1, r2) indicates that r1andr2
are allowed to read the information with the confidentiality
label Lc. Li = (ID ← R) indicates that the owner of the
information allows the subjects in R to write the information.
In addition, for the data marked by the tag, the tag will follow
the data in the whole system, and the object derived from
the data will also inherit the original tag. Data, data owner
and data operator are identified by the boundary identification
number (Sec_boundary_ID).
Definition 2:Confidentiality label lattice Gc means that the

confidentiality label system is abstracted by a lattice; that is,
Gc=(Lc,∧,1c,∇c) is used for the confidentiality protection
of tenant data, where Lc represents the set of confidentiality
labels, and for any label value, Lc.R belongs to the value
domain of Lc. ‘‘∧’’ represents the intersection operator, and
the result is the union ‘‘∪’’ of the label set, which satisfies the
following characteristics:

¬ Idempotence: Lc.Rx∧ Lc.Rx = Lc.Rx ;
­ Exchangeability: Lc.Rx∧Lc.Ry = Lc.Ry∧Lc.Rx ;
® Associativity: Lc.Rx∧

(
Lc.Ry ∧ Lc.Rz

)
=(Lc.Rx∧Lc.Ry)

∧Lc.Rz.
‘‘∧’’ specifies the partial order relation ‘‘4’’ on the value

domain of the label, which satisfies reflexivity, antisymmetry,
and transitivity. If Lc1Lc2 and Lc2Lc1 , then Lc1 = Lc2 . For
example: if Lc1=(ID→r1, r2) and Lc2=(ID → r1), then
Lc1Lc2 , which indicates that Lc2 requires higher confidential-
ity. ‘‘1c’’ represents the maximum upper bound of the value
domain of the confidentiality label, indicating the maximum
range of reading the data; ‘‘∇c’’ represents the minimum
lower bound of the value domain of the confidentiality label,
indicating the minimum range of reading the data.
Definition 3: Integrity label lattice Gi means the

integrity label system is abstracted by lattice; that is,
Gi=(Li,∧,1i,∇i) is used for the integrity protection of
tenant data.

VOLUME 8, 2020 162555

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

FIGURE 4. Cloud tenant information flow control architecture.

If the partial order relation is satisfied in the confidentiality
domain, the opposite partial order relation is satisfied in the
integrity domain. For example, if Li1 = (ID ←− w1) and
Li2 = (ID ←− w1,w2), then Li2Li1 , which indicates that
Li1 requires higher integrity. ‘‘1i’’ represents the maximum
upper bound of the value range of the integrity label. From the
dual relationship between data confidentiality and integrity,
it can be seen that 1i = ∇c. ‘‘∇i’’ represents the minimum
lower bound of the value range of the integrity label. Simi-
larly, ∇i = 1c.
Definition 4: Partial order of label lattice L = (Lc,Li), that

is, the set of Lc × Li. L means to meet the partial order of
the confidentiality label and integrity label simultaneously,
which is described as equation 6:(
Lc1 × Li1

)
4
(
Lc2 × Li2

)
= (Lc1 4 Lc2)

∧
(Li2 4 Li1) (6)

In order to better understand the information flow control
strategy, the symbol definitions are given in detail in Table 3.

3) INFORMATION FLOW SECURITY LABEL CONTROL
STRATEGY
(1) Rule 1. Label value field minimization
If data is marked by labels L1 = (ID1 : R1) and L2 =

(ID2 : R2), the security label of the data is the union of the
two labels, that is, the intersection of the label value field,
which is described as equation 7:

if Lmin = L1 ∪ L2then{Lmin.R = L1.R1 ∩ L2.R2; } (7)

Rule 1 indicates that operations on data satisfy the mini-
mum privilege principle, and data flows only to subjects that
satisfy all label policies. This rule is the security foundation of
the data label propagation rule and information flow control
among tenants.
(2)Rule 2. ‘‘and or’’ of the label value field
Rule 2.1: The ‘‘and’’ of the label value field means that

data needs to be operated by multiple entities simultaneously,
and a single entity cannot read or write data. The label is
formalized as L = (ID : R1andR2), which expresses the
principle of separation of authority and duty.
Rule 2.2: The ‘‘or’’ of the label value field refers to the

priority of the main body’s operation on data. The label is
formalized as L = (ID : R1orR2). This rule specifies the
operation order of R1 and R2, which cannot be operated
simultaneously.
(3) Rule 3. Tenant information flow control rules
Assuming that the confidentiality label and integrity label

of any two data, data1 and data2, are Lc1 , Li1 and Lc2 ,Li2 ,
respectively, the protection rules of data flow from data1 to
data2 are as equation 8 and equation 9:

data1 −→ data2 if (Lc1 4 Lc2) ∧ (Li2 4 Li1) (8)

data1 ↔ data2 if (Lc1 = Lc2) ∧ (Li2 = Li1) (9)

Rule 3 indicates that the necessary condition for data flow
is to meet the partial order relationship of the confidentiality
label and integrity label of data simultaneously. The confi-
dentiality label of data requires that tenant data can only flow

162556 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

TABLE 3. Symbol definitions of information control strategy.

from a label with a weak constraint to that with a strong
constraint in order to prevent data leakage. The integrity label
of data requires that data flow only from high integrity to low
integrity in order to prevent data from being polluted.

Based on the flow control rules of information flow,
the control rules of sending and receiving processes of infor-
mation flow in virtual machines are given here:

Rule 3.1: Set sending process P1, sending data D1, receiv-
ing process P2, and receiving data D2 according to the
equation 10:

P1→ P2 if (P1 ∈ LcD1 .R)&&((LcD1 4 LcD2)∧(LiD2 4 LiD1))

&&(P2 ∈ LiD2 .R) (10)

The necessary condition for process P1 to be able to send
data D1 to P2 is that process P1 belongs to the value domain
of the confidentiality label ofD1, that is, flow from dataD1 to
dataD2 must meet rule 3, and P2 must be in the value domain
of the integrity label of D2.
(4) Rule 4. Propagation rules of label
Suppose that the labels flow with data1 to data2, and the

security labels of data2 needs to be updated. The updated
security labels are Lcnew2 and Linew2 , and the rules are as
equation 11:

if data1→ data2 then{Lcnew2 = Lc1 ∪ Lc2;Linew2
= Li1 ∪ Li2; } (11)

This rule indicates that the label should be stricter after data
flow, so the intersection operation of labels is followed, that
is, the union of labels. The propagation of tags can be divided
into two situations: ¬ In process operation, the propagation
of internal tags; for example, assignment operation X = Y:,
where the information in Y flows to X, and the label of X
is updated to LX = LX ∪ LY . ­ Data transfer between
processes; for example, process P transfers D1 to process

Q and stores it with D2. Here, the label of data D2 is updated
to LX = LX ∪ LY .

4) TENANT LABEL ADJUSTMENT STRATEGY
To complete the tenant’s independent and dynamic control
of data, the tenant’s ability to adjust its own data security
label is designed; this process is divided into label encryption
and label declassification rules. To better realize the tenant’s
adjustment of labels, we introduce the set of confidentiality
label policy adjustment ‘‘Sc’’ and the set of integrity label
policy adjustment ‘‘Si’’. S+c represents the set of additive
confidentiality label policies, S−c represents the set of remov-
able confidentiality label policies, S+i represents the set of
additive integrity label policies, and S−i represents the set of
removable integrity label policies.

(1) Rule 5. Label encryption rule
Suppose tenant T has confidentiality label set Lc =

(Lc1 ,Lc2 , . . . ,Lcn),Lci = (ID −→ R2), and the encryp-
tion set of confidentiality label corresponding to Lc is Sc.
In addition, suppose tenant T has integrity label set Li =
(Li1 ,Li2 , . . . ,Lin), Lij = (ID −→ R2), and the integrity label
encryption set corresponding to Li is Si. The authorization
rules are as follows:

Rule 5.1: Confidentiality label encryption is described as
equation 12:

Lc = Lc ∪ Ladd−c only if (Ladd−c ⊂ S+c) (12)

The necessary condition for tenants to add the confiden-
tiality label Ladd−c to the original label is that Ladd−c is
included in S+c .

Rule 5.2: Integrity label encryption is described as
equation 13:

Li = Li ∪ Ladd−i only if (Ladd−i ⊂ S+i) (13)

VOLUME 8, 2020 162557

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

FIGURE 5. Architecture design of cloud tenants’ sensitive information flow application system.

The necessary condition for tenants to add the integrity
label Ladd−i to the original label is that Ladd−i is included
in S+i .
In addition, according to rule 5 and the minimum lower

bound of label, the complete encryption formula of data is
described as equation 14:

(Li.∇i)&& (Lc.∇c) (14)

(2) Rule 6. Label declassification rule
Rule 6.1: Confidentiality label declassification is

described as equation 15:(
(Lc = Lc − Lsub−c) only if

(
Lsub−c ⊂ S−c

))
||

((Lci .Ri = Lci .Ri ∪ Radd) only if (({Radd } ⊆ {Lsubi−c.R})

&&Lsubi−c ⊆ S−c)) (15)

There are two situations in the declassification rule of con-
fidentiality label: ¬ remove the confidentiality label directly,
and ­ add the subject to the value domain of the label. The
necessary condition for the tenant to reduce the confidential-
ity label constraint is that Lsub−c is included in S−c or Radd
belongs to the value domain of a security label in set S−c .

Rule 6.2: Integrity label declassification is described as
equation 16:

((Li = Li − Lsub−i) only if (Lsub−i ⊂ S−i))||

((Lij .Rj = Lij .Rj ∪ Radd) only if (({Radd } ⊆ {Lsubj−i.R})

&&Lsubj−i ⊆ S−i)) (16)

There are two situations in the declassification rule of
integrity label: ¬ remove the integrity label directly, and ­
add the subject to the value domain of the label. The necessary
condition for the tenant to reduce the integrity label constraint

is that Lsub−i is included in S−i or Radd belongs to the value
domain of a security label in set S−i .

In addition, according to rule 6 and the maximum upper
bound of the label, the complete decryption formula of the
data is described as equation 17:

(Li.1i)&& (Lc.1c) (17)

IV. DYNAMIC SECURITY CONTROL APPLICATION
SYSTEM FOR CLOUD TENANTS’ SENSITIVE
INFORMATION FLOW (DSCLoud)
Based on the aforementioned methods, we present the design
of a dynamic security control system for sensitive information
flow of cloud tenants, which aims to accurately identify the
virtual boundaries of tenants and realize the security control
and sharing of sensitive information flow of tenants in the
cloud. The overall architecture design of the system is shown
in Figure 5.

The system consists of three parts: automatic identifica-
tion of tenants’ virtual security boundaries, centralized and
autonomous control of information flow within the boundary
of tenants, and decentralized dynamic control and security
sharing of information flow among tenants. All programs
of cloud tenants run in virtual machines with the operat-
ing system installed. In the virtual machine, modules such
as a fine-grained label tracking module, an instant virtual
machine introspection module, a virtual machine monitoring
module, an audit module, and a user interface module, are
included. The tenant boundary also includes an information
flow control strategy library, a label dynamic tag component,
a label dynamic adjustment component, and a risk monitoring
module of tenant information flow, among others. The flow
of tenant information inside and outside the boundary is

162558 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

FIGURE 6. Autonomous control strategy for tenant information flow.

completed by cloud platform network communication or the
virtual machine data sharing component.

According to the security requirements of sensitive infor-
mation flow control of cloud tenants, the system design is as
follows:

(1) In the system, the module of automatic identification of
tenant boundaries based on the neural network is designed;
this module can automatically determine the virtual security
boundary of tenants and provide the basis for tenant informa-
tion flow tracking and control.

(2) In the interior of the cloud tenant boundary, the method
of centralized formulation of the information flow control
strategy (the method implementation is shown in Figure 6) is
adopted, and the control method is independently developed
by the tenant. This approach can realize the information track-
ing and control of the virtual machine at the process level and
the network communication at the byte level within the tenant
boundary to prevent the leakage of the tenant’s sensitive
information. The examples of information flow within the
tenant boundary are shown in Figures 5-¬ and ­:

¬ shows that the information flow between processes in the
same virtual machinewithin the tenant boundary ismonitored
by the information flow risk monitoring module within the
tenant. When the information flow control rules are met,
the information flow from P1 to P2 is allowed.

­ shows that the information flow between processes
in different virtual machines within the tenant boundary is
monitored by the information flow risk monitoring mod-
ule within the tenant. Because the integrity of data4 is less
than that of data2, the information flow from P4 to P2 is
not allowed.

(3) Among the cloud tenants, the decentralized informa-
tion flow control method is adopted, and the tenants jointly
formulate the information flow control strategy (the method
implementation is shown in Figure 7). The cloud tenants
can formulate the corresponding information flow control
strategy and view the information flow audit information
through the program interface. For example, tenant A can
participate in the formulation of the information flow control
strategy between tenant B and tenant A, but not between

tenant B and tenant C. According to the information flow
control policies formulated by each tenant, the distributed
policy control set among tenants is formed. This can realize
the tracking and control of virtual machines at the process
level and network communication at the byte level between
different tenant boundaries to prevent malicious tenants from
illegally obtaining sensitive information from other tenants.
An example of information flow between tenants is shown
in Figures 5-® and ¯:

® shows that the illegal flow of information when tenants
share the same virtual machine is monitored by the informa-
tion flow risk monitoring module between tenants.

¯ shows that the legitimate sharing of information between
tenants is also monitored by the information flow risk moni-
toring module between tenants.

In the application of the information flow control strategy,
the security restriction of the entire information flow process
is realized by the transfer rule of security label. By intro-
ducing the minimization rule of the value domain of labels,
the flow of information conforms to the minimum privilege
principle. By introducing ‘‘and or’’ of the tag value field,
the principle of separation of authority and duty in data oper-
ation is realized. Through the introduction of label encryption
and declassification rules, the tenants can dynamically con-
trol the flow of their own information flow, and thus jointly
formulate information flow policies and the share security of
information flow among tenants in a convenient manner.

V. EXPERIMENTAL VERIFICATION AND SYSTEM
SECURITY ANALYSIS
A. ACCURACY VERIFICATION OF D_SNNBAR ALGORITHM
In this study, OpenStack-Ocata was used to build a cloud
platform. Three MSI GT63 physical machines were used for
conducting the experiments. The processor was Intel (R) core
(TM) i7-8750h @ 2.2GHz, six cores/twelve threads, mem-
ory was 32 GB, and hard disk capacity was 512GB solid
state + 1TB mechanical. An ubuntu 12.04 virtual machine
was selected for the cloud environment, and the minimum
instance of a single machine was used for deployment.
The experimental configuration of each virtual machine
was 1 CPU core, 512 MB memory, and 20 GB hard
disk capacity.

We created a control node controller and three calcula-
tion nodes, namely nova1, nova2, and nova3, for the test
platform.

1) PLATFORM CONSTRUCTION
To better reflect the identification of tenant boundaries after
the number of tenants and the number of virtual machines
change dynamically, the platform is constructed in the fol-
lowing two stages:

¬ Initialization: create five tenants and two users for each
tenant. On average, create three virtual machine instances
initially for each tenant to collect operation data.

VOLUME 8, 2020 162559

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

FIGURE 7. Method for tenants to jointly formulate information flow control strategy.

­ Change the number of tenants and virtual machines
dynamically: collect sample data multiple times by increas-
ing the number of tenants and virtual machines. The
dynamic change situation is as follows: add two tenants, add
two virtual machine instances for each tenant, and collect
sample data.

2) SAMPLE DATA COLLECTION
Through continuous monitoring of virtual machines in the
cloud platform, the resource statistics information of tenants
(e.g., by the command Nova usage list) and the detailed
information of virtual machines (the command Nova show
ID or name) can be obtained in OpenStack. In the com-
puting node, the log information of starting and running of
virtual machines can be obtained (e.g., by the command Nova
compute. Log).

Through the virtual machine monitoring platform, every
T = 5 minutes was recorded (including the log information
of all virtual machines), and eight consecutive records were
taken as a group of sample data for neural network learning.
The same items in the records were combined to get the
sample data, of which 80% in each experiment were training
data and 20% were test data.

3) EXPERIMENTAL VERIFICATION
The verification experiments of the D_SNNBAR algorithm
are divided into four parts: setting of the similarity thresh-
old ‘‘THsim’’ and the number of Gaussian receptive fields
‘‘n’’, verification of the algorithm’s recognition accuracy,
verification of the algorithm’s dynamic boundary recognition
accuracy, and verification of the algorithm’s efficiency.

¬ Setting of the similarity threshold ‘‘THsim’’ and the
number of Gaussian receptive fields ‘‘n’’.

A set of 1148 sample data was collected by the initial
platform. By calculating the accuracy rate (AR) and error rate
(ER), the similarity threshold and the number of the Gaussian
receptive field are determined. Under a certain similarity
threshold and Gaussian receptive field size, ‘‘T’’ is the result
recognized by the algorithm and ‘‘N’’ is the classification

result under the standard condition. The calculation formulas
of the two rates are as follows:

AR =|T ∩ N |
/
|N | ; that is, the ratio of the number of data

intersected by T and N to the total number of data in the
standard case;

ER =|T − (T ∩ N)|/
|N |; that is, the proportion of data

with incorrect identification.
The experimental process is as follows:
a. Similarity threshold ‘‘THsim’’: If the value of ‘‘THsim’’

is too large, the classification will be excessive and the
recognition accuracy will reduce. By contrast, if the value
of ‘‘THsim’’ is too small, the incorrect classification and
therefore the error rate will increase. It can be seen that
the size of ‘‘THsim’’ directly affects the accuracy of algo-
rithm classification. Therefore, in this experiment, the thresh-
old value was increased from 0.6 to 1 consecutively at an
increment of 0.01.
b. Gaussian receptive field ‘‘n’’: it represents the pulse

time range covered by the input neuron. If it is set too large,
too many pulses will be covered, which are not enough
to excite neurons; this reduces the accuracy of recognition.
By contrast, if n is too small, the neurons cannot be accurately
represented by pulses, thus increasing the recognition error
rate. Therefore, to determine the optimal size of the Gaussian
receptive field, ‘‘n’’ was increased from 1-16 consecutively
at an increment of 1 in the experiment.

At the value of each Gaussian receptive field, each thresh-
old was tested. The recognition accuracy and error rate vary
as shown in Figure 8.

Figure 8 and 9 indicate that when THsim = 0.83 and
n = 8, the accuracy rate reaches 0.983 and the error rate
reaches 0.007, and the algorithm recognition effect is the best.
Therefore, ‘‘n’’ and ‘‘THsim’’ for the subsequent experiments
were taken as 8 and 0.83, respectively.

­ Verification of the algorithm’s recognition accuracy.
On the basis of the sample data in ¬, two groups of

sample data, consisting of 1079 and 1247 data, were col-
lected. These three groups of sample data are tested by
‘‘rank order’’ [21], the pulse neural network learning algo-
rithm based on the precise time ‘‘only precise’’ [22], and the

162560 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

FIGURE 8. Accuracy rate of recognition under different number of
Gaussian receptive fields and similarity threshold values.

FIGURE 9. Error rate of recognition under different number of Gaussian
receptive fields and similarity threshold values.

FIGURE 10. Comparison of recognition accuracy rates of different
algorithms.

FIGURE 11. Comparison of recognition error rates of different algorithms.

proposed algorithm in this paper. Their recognition accuracy
rate and error rate are compared, and the results are shown in
Figures 10 and 11.

Figure 10 indicates that the recognition accuracy rate of
the D_SNNBAR algorithm for tenant boundaries is slightly
higher than that of the ‘‘only precise’’ algorithm and far
higher than that of the ‘‘rank order’’ algorithm. Figure 11

FIGURE 12. Comparison of dynamic recognition accuracy rate of
different algorithms.

FIGURE 13. Comparison of dynamic recognition error rates of different
algorithms.

indicates that the recognition error rate of the D_SNNBAR
algorithm is lower than those of the other two algorithms.
Thus, the proposed algorithm is confirmed to have high
recognition accuracy rate and low recognition error rate,
indicating its ability to accurately identify tenant boundaries.

®Verification of the algorithm’s dynamic boundary recog-
nition accuracy.

After varying the number of tenants and virtual machines
dynamically, the experimental data were collected continu-
ously and input into the network one by one. The continu-
ous recognition results of three groups of sample data were
counted. The accuracy rate and error rate comparison results
of dynamic recognition are shown in Figures 12 and 13.

Figures 12 and 13 indicate that the D_SNNBAR algorithm
has the ability to dynamically identify the tenant boundary
in the case of dynamic changes in the number of tenants and
virtual machines and canmore accurately realize the dynamic
update of the tenant boundary.

¯ Verification of the algorithm’s efficiency.
To verify the efficiency of the D_SNNBAR algorithm, the

execution time of the three algorithms in ­ is compared. The
comparison results are shown in Figure 14.

Figure 14 indicates that the D_SNNBAR algorithm has
superior efficiency compared to the other two algorithms, and
the processing time of data is far less than the time of data
collection. Thus, the algorithm can realize real-time updating
of tenant boundary identification.

Table 4 indicates the comparison of accuracy and time
consumption between the D_SNNBAR algorithm and the
other two algorithms in the above experiments.

VOLUME 8, 2020 162561

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

TABLE 4. Comparison of recognition performance of different algorithms.

FIGURE 14. Comparison of recognition efficiency of different algorithms.

4) CLASSIFICATION ACCURACY VERIFICATION UNDER
STANDARD DATASETS
To further verify the performance and accuracy of the algo-
rithm, this study conducted experiments using two standard
datasets from the UCI machine learning library [41]: the
‘‘IRIS’’ dataset and ‘‘Yeast’’ dataset.

First, the size of the Gaussian receptive field and the sim-
ilarity threshold in the two datasets were tested. The results
show that the classification effect is the best when the Gaus-
sian receptive field and similarity threshold are set to 6 and
0.85, respectively, in the ‘‘IRIS’’ dataset, and 12 and 0.86,
respectively, in the ‘‘Yeast’’ dataset.

On the basis of the above parameters, the classification
accuracy, error rate, and simulation time of the algorithm for
the two datasets are compared as shown in Table 5.

Table 5 indicates that the recognition accuracy of the
D_SNNBARR algorithm is better than the only precise and
rank order algorithms for the two standard datasets and has
high recognition accuracy. In addition, the running time of the
proposed algorithm is considerably less than that of the other
two algorithms. Figures 15-(a), (b), (c) intuitively show the
recognition effect of the three algorithms for the two datasets.

B. SECURITY ANALYSIS AND VERIFICATION OF THE
METHOD
1) SECURITY ANALYSIS
According to the basic concept of the noninterference the-
ory [42], secure information flow can be regarded as non-
interference of information flow between tenants and cloud
service programs and between tenants’ security domains;
that is, there are two domains in the system. If the infor-
mation flow in one domain does not destroy the system
output observed in the other domain, it is an indication of

FIGURE 15. (a). Comparison of recognition accuracy rates of different
algorithms for the standard datasets. (b). Comparison of recognition error
rates of different algorithms for the standard datasets. (c). Comparison of
recognition efficiency of different algorithms for the standard datasets.

no interference. The traditional noninterference theory [43]
can be applied to only the security policy environment with
the nature of transmission, which obviously does not meet
the security requirement of information flow between joint
tenants. Therefore, in this study, we choose the intransitive
noninterference theory based on the TA-safety model [44] to
prove the security of the system.

To confirm the non-interference of the system, we first
analyze the security of confidentiality and integrity of tenant
information flow, as follows:

162562 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

TABLE 5. Comparison of experimental results on standard datasets.

TABLE 6. Information flow control matrix.

To analyze the security of tenant data flow, first, the secu-
rity features of the Bell–La Padula (BLP) and Biba models
[23], [24], are introduced.

Security features of the BLP model: (a) simple security
feature: the necessary condition for s to read o is Lco 4 Lcs ;
(b) ‘‘∗’’ feature: the necessary condition for s to write o is
Lcs 4 Lco . The BLP model requires information to flow only
at the same level or from the low level to the high level.

Security features of the Biba model: (a) simple integrity
feature: the necessary condition for s to read o is Lis 4 Lio ;
(b) ‘‘∗ -’’ feature: the necessary condition for s to write o is
Lio 4 Lis . The Biba model mainly considers the integrity of
information, contrary to the BLP model.

Based on the above two models, we can get the data flow
security characteristics under the constraint of rule 2 accord-
ing to the definition of the label lattice partial order: (a) simple
security feature: the necessary condition for s to read o is
(Lcs 4 Lco) ∧ (Lis 4 Lio); (b) ‘‘∗ -’’ feature: the necessary
condition for s to write o is (Lcs 4 Lco) ∧ (Lio 4 Lis). The
information flow control matrix based on the label lattice
partial order is given, as shown in Table 6: (‘‘r’’ stands for
reading, ‘‘w’’ for writing, ‘‘rw’’ for reading and writing, and
‘‘No’’ for not executing; ‘‘LcH ’’ stands for high level con-
fidentiality label, ‘‘LcL ’’ stands for low level confidentiality
label, ‘‘LiH ’’ stands for high level integrity label, ‘‘LiL ’’ stands
for low level integrity label.)

Thus, all the situations in Table 6 are brought into the
security features of BLP and Biba models for verification,
it is confirmed that the flow of tenant information can meet
the confidentiality and integrity requirements simultaneously.

Next, the system noninterference is analyzed. For this pur-
pose, the elements involved in the system are defined in a
mathematical form:

Let system m be a finite automaton, which mainly consists
of the following components:

(a) M (D, 7→): cloud tenant sensitive information flow
security control system: D represents the security domain
in the system, D = {µ, ν, . . .}, where µ and ν represent

the tenant security domain identified by the tenant ID, and
‘‘7→’’ is the dynamic protection policy; (b) S: system state
set: S ={S0,. . . , Sn}, where S0 represents the initial state
of the system; (c) A: Tenant action set A = {r, w, rw}; d.
obsµ(si) : si × µ → O : obsµ(si): indicates the output
observed by domain µ in state si, and O represents the output
set; (e) step(S,A) : S × A → S: state transition function,
s · α represents the state of state s after dynamic sequence α,
meanwhile, s×ε = s, where ε is an empty sequence, s ·αa =
step(s · α, a); (f) dom(a): virtual domain corresponding to
action a; (g) valµ(s, n) : s × n → V : in virtual domain
µ, the value of resource named n in state s.

Next, the definition of TA function is given [44]: for system
M (D, 7→), ν ∈ D, function ta : A∗ 7→ T ({ε,A), the specific
definition is described as equation 18:

taυ (α · a)

=


ε, α · a is the empty sequence;
(taυ (α), tadom(a)(α), a), dom(a) 7→ υ;

taυ (α) , others.
(18)

According to the above definition, the judgment theorem
of TA-safety is described as follows:

If the systemM (D, 7→) satisfies the weak unwinding The-
orem about strategy ‘‘7→’’, then M (D, 7→) is TA safe about
strategy ‘‘7→’’. The weak unwinding needs to satisfy the
following three conditions:

(1) Output consistency (OC): if s ∼υ t , then obsυ(s) =
obsυ(t); (s ∼υ t: the equivalent states s and t in the represen-
tation domain υ)

(2) Weak single-step consistency (WSC): if (s ∼υ t) ∩
(s ∼dom(a) t), then s · a ∼υ t · a;

(3) Local compliance (LR): if dom(a)9ν, then s ∼υ s ·a.
Theorem 1: Tenant sensitive data dynamic protection sys-

tem M (D, 7→) is TA-safe about policy ‘‘7→’’.
For the proof of theorem 1, it is necessary to prove that the

weak unwinding of systemM (D, 7→) about policy ‘‘7→’’ sat-
isfies OC, WSC, and LR according to the judgment theorem
of TA-safety. The proof is as follows:

Suppose that the security labels in domain µ and domain
ν are Lcu , Liu and Lcν , Liν , respectively.

a: OUTPUT CONSISTENCY (OC)
¬ When (Lcµ 4 Lcν) ∧ (Liν 4 Liµ) is satisfied, it can be
seen from rule 2 that information I can flow from µ to ν.
By observing the tenant information flow control matrix
M, the following three situations exist: (a) When action
a = r, the information value before and after the read-only

VOLUME 8, 2020 162563

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

operation does not change, that is, valν(s, I) = valν(t, I).
Therefore, in the equivalent state (s ∼υ t), there must be
valν(s) = valν(t); (b) When a= w, according to the integrity
and confidentiality proof of tenant information flow, the con-
fidentiality and integrity security of the original data and the
new information before and after the information is written
are guaranteed. According to rules 3 and 1, the security
label will become stricter after writing and will not pose a
security threat to other data. Therefore, in the equivalent state,
valν(s) = valν(t) holds the same; (c). When a = rw, the con-
fidentiality and integrity of both sides of information flow are
the same, which will not change the access relationship of the
main body to the data in the tenant. Therefore, under s ∼υ t ,
valν(s) = valν(t) must hold.

­ When (Lcµ 4 Lcν) ∧ (Liu 4 Liν) or (Lcv 4
Lcµ) ∧ (Liv 4 Liµ) is satisfied, it can be seen from rule 2 that
information is not allowed to flow, because it will destroy the
integrity and confidentiality of information in the domain and
avoid the occurrence of interference behavior. For the inflow
and outflow operation without information in the system,
obsν(s) = obsν(t) must hold.
It can be seen that output consistency is satisfied

b: WEAK SINGLE-STEP CONSISTENCY (WSC)
According to the definition ofWSC, the proof ofWSC can be
transformed into the proof that the value of the same operation
a ∈ A performed on the data in state s ∼µ t is consistent;
that is, valµ(step(s, a)) = valµ(step(t, a)), and the analysis is
based on whether the operation domain of action a interferes
with domain µ.
When dom(a) 9 µ, dom(a) has no effect on domain

µ, because it will not change the value of data in domain
µ, nor the access relationship to data, so valµ(s,Data) =
valµ(t,Data) H⇒ valµ(step(s, a),Data) = valµ(step(t, a),
Data);
When dom(a) 7→ µ, in state s, operation a is performed

on the data, and the data value changes. According to the
information flow control matrix M, it can be seen that the
executed domain dom(a) performs w or rw operation on
domain µ.
a. When (Lcdom(a) 4 Lcµ) ∧ (Liµ 4 Lidom(a)) and action

a = w, according to rule 2, the execution of action a is
completed under the condition of ensuring the confidentiality
and integrity of domain µ. According to rules 3 and 1, after
the data is written to domain µ, LcData = LcData ∪ Lcµ and
LiData = LiData ∪ Liµ are obtained. It can be seen that the
security label policy of data becomes stricter, and the writing
of data will not change the access relationship of other data
in domain µ, that is, it will not change the value of original
data in domain µ.

Therefore, val(s,Data) = val(t,Data) ⇒ val(step(s, a),
Data) = val(step(t, a),Data) can be obtained from assump-
tion (s ∼µ t) ∩ (s ∼dom(a) t).
b. When (Lcdom(a) = Lcµ) ∧ (Liµ = Lidom(a)), according

to rules 2 and 3, the integrity and confidentiality of both
sides of data flow remain unchanged before and after data

flow; that is, the integrity and confidentiality of domain µ
will not change and will not affect the value of the original
data in domain µ. Therefore, in the equivalent states s and
t , after the completion of action, a, val(step(s, a),Data) =
val(step(t, a),Data).

It can be seen that WSC is satisfied.

c: LOCAL COMPLIANCE (LR)
According to the definition of LR, dom(a) 9 u⇒ obsu(s) =
obsu(step(s, a)). According to the tenant information flow
control matrix, action a is divided into three situations, which
are analyzed as follows:

When a= r, because the read-only operation is carried out
under the constraint of rule 2, the data of domain u will not
be disclosed, and the data value and label policy in domain u
have not changed before and after the execution of a, that is,
dom(a) 9 µ, obsu(s) = obsu(step(s, a)).

When a = w∨ rw, from the converse negative propo-
sition, it is proved whether obsu(s)6=obsu(step(s, a)) ⇒
dom(a)7−→µ is true or not. After action a is executed, the data
is written to domain u, and the amount of data and the security
label set of the domain uwill change, that is, valµ(s,Data) 6=
valµ(step(s, a),Data)⇒obsu(s)6=obsu(step(s, a)).Obviously
dom(a)7−→u is established, so dom(a) 9 u⇒obsu(s) =
obsu(step(s, a)) is established.

Therefore, LR is satisfied.
In conclusion, the proof of Theorem 1 shows that the

system M (D, 7→) is TA safe to the strategy, and the system
can ensure the security of tenant information flow without
interference.

2) SECURITY VERIFICATION
Experiments were conducted for the security verification of
tenant information flow control in DSCLoud, that is, for
testing tenant process level communication and network level
information flow control. The verification test consists of
three parts: ¬ the tests of label propagation and file opera-
tion’s information flow control in the virtual machine, ­ the
test of communication through the shared physical memory
between processes in the same virtual machine, ® the test
of process communication between virtual machines, and ¯
the test of system performance delay after adding security
measures.

Experiment environment: the virtual operating system was
Ubuntu 12.04, Linux kernel version 3.0.1, and the test virtual
machine was ‘‘Xen’’. The test was implemented on the exist-
ing LSM framework in Linux. The security control of tenant
information flow was programmed as a security module,
which can be loaded and executed dynamically in a Linux
kernel through the ‘‘mod_reg_security()’’ function [5], [45].

The related modules are realized as follows:
(1) Access to information
The virtual machine introspection (VMI) [46] is used to

obtain the information of the internal process, module, mem-
ory, and network interface of the virtual machine, and the
label information of the above objects is saved by creating

162564 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

the corresponding data structure. For example, to obtain the
current process and module information, the following pro-
cess classes are defined in the VMI module:

class process {
public:
uint32_t cr3; // Indicates the memory location of the

process
uint32_t pid; // Indicates the process identification num-

ber
char name[VMI_MAX_MODULE]; // Modules loaded

by the process
uint32_t level; // The security level of the process
unordered_map < uint32_t, module ∗ > module_list; //

The mapping table of the base address to the module pointer
};
(2) Label marking method
According to the control rules of information flow in the

system, label marking can be realized by adding security
labels with the security level on the processes and files.

In the experiment, 0× 0, 0× 1, 0× 2, and 0× 3 were used
to represent the security levels of security labels in increasing
order.

(3) Dynamic tracking of labels
To realize fine-grained label dynamic tracking at the

instruction level, tiny code generation (TCG) technology is
used to create a labeled global variable with the same size
for each global variable (general register and label register)
and the corresponding label dynamic tracking code is inserted
in the TCG code generation phase. For example, the label
of the global variable ‘‘eax’’ is ‘‘label_eax’’. If the data of
the level ‘‘0 × 1’’ is stored in ‘‘eax’’, ‘‘label_eax’’ saves the
value of the corresponding security level of ‘‘eax’’. If a certain
type of instruction (such as a move instruction, an arithmetic
instruction, or a logical operation instruction) generates infor-
mation flow propagation, a corresponding label propagation
instruction is inserted to track the label.

The experimental results are as follows:
¬ Test of label propagation and file operation’s informa-

tion flow control in the virtual machine:
The test files were named ‘‘public’’, ‘‘sensitive’’, and

‘‘secret’’, and the security levels of the security labels of
the files were set to 0 × 0, 0 × 1, and 0 × 2, respectively.
‘‘gedit’’ and ‘‘office’’ were used as the test programs, and the
security levels of the security labels were set to 0 × 1 and
0 × 3, respectively. ‘‘gedit’’ and ‘‘office’’ were used to try
to read these three files. The experimental results are shown
in Figure 16.

Figure 16 indicates that ‘‘gedit’’ could read the files ‘‘pub-
lic’’ and ‘‘sensitive’’, but could not open the file ‘‘secret’’, and
‘‘office’’ could read the file ‘‘secret’’. Thus, the experimental
expectation is met.

Propagation of security label: first, ‘‘office’’ read the file
‘‘secret’’ and then the file ‘‘public’’. Then, the file ‘‘public’’
was tried to open with ‘‘gedit’’; this reading result is shown
in Figure 17.

FIGURE 16. Information flow control of file operation by a process.
(a) Set security level for the security labels of files; (b) Reading results of
three files by ‘‘gedit’’; (c) Reading results of the file ‘‘secret’’ by ‘‘office’’.

FIGURE 17. Reading result of the file ‘‘public’’ by ‘‘gedit’’.

TABLE 7. Security level settings of the security labels of the programs.

Figure 17 indicates that ‘‘gedit’’ could not open the file
‘‘public’’, and this is because when ‘‘office’’ opened the file
‘‘secret’’ and then the file ‘‘public’’, the security level of the
file ‘‘public’’ was updated to 0 × 2. The result meets the
requirements of propagation rules of labels.

­ Test of communication through the shared physical
memory between processes in the same virtual machine:

The test programs used were ‘‘productor’’, ‘‘customerl’’,
and ‘‘customerh’’, and the security levels of the security
labels were set to 0 × 1, 0 × 0, and 0 × 1, respectively.

VOLUME 8, 2020 162565

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

TABLE 8. System performance test results.

FIGURE 18. Test results of communication between processes in the
same virtual machine. (a) Create shared information; (b) Normal
communication between programs ‘‘productor’’ and ‘‘customerh’’ through
shared memory; (c) Communication failure between programs
‘‘productor’’ and ‘‘customerl’’.

‘‘productor’’ was used to send messages to ‘‘customerh’’ and
‘‘customerl’’. The test results are shown in Figure 18.

Figure 18 indicates that ‘‘productor’’ and ‘‘customerh’’
with the same security level could communicate normally,
while ‘‘productor’’ and ‘‘customerl’’ with different security
levels could not communicate; this meets the experiment
expectation.

® Test of process communication between virtual
machines:

We configured two virtual machines ‘‘ubuntu’’ and
‘‘ubuntu2’’, with system IPs 16.16.32.4 and 16.16.32.5,
respectively. The programs ‘‘serverh’’ and ‘‘serverl’’ ran in
‘‘ubuntu’’, while the programs ‘‘clienth’’ and ‘‘clientl’’ ran in
‘‘ubuntu2’’. The security level settings of the security label of
the programs are shown in Table 7.

The settings of the transfer file were the same as those
in experiment ¬. In the experiment, we used ‘‘clientl’’ to
connect with ‘‘server’’ to receive the files ‘‘sensitive’’ and

FIGURE 19. Test results of communication between virtual machines.
(a) Result of communication between ‘‘clientl’’ and ‘‘serverl‘‘; (b),
(c) Result of communication between ‘‘clienth’’ and ‘‘serverh‘‘.

‘‘secret’’ from the ftp server and used ‘‘clienth’’ to connect
with ‘‘serverh’’ to receive the files ‘‘public’’, ‘‘sensitive’’, and
‘‘secret’’ from the ftp server. The experimental results are
shown in Figure 19.

Figure 19 indicates that ‘‘server’’ failed to transfer the files
‘‘sensitive’’ and ‘‘secret’’ to ‘‘clientl’’, whereas ‘‘clienth’’
and ‘‘serverh’’ successfully transferred the files ‘‘public’’,
‘‘sensitive’’, and ‘‘secret’’. This meets the experiment expec-
tation. This result can be attributed to the fact that under the
constraints of the information flow control rules, when two
virtual machines communicate with each other, they cannot
send the data of a high security level to the process of a low
security level.

¯ Test of system performance delay
To test the effect of adding the security measures on the

actual performance of the system, this study tested the sys-
tem startup time, program startup time, file opening time,
keyboard input response time, and network data transmission

162566 VOLUME 8, 2020

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

time between the original Linux system and the present sys-
tem. The results are shown in Table 8.

The table 8 shows that the security measures delayed
the operation performance of the system by an average
of approximately 3.0%. The security measures showed the
greatest effect on the performance of the startup program
(from inputting ‘‘gedit’’ on the command line till the pro-
gram starts and displays) and file opening (from enter-
ing ‘‘gedit file path’’ on the command line till the file
is opened and displayed),whereas they had no effect on
the operation of the system. In summary, the performance
delay of the system after adding security measures can be
ignored.

VI. CONCLUSION
By analyzing the characteristics of the cloud environment
and the security requirements of sensitive information flow of
cloud tenants, a dynamic control method for tenants’ sensitive
information flow based on virtual boundary recognition was
proposed. First, an automatic recognition algorithm of tenant
virtual boundaries based on the dynamic spiking neural net-
work was designed. Based on the analysis of tenant behav-
ior and operation log, the feature vector of tenant behavior
was constructed. Through the learning and training of the
neural network, the automatic recognition of tenants’ virtual
security boundary was realized, which provides the basis for
the security control of tenants’ sensitive information flow.
By implementing a dynamic control method for sensitive
information flow of cloud tenants, the security strategy of
tenant information flow was formulated, and security labels
were used to track and control the tenant information flow
inside and outside the boundary in order to realize the ten-
ant’s independent control of the information flow within the
boundary as well as the dynamic control and security sharing
of information flow between tenants. Based on the identifica-
tion n of tenants’ virtual security boundaries and the security
control of information flow, a dynamic security control appli-
cation system for sensitive information flow was constructed.
Finally, a cloud platform was built using OpenStack and
sample data were collected for experiments. The accuracy
of the recognition algorithm was verified, and the safety and
effectiveness of the systemwere confirmed by the intransitive
noninterference theory and the experiment of information
flow control. In the future work, we hope to achieve higher
accuracy and efficiency in boundary recognition. So, we will
further optimize the ‘‘D_SNNBAR’’ algorithm and build a
more complete dataset. In addition, we will complete the
overall implementation of the ‘‘DSCloud’’ system to achieve
better application.

REFERENCES
[1] A. Lele, ‘‘Cloud computing,’’ inDisruptive Technologies for the Militaries

and Security, vol. 132. Singapore: Springer, 2019, pp. 167–185.
[2] A. Cook, M. Robinson, M. A. Ferrag, L. A. Maglaras, Y. He, K. Jones,

and H. Janicke, ‘‘Internet of cloud: Security and privacy issues,’’ in Cloud
Computing for Optimization: Foundations, Applications, and Challenges.
Berlin, Germany: Springer, 2018, pp. 271–301.

[3] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain, ‘‘Cloud computing
features, issues, and challenges: A big picture,’’ in Proc. Int. Conf. Comput.
Intell. Netw., Bhubaneshwar, India, Jan. 2015, pp. 116–123.

[4] M. K.Walia, M. N. Halgamuge, N. D. Hettikankanamage, and C. Bellamy,
‘‘Cloud computing security issues of sensitive data,’’ in Handbook of
Research on the IoT, Cloud Computing, and Wireless Network Optimiza-
tion. Hershey, PA, USA: IGI Global, 2019, pp. 60–84.

[5] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman,
‘‘Linux security modules: General security support for the Linux kernel,’’
in Proc. 11th USENIX Secur. Symp., Los Alamitos, CA, USA, Aug. 2002,
pp. 17–31, doi: 10.1109/FITS.2003.1264934.

[6] H. Zhou, H. Ba, Y. Wang, Z. Wang, J. Ma, Y. Li, and H. Qiao, ‘‘Tenant-
oriented monitoring for customized security services in the cloud,’’ Sym-
metry, vol. 11, no. 2, p. 252, Feb. 2019.

[7] B. Medeiros, M. Simplicio, and E. R. Andrade, ‘‘Designing and assessing
multi-tenant isolation strategies for cloud networks,’’ in Proc. 22nd Conf.
Innov. Clouds, Internet Netw. Workshops (ICIN), Paris, France, Feb. 2019,
pp. 214–221.

[8] Y. Shi, Y. Guo, J. Q. Liu, Z. Han, W. Ma, and L. Chang, ‘‘Trusted cloud
tenant separation mechanism supporting transparency,’’ (in Chinese),
J. Softw., vol. 27, no. 6, pp. 1538–1548, 2016.

[9] Y. Hu, ‘‘Research on multi-tenant scalable network in cloud data center,’’
(in Chinese), Nat. Univ. Defense Technol., Changsha, China, Tech. Rep.,
2014.

[10] J. Kinoshita, K. Maeda, H. Yabusaki, K. Akune, and N. Komoda, ‘‘Real-
ization of VXLAN gateway-based data center network virtualization,’’ in
Proc. 5th IIAI Int. Congr. Adv. Appl. Informat. (IIAI-AAI), Kumamoto,
Japan, Jul. 2016, pp. 884–887, doi: 10.1109/IIAI-AAI.2016.121.

[11] K. Salah, J.M.A. Calero, S. Zeadally, S. Al-Mulla, andM.Alzaabi, ‘‘Using
cloud computing to implement a security overlay network,’’ IEEE Secur.
Privacy, vol. 11, no. 1, pp. 44–53, Jun. 2012, doi: 10.1109/MSP.2012.88.

[12] V. Patil, C. Patil, and R. N. Awale, ‘‘Security challenges in software
defined network and their solutions,’’ in Proc. 8th Int. Conf. Comput.,
Commun. Netw. Technol. (ICCCNT), Delhi, India, Dec. 2017, pp. 1–5, doi:
10.1109/ICCCNT.2017.8203978.

[13] S. Papavassiliou, ‘‘Software defined networking (SDN) and network func-
tion virtualization (NFV),’’ Future Internet, vol. 12, no. 1, p. 7, Jan. 2020.

[14] K. Chandra, ‘‘Software-as-a-service (SaaS),’’ in Encyclopedia of Database
Systems. Berlin, Germany: Springer, 2017, pp. 1–2.

[15] M. Li, ‘‘Research and implementation of data isolation mode customiza-
tion system for SaaS multi-tenants,’’ Southwest Jiaotong Univ., Chengdu,
China, Tech. Rep., 2018.

[16] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, ‘‘TTSA: An effective
scheduling approach for delay bounded tasks in hybrid clouds,’’ IEEE
Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov. 2017.

[17] H. Yuan, J. Bi, M. Zhou, and K. Sedraoui, ‘‘WARM: Workload-aware
multi-application task scheduling for revenue maximization in SDN-based
cloud data center,’’ IEEE Access, vol. 6, pp. 645–657, 2017.

[18] L.-C. Jiao, S.-Y. Yang, F. Liu, S.-G. Wang, and Z. X. Feng, ‘‘Seventy years
beyond neural networks: Retrospect and prospect,’’ (in Chinese), Chin. J.
Comput., vol. 39, no. 8, pp. 1697–1717, 2016.

[19] S. Chen, ‘‘Research and application of dynamic and self-adaptive model
based on spiking neural network,’’ Univ. Electron. Sci. Technol. China,
Chengdu, Chain, Tech. Rep., 2018.

[20] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, ‘‘Dynamic evolving
spiking neural networks for on-line spatio- and spectro-temporal pat-
tern recognition,’’ Neural Netw., vol. 41, pp. 188–201, May 2013, doi:
10.1016/j.neunet.2012.11.014.

[21] S. Thorpe and J. Gautrais, ‘‘Rank order coding,’’ in Proc. Conf. Comput.
Neurosci., Trends Res. New York, NY, USA: Plenum, 1998, pp. 113–118.

[22] J. Wang, A. Belatreche, L. P. Maguire, and T. M. McGinnity, ‘‘SpikeTemp:
An enhanced rank-order-based learning approach for spiking neural net-
works with adaptive structure,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 1, pp. 30–43, Jan. 2017, doi: 10.1109/TNNLS.2015.2501322.

[23] C.-S. Feng, Z. G. Qin, D. Yuan, and Y. Qing, ‘‘Key techniques of access
control for cloud computing,’’ (in Chinese), Acta Electron. Sinica, vol. 43,
no. 2, pp. 312–319, 2015.

[24] F. Cai, N. Zhu, J. He, P. Mu, W. Li, and Y. Yu, ‘‘Survey of access control
models and technologies for cloud computing,’’ Cluster Comput., vol. 22,
no. S3, pp. 6111–6122, May 2019.

[25] D. E. Denning, ‘‘A lattice model of secure information flow,’’
Commun. ACM, vol. 19, no. 5, pp. 236–243, May 1976, doi:
10.1145/360051.360056.

VOLUME 8, 2020 162567

http://dx.doi.org/10.1109/FITS.2003.1264934
http://dx.doi.org/10.1109/IIAI-AAI.2016.121
http://dx.doi.org/10.1109/MSP.2012.88
http://dx.doi.org/10.1109/ICCCNT.2017.8203978
http://dx.doi.org/10.1016/j.neunet.2012.11.014
http://dx.doi.org/10.1109/TNNLS.2015.2501322
http://dx.doi.org/10.1145/360051.360056

X. Lu et al.: Dynamic Control Method for Tenants’ Sensitive Information Flow Based on Virtual Boundary Recognition

[26] A. C. Myers and B. Liskov, ‘‘A decentralized model for information flow
control,’’ ACM SIGOPS Oper. Syst. Rev., vol. 31, no. 5, pp. 129–142,
Dec. 1997, doi: 10.1145/269005.266669.

[27] S. Smalley, C. Vance, andW. Salamon, ‘‘Implementing SELinux as a Linux
security module,’’ NAI Labs Rep. 1, Dec. 2001, pp. 139–146, no. 43.

[28] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris, ‘‘Labels and event
processes in the asbestos operating system,’’ in Proc. 20th ACM Symp.
Oper. Syst. Princ. (SOSP), New York, NY, USA, 2005, pp. 17–30.

[29] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, ‘‘Making
information flow explicit in HiStar,’’ in Proc. 7th Symp. Oper. Syst. Design
Implement. Berkeley, CA, USA: USENIX, 2006, pp. 263–278.

[30] M. Krohn and E. Tromer, ‘‘Noninterference for a practical DIFC-based
operating system,’’ in Proc. 30th IEEE Symp. Secur. Privacy, Berkeley,
CA, USA, May 2009, pp. 61–76.

[31] N. Adwait, B. Andow, W. Enck, and S. Jha, ‘‘Practical DIFC enforcement
on Android,’’ in Proc. Conf 25th USENIX Secur. Symp. (USENIX Secur.),
2016, pp. 1119–1136.

[32] Z. Wu, X. Chen, Z. Yang, and X. Du, ‘‘Reducing security risks of sus-
picious data and codes through a novel dynamic defense model,’’ IEEE
Trans. Inf. Forensics Security, vol. 14, no. 9, pp. 2427–2440, Sep. 2019.

[33] V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, and
A. D. Keromytis, ‘‘CloudFence: Data flow tracking as a cloud service,’’ in
Research in Attacks, Intrusions, and Defenses. Berlin, Germany: Springer,
2013, pp. 411–431.

[34] T. F. J. M. Pasquier, J. Bacon, and D. Eyers, ‘‘FlowK: Information flow
control for the cloud,’’ inProc. IEEE 6th Int. Conf. Cloud Comput. Technol.
Sci., Singapore, Dec. 2014, pp. 70–77.

[35] T. F. J. M. Pasquier, J. Bacon, and B. Shand, ‘‘FlowR: Aspect oriented
programming for information flow control in ruby,’’ in Proc 13th Int. Conf.
Modularity, New York, NY, USA, 2014, pp. 37–48.

[36] C. Priebe, D.Muthukumaran, D. O’Keeffe, D. Eyers, B. Shand, R. Kapitza,
and P. Pietzuch, ‘‘CloudSafetyNet: Detecting data leakage between cloud
tenants,’’ inProc 6th Ed. ACMWorkshop Cloud Comput. Secur., NewYork,
NY, USA: 2014, pp. 117–128.

[37] Z.-Z. Wu, X.-Y. Chen, and X.-H. Du, ‘‘Enhancing sensitive data security
based-on double-layer information flow controlling in the cloud,’’ Acta
Electron. Sinica, vol. 46, no. 9, pp. 2245–2250, Sep. 2018.

[38] T. F. J.-M. Pasquier, J. Singh, and J. Bacon, ‘‘Clouds of things need
information flow control with hardware roots of trust,’’ in Proc. IEEE
7th Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), Vancouver, BC,
Canada, Nov. 2015, pp. 467–470.

[39] C. Lü, G. Qian, and T. Chen, ‘‘A cloud computing security model based on
noninterference,’’Wuhan Univ. J. Natural Sci., vol. 24, no. 3, pp. 194–200,
Jun. 2019.

[40] W. Ma, H. Li, and D. Witarsyah, ‘‘A cloud computing separation model
based on information flow,’’ Open Phys., vol. 17, no. 1, pp. 128–134,
Apr. 2019.

[41] A. Asuncion and D. J. Newman. (Mar. 20, 2018). UCI Machine
Learning Repository[OL]. [Online]. Available: http://www.ics.uci.
edu/~mlearn/MLRepository.html

[42] C.-D. Lv, ‘‘Research on information flow security of cloud computing
based on noninterference models,’’ (in Chinese), Beijing Jiaotong Univ.,
Beijing, Chain, Tech. Rep., 2016.

[43] J. A. Goguen and J.Meseguer, ‘‘Inference control and unwinding,’’ inProc.
Symp. Secur. Privacy. Oakland, CA, USA: IEEE Computer Society, 1984,
pp. 75–86.

[44] R. Van Der Meyden, ‘‘What, indeed, is intransitive noninterference?’’ in
Computer Security. Berlin, Germany: Springer-Verlag, 2007, pp. 235–250.

[45] L.-Y. Tian, X. Rong, and T. T. Liu, ‘‘Design and implementation of Linux
file mandatory access control,’’ in Proc. Int. Conf. Netw. Comput. Inf.
Secur. Berlin, Germany: Springer, 2012, pp. 15–22, doi: 10.1007/978-3-
642-35211-9_3.

[46] H. W. Baek, A. Srivastava, and J. V. D. Merwe, ‘‘CloudVMI: Virtual
machine introspection as a cloud service,’’ in Proc. IEEE Int. Conf. Cloud
Eng. (ICE), Mar. 2014, pp. 153–158.

XIN LU received the B.S. degree from the
Zhengzhou Science and Technology Institute,
Zhengzhou, China, in 2017, where he is currently
pursuing the M.S. degree. His research interests
include information security and cloud computing
security.

LIFENG CAO received the Ph.D. degree from
the Zhengzhou Science and Technology Institute,
Zhengzhou, China, in 2013. He is currently an
Associate Professor with the Zhengzhou Science
and Technology Institute. His research interests
include network security and information security.

XUEHUI DU received the Ph.D. degree from
the Zhengzhou Science and Technology Institute,
Zhengzhou, China, in 2012. She is currently a Pro-
fessor with the Zhengzhou Science and Technol-
ogy Institute. Her research interests include cloud
computing and big data security.

162568 VOLUME 8, 2020

http://dx.doi.org/10.1145/269005.266669
http://dx.doi.org/10.1007/978-3-642-35211-9_3
http://dx.doi.org/10.1007/978-3-642-35211-9_3

