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ABSTRACT Cast resin medium voltage instrument transformer are highly used because of several benefits
over other type of transformers. Nevertheless, the high operating temperatures affects their performance and
durability. It is important to forecast the hot spots in the transformer. The aim of this study is to develop
a model based on Artificial Neural Networks (ANN) theory to be able to forecast the temperature in seven
points, taking into account twenty-six input data of transformer design features. 792 simulations were carried
out in COMSOL Multiphysicsr to emulate the heat transfer in the transformer. The data obtained were
used to train 1110 ANN with different number of neurons and hidden layers. The ANN with the best
performance (R = 1, MSE = 0.003455) has three hidden layers with 10, 9 and 9 neurons respectively.
The ANN predictions were validated with finite element simulations and laboratory thermal tests which
present similar patterns. With this accuracy in the prediction of hot-spot temperature, this ANN can be used
to optimize the design of instrument transformers.

INDEX TERMS Artificial neural networks, resin-cast instrument transformer, epoxy resins, finite element
analysis, hot-spot temperature.

I. INTRODUCTION
Instrument transformers are important assets, used through-
out the transmission and distribution networks for monitoring
voltages and currents [1]. Dry-type instrument transformers
made of cast resin are highly suitable over oil isolated trans-
formers in many operations due to several advantages such
as mechanical and dielectric properties, heat resistance, non-
flammability, etc. [2], [3]. They are also extensively used in
commercial and industrial settings [4]. However, the low ther-
mal conductivity in dry-type instrument transformers results
in high operating temperatures, directly influencing their per-
formance and service life [2], [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramakrishnan Srinivasan .

Figure 1 illustrates the construction of a cast resin dry-type
medium voltage instrument transformer manufactured for
indoor service. The windings are manufactured with double
enamel copper wires; the core is built of silicon steel and the
lamination is of grain-oriented type with high permeability
and low losses; the core and windings are encapsulated in
epoxy resin that provides excellent dielectric properties and
mechanical resistance [6].

Manufacturers usually design dry-type instrument trans-
formers to operate at ambient temperature with permanent
loading capacity [4]. However, external temperature instabil-
ity, electrical characteristics, resin property and degradation
of the transformer internal insulation can lead to undesirable
thermal performance [3].

Over the years, several research works have been pre-
viously carried out to study the temperature distribution
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FIGURE 1. Radiographic image of a Dry-type medium voltage instrument
transformer for indoor service. (a) Transformer transverse view.
(b) Transformer front view.

and hot spots in transformers. Heat transfer phenomena in
the transformer involve thermal conduction, convection, and
radiation; hence, a very complicated theoretical equation set
is necessary to predict the temperature in transformers [3].
There are several research works reported in the literature
regarding temperature in transformers, such as equivalent
circuit [7]–[9], finite element analysis-based modeling and
simulations [10]–[12], and experimental works [13]–[15].
However, the operational properties of each transformer are
subject to its geometry, materials, electrical characteristics,
etc.

In [16], the authors proposed a method to forecast the
temperature of hot spots in oil-immersed transformer wind-
ings; it includes an ANN with only one hidden layer and a
value of R very close to one; this ANN is used to predict
the transformer temperature in different hot spots. In our
work, we are considering a dry-type instrument transformer
to forecast its hot spots, not only in windings but also in
core and internal insulation of transformer taking into account
environmental conditions for ANN training, and we have
done lab studies with a transformer prototype manufactured
for this purpose. Moreover, to be able to find the ANN with
the best performance, our search algorithm creates ANNs
with one to three hidden layers, and a sensitivity analysis was
carried out to identify the influence of input variables in the
model.

Artificial Neural Networks (ANNs) have been applied
for modeling and analyzing different type of systems. The
usage of an ANN for modeling transformers has advantages
over some other techniques. For example, ANNs can han-
dle several input and output variables of the system that is
being modeled. In addition, highly complex classification
problems can be solved with the study of heat transfer in a
very efficient manner and in less processing time to provide a
feasible solution to the problem. It is achieved because ANNs
can separate non-linear decision regions as complicated as
desired depending on the number of neurons and layers with
a simple structure. Taking into account these advantages,
it was decided to use ANN theory in this study because it
allows the construction, modification and representation of

complex models without the need of advanced mathematical
modeling, and the results can be ideal for the study and/or
design of transformers.

No paper has been published that uses an ANN to forecast
temperatures and hot spot in a dry-type instrument trans-
former considering all possible combinations of geomet-
ric, electrical and mechanical design variables, as a result,
this article describes a procedure for configuring a thermal
model in cast resin dry-type medium voltage instrument
transformers using ANNs. Therefore, the main contribution
of this research is the methodology for obtaining ANNs with
a high performance for predicting the maximum tempera-
ture in the low and high voltage winding, core, transformer
body (epoxy resin), insulation between high and low voltage
(paper), as well as the boundary between the transformer
body and the environment. The ANN model can be used to
study the temperature distribution, and hot spots, providing
a tool that can help in designing medium voltage instrument
transformers.

The results of this methodology based on ANN are vali-
dated by comparing them with finite element simulations and
laboratory tests carried out on a prototype built especially
for this research. The ANN model is accurate and efficient
enough for practical application at the design stage. Figure 2
shows a flowchart of the methodology used for this research
work, from the design of the transformer until the ANN
validation.

FIGURE 2. Flowchart of the methodology applied in this research work.

The rest of this article is structured in the following
order. Firstly, the structure of a cast resin dry-type medium
voltage instrument transformer is described in section II.
Section III presents the thermal models governing the temper-
ature behavior in transformers. In section IV, the heat sources
of this type of transformers are identified. SectionV describes
the modeling process for transformers through finite element
method (FEM). The process to obtain the ANN with the best
performance is presented in section VI. Then, section VII
shows the validation of the ANN in a physical model. Finally,
section VIII concludes the paper.

II. THE TRANSFORMER GEOMETRY
The geometry of cast resin dry-type medium voltage instru-
ment transformer patented in [6], was manufactured for this
research work. The geometrical arrangement of the trans-
former under study is shown in Figure 3. The magnetic core
is made up of magnetic laminations of silicon steel forming
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a cross-section block, the primary and secondary windings
are insulated with dielectric cardboard sheets. The secondary
winding is placed over a magnetic core, while the primary
winding is placed over the secondary winding. The insulation
between high and low voltage windings is diamond-dotter
paper and the core and the windings are encapsulated with
epoxy resin [6].

FIGURE 3. Geometric detail of the Dry-type medium voltage instrument
transformer for indoor service. (a) Front Cut. (b) transversal cut.

By taking into account the geometric dimensions obtained
from the transformer design calculation algorithm, maxi-
mum temperatures can be more accurately predicted. In this
research work, the three-dimensional (3D) geometry of the
transformer is considered. Additionally, a simple and easy-to-
operate parametric design is carried out to adapt the geometri-
cal characteristic of the components of the transformer under
study. Figure 4 shows the block diagram of the paramet-
ric design system developed. The parameterization process
includes the extraction of geometric variables and parameters
from the transformer calculation algorithm.

Parametric design is the basis for creating mathematical
and geometric relationships that allows the deriving of auto-
mated process variables and parameters. The parameters and
initial variables (electrical, magnetic, mechanical, geometric
and environmental) will guide the generation of output vari-
ables (temperatures and hot spots in the transformer).

III. HEAT TRANSFER
The thermalmodels used to study the temperature distribution
and to know the hot spots in the transformer have been
analyzed and developed in multiple engineering disciplines,
such as electrical circuit theory, fluid dynamics, numerical
methods, electromagnetic theory, etc. Each thermal model
has its own applications. However, these thermal models have
one thing in common, which is the study of heat propaga-
tion. Radiation, convection, and conduction are considered
the fundamental pillars in the study of heat transfer in the
transformer [3], [17]; hence, a complex theoretical set of
equations is required to predict temperature [3].

FIGURE 4. Block diagram of the parametric design system.

The temperature distribution inside the cast resin dry-type
medium voltage instrument transformer manufactured for
indoor service (Figure 1) can be obtained by solving (1) -
(3), which are derived from the energy conservation law [18],
[19].

In this study, we consider radiation, convection, conduction
in steady state analysis to predict the temperature in the
instrument transformer. The initial temperature in the trans-
former body is considered to be the same as the environmental
temperature, and the heat convection and radiation, shown in
(2) and (3), are used as boundary conditions [11], [18], [19].
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In the stationary state, the term ∂T/∂t in equation (1) is
equal to zero; therefore, equation (1) can be expressed as
below [20]:

∇
2T(x,y,z) =

Q
k

(4)

where: k is the thermal conductivity (W/(m◦C)),Q is the heat
source (W/m3), ρ is the mass density (kg/m3), C is the spe-
cific heat (J/(kg◦C), T is the temperature (◦C), t is the time (s),
Qconv and Qrad are the rates of heat transfer per unit area on
the surface by convection and radiation (W/m2), respectively,
h is the convective heat transfer coefficient (W/(m2◦C), ε is
the emissivity of the surface, σ is Stefan-Boltzmann’s con-
stant (W/(m2 ◦C4)), α is the absorptivity, G is the irradiation
(W/m2), Ts is the surface temperature (◦C) and T∞ is the
environment temperature.

At the same time, natural convection occurs due to the
buoyancy forces caused by differences in fluid density due
to temperature variation. That is why the convective heat
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transfer coefficient h depends on the geometry of the trans-
former surface. In addition, thermal radiation is calculated
by differentiating the energy emitted on the surface of the
transformer (solid) from the energy incident on the surface
(ambient temperature). Emissivity and absorptivity in equa-
tion (3) are the surface properties determined according to
the geometry and material of the surface. However, the heat
sources described in equation (1), and equation (2) represent
uniform heating due to core losses and winding losses; the
heat generation per unit volume can also be obtained by
equation (5) [21], [22].

Q =
P
V

(5)

where: Q is the heat source (W/m3), P is the loss in the core
and in the windings (W), and V is the volume of the heat
source (m3).

IV. HEAT SOURCES IN THE TRANSFORMER
In dry-type medium voltage instrument transformers such as
the one illustrated in Figure 1, the primary and secondary
windings are made of copper; hence, they offer high thermal
conductivity [10].

In addition, once the transformer is energized and exposed
to environmental temperature, the energy losses in these com-
ponents (core and windings), and together with convection
and solar radiation from the atmosphere in the transformer
body, heat-generating sources are established inside and out-
side the transformer [23]–[25].

Figure 5 illustrates the heat sources inside the cast resin
dry-type medium voltage instrument transformer manufac-
tured for indoor service.

The energy losses in high voltage winding (equation (6))
and low voltage winding (equation (7)) can be obtained inde-
pendently considering the winding geometry, length, cross-
section resistance and resistivity of the conductive material
[26]. In addition, for a transformer, the sum of copper losses
can be obtained by equation (8) [27], [28].

Pcu1 = R1I21 = ρ1

(
l1
s1

)
I21 (6)

Pcu2 = R2I22 = ρ2

(
l2
s2

)
I22 (7)

Pcu =
n=2∑
i=1

Pcui (8)

where: Pcu1 are the primary winding losses (W), Pcu2 are
the secondary winding losses (W), Pcu represent the total
winding losses due to the Joule effect (W),R1 is the resistance
of the conductor material in the primary winding (�), R2
is the resistance of the conductor material in the secondary
winding (�), ρ1 is the resistivity of the conductor in the
primary winding (�.m), ρ2 is the resistivity of the conduc-
tor in the secondary winding (�.m), l1 is the length of the
conductor in the primary winding (m), l2 is the length of the
conductor in the secondary winding (m), S1 is the conductor

cross sectional area in the primary winding (m2), S2 is the
conductor cross sectional area in the secondary winding (m2),
I1 is the current in the primary winding (A), and I2 is the
current in the secondary winding (A). The core losses depend
on the material type (Silicon Steel, Amorphous, Crystalline
Nano, etc.), the frequency, material thickness and the flux
density at which it operates; these losses are given by equation
(9) [29], [30].

FIGURE 5. Sources of heat generated inside the instrument transformer
of medium voltage dry-type cast resin manufactured for indoor service.

Pc = kcBαf B (9)

where: Pc is the specific core losses (Watts/kg), B is the mag-
netic flux density (T), f is the frequency (Hz), the constant kc,
α, B, can be established from the datasheets of the material
manufacturer [30]. Moreover, the core losses are classically
composed of hysteresis losses and eddy current losses, which
can be expressed by equation (10).

PC = Ph + Pe = δhfB2 + δef 2B2 (10)

where: Ph are the hysteresis losses in the core (W), Pe are the
eddy current losses in the core (W), δh and δe are constants
which are material depend, and f is the frequency (Hz).

For this study, we use the loss curve at 60 Hz (reported
in [5], [31]) in the calculation algorithm of the transformer
design to determine the losses in the core.

Transformer losses can be expressed by equation (11) [3].

P = Pcu + PC (11)

where: P are the total losses of the transformer (W), Pcu is the
total winding losses due to the Joule effect (W) and PC is the
core losses (W).

V. MODELING THROUGH FINITE ELEMENT METHOD
During a stable electrical load in the medium voltage instru-
ment transformer (Figure 1), the internal losses (equation
11) and the heat generated by the environment (equations
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2 and 3) increase or decrease the transformer temperature. For
thermal analysis, a 3D model of the transformer geometry is
implemented and the temperature distribution and hot spots
are simulated.

The FEM is used to solve the equations of stable state
energy, i.e. equations (1) to (4) are solved, for obtaining
the thermal behavior of heat transfer and the hot spots in
the internal parts of the transformer and in the transformer
housing.

The FEM has some advantages in the modeling of complex
systems, such as modeling of complex geometries, bound-
ary conditions can be easily incorporated, different types
of materials can be incorporated into the modeling, each
domain of geometry can be applied elements of different
order, among others. However, it has some drawbacks, such
as a large amount of data is required as input to generate
the mesh, it depends on a nodal connectivity and parameters
depending on the type of problem, it requires a computer
of great capacity to give solution to the equations of each
node, among others. Notwithstanding the drawbacks, FEM
has features that helps in the modeling of dry-type instrument
transformers.

For the analysis, the heat transfer module of COMSOL
Multiphysicsr software was used. The software is based on
solving the heat transfer problem according to the param-
eters and variables defined in the instrument transformer
calculation algorithm. Moreover, the software internally per-
formed the matrix representation for each transformer ele-
ment, the formation of the global coefficient matrix, and the
application of the initial and boundary conditions to solve the
thermal problem [21].

By using a computer program implemented in COMSOL
Multiphysicsr, several simulations were carried out modify-
ing the electrical and geometric characteristics of the trans-
former.

Considering that transformers, like all electrical and elec-
tronic equipment, is constantly being modernized and that in
the industry transformers of different shapes, sizes, materials,
core configurations, dielectric distances, etc. are designed,
manufactured and marketed, and are subjected to different
environmental conditions, it was decided to take for this
investigation the primary input variables that are part of the
design requirement for an instrument transformer.

Table 1 shows the properties of the materials associated
with the 3D computational model of the transformer geome-
try [32], while Table 2 and Table 3 show the input and output
variables that are introduced into the proposed computational
program to provide a solution to the heat transfer model in
the instrument transformer.

According to statistics presented in [33] about the failure
location distribution, the major failure sources in transform-
ers come from the winding and core (>40%). In this article,
we are focused in seven variables related to temperature,
the maximum temperature in the internal parts of the trans-
former (Y1 to Y4), the maximum and minimum resin temper-
ature (Y5 and Y6, respectively), and themaximum temperature

in the contour of the transformer (Y7) that is in contact
with the atmosphere. These temperatures are correlated to
transformer features and environment temperature, grouped
in twenty-six variables described in Table 2. In addition,
the determination of Y7 is of great importance because they
can be estimated for the measurement of the ohmic resistance
in the thermal test of the transformer and, at the same time,
the maximum temperature rise in the primary and secondary
winding can be forecasted by using the method of resistance
variation.

In this article, 792 simulations were performed combining
the input parameters, whose ranges are shown in the third
column of Table 2. The materials are considered isotropic in
all simulations. In addition, copper was used in the windings
and silicon steel for the core, and the loss curve (60 Hz)
reported in [5] was also considered.

Figure 6 shows the tetrahedral mesh in all domains of the
transformer including the environment (2’693,508 tetrahe-
dral elements in all domains). Figure 7 shows some of the
results of the simulations obtained and the computer program
designed to automaticallymodify the electrical and geometric
characteristics of the transformer. It also visualizes the ther-
mal behaviors in a stable state with different environmental
temperatures.

FIGURE 6. Mesh density using tetrahedral elements in all domains of the
transformer including the environment to provide a solution to finite
element analysis and consequently to thermal behavior.

FIGURE 7. Distribution of the calculated temperature in the body of the
Medium Voltage Instrument Transformer and location of the hot spot at
different environmental temperatures.

Figures 8 and 9 show the block diagram and flowchart of
the computer program of the proposed methodology, respec-
tively. In these diagrams, the integration of the algorithm
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for calculating the design of the transformer, the parametric
design system and the 3D computational model of the geom-
etry of the transformer are shown. Moreover, the initial and
boundary conditions related to the environment are set in the
diagram. The data obtained after each iteration are stored in
a database, which was used to train the ANN.

TABLE 1. Properties of the materials [32].

TABLE 2. Input variables that are considered in the transformer
calculation algorithm and saved in the database.

TABLE 3. Output variables that are considered in the transformer
calculation algorithm and saved in the database.

VI. ARTIFICIAL NEURAL NETWORK DESIGN
Smart computing tools are powerful in monitoring, diag-
nosing and evaluating the life of transformers [34]. ANNs
are a branch of computer intelligence, consisting of a set of

computational units known as neurons that are highly inter-
connected in a specific topology. In addition, ANNs are able
to learn and have been successfully used in a wide spectrum
of applications [35].

Despite an ANN has some drawbacks, such as an unex-
plained behavior of the network, the identification of the cor-
rect structure, the hardware dependence, among others, it has
many advantages. ANNs can create models with incomplete
knowledge, are fault tolerant, have distributed memory and
parallel processing capability, among others.

In this section, the design of an ANN is presented. The
obtained ANN has the ability to predict the maximum tem-
perature in the components of the resin cast dry-type medium
voltage instrument transformer, manufactured for indoor ser-
vice.

The ANN design was developed using the Neural Net-
work Toolbox in MATLABr. A script was implemented for
searching the optimal configuration of neurons and hidden
layers to minimize the Mean Square Error (MSE) and obtain
a correlation curve (R) between input and output data.

The number of neurons (NN) per layer and the number
of hidden layers (HL) give the guideline to perform several
possible combinations in search of an optimized topology,
where the MSE should be near zero and R between the input
and output data should be close to one. It is important to note
that in a multi-layer perceptron topology all the layers are
connected to each other, as shown in Figure 10.

The input data used for the ANN design corresponds to
the variables and parameters of the transformer design repre-
sented in Table 1. This data and the results of the COMSOL
Multiphysicsr simulations were saved in a database and used
to train and validate the ANNs generated in Matlabr.

In order to have a wide spectrum of possibilities, in this
research work we have analyzed ANNs which contain one,
two or three hidden layers. Equation (12) was used to esti-
mate the number of all possible combinations for the ANN
configuration. Considering from one to ten the NN per each
HL, with one HL we have 10 possibilities, with two HLs
we get 100 ANNs, and so on. In this research work, a total
of 1110 ANNs were trained using three HLs as maximum.

The learning algorithm considered in the ANN design is
derived from the Least-Mean-Square (LMS), principle where
the MSE is determined as the result of the difference between
the target output and the network output (Equation 13) [16],
[36].

j =
HL∑
k=1

(NN )k (12)

MSE =
1
m

m∑
i=1

(ti − yi)2 (13)

The learning algorithm LMS has set of samples of the
desired behavior: {x1, t1}, {x2, t2}, . . . {xm, tm} where the aim
is to reduce the average sum of these errors; moreover,
the LMS algorithm environment sets the weight and bias of
the network to reduce the MSE [16], [36]; in this case, xm
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FIGURE 8. The block diagram proposed to generate the simulation results and stored in a database.

values are the network inputs, and tm values are the respective
targets. For every input in the net, the output is compared with
the target [36].

The training process of the ANN starts with random
weights, which are adjusted iteratively to reduce the MSE.
The set of weights that minimize the error function is con-
sidered a solution to the system that represents the ANN
[36]. Figure 11 shows the flowchart of the algorithm devel-
oped in MATLAB to implement the thermal behavior of the
instrument transformer; and Figure 12 shows the obtained
ANN, considering the twenty-six input variables and the

seven output variables shown in Table 1 and Table 2. The
size of the database consists of 792 simulations based on the
FEM, that is, 792 records obtained from the same number
of simulations. The inputs and outputs of these simulations
were used to build the database used for the ANNs training.
There was not necessary to normalize these data for the ANN
training process due to the obtained ANNs showed a good
performance from the original range of values. The config-
uration for the ANN with the best performance is (10:9:9),
i.e., ten neurons in the first hidden layer and nine neurons in
the second and the third ones.
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FIGURE 9. Flowchart of the proposed computational program to generate
and save the simulation results.

The input data used to obtain the ANNs were divided into
three groups: training data set (70%), verification data set
(15%) and validation data set (15%). The sigmoid function is
used in all layers to update weight and bias values according
to Levenberg-Marquardt backpropagation algorithm. This

FIGURE 10. Multi-layer perceptron topology of ANN implemented for
temperature study of cast-resin transformer.

function has been utilized widely in several applications of
ANNs because of its effectiveness and rapidness in the back-
propagation algorithm. On the other hand, a linear function is
used in the output layer.

The results of ANN training are shown in Figures 13 and
14. Figure 13 shows the performance of the ANN training
process with a MSE of 0.003455 in 1000 epochs. Figure 14
shows the correlation between the ANN outputs and the data
used as targets, R= 1 proves the linearity of the RNA model.

The values predicted by the best qualified ANN for output
variables were compared against the values obtained from
COMSOL Multiphysicsr. Figures 15 to 21 show the corre-
lation between these values. It can be observed, in a graphical
way, that the ANN predicts the temperature values of the
seven variables of interest very close to those obtained by sim-
ulation. This fact is a good evidence that ANNs can be used to
forecast the temperature behavior in transformers with high
certainty. Table 4 shows the MSE for each value obtained
from the ANN. Due to the high range of possibilities in
transformer design with respect to its inputs, the temperatures
were plotted with regard to the volume of each transformer
component (Figure 15 to Figure 20) and superficially with
regard to the boundary between the transformer body and the
environment (Figure 21)

TABLE 4. MSE between the values calculated in COMSOL Multiphysicsr
and the values obtained from the ANN for each output variable.

A. SENSITIVITY ANALYSIS OF THE INPUT-OUTPUT EFFECT
A sensitivity analysis was carried out in order to verify
the impact of each input variable in the ANN model. First,
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FIGURE 11. Flowchart developed for the search of ANN that models the
thermal behavior of the instrument transformer.

we calculate theMSE with all the input variables. After that,
we predict the output values omitting one input variable,
then we obtain the corresponding MSE. This step is repeated
for each input variable to determine its respective MSEi.
Equation 14 is used to calculate the sensitivity of the model
for every input variable.

Si =
MSEi
MSE

(14)

where: Si: Sensitivity of the model to variable xi; MSEi:
MSE of predicted values without data for input variable xi;
MSE : is the mean square error of predicted values taking into
account all the input variables. Table 5 and Figure 22 show
the sensitivity value for each input variable. The bigger value

FIGURE 12. ANN structure that models the thermal behavior of the
instrument transformer utilizing the input and output variables given
in Tables 1 and 2.

FIGURE 13. Performance of the ANN training process that models the
thermal behavior of the instrument transformer.

Si the more impact has variable xi in the ANN model. In this
case, variable X15 (frequency) presents the highest value and,
in consequence, the highest impact in the model.

VII. EXPERIMENTAL VALIDATION
A physical model was manufactured in order to validate the
output data predicted by the ANN with the best performance.
A heating test was performed on a cast resin dry-typemedium
voltage instrument transformer manufactured for indoor ser-
vice with similar characteristics shown in Figure 1, Figure 3
and Table 1. The standards IEC 61869-1 and IEC 61869-
3 were followed during the heating tests. The instruments
used in the test were: an ac voltage variator, a reactor, mercury
thermometers, pyrometers and digital multimeters, as well as
a digital hydro thermometer clock and type J thermocouples
with fiberglass lining and stainless-steel mesh. Figure 23
shows the instrument transformer of cast resin medium volt-
age manufactured for indoor service at the time the heating
test is applied. The transformer was similar to those provided
for indoor service. Figure 24 shows the heating test diagram.
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FIGURE 14. Correlation values (R) between input and output data of the
ANN modeling the thermal behavior of the instrument transformer.

FIGURE 15. Maximum temperature variation according to the volume of
the primary winding.

However, being a cast resin transformer and lacking sen-
sors to measure the temperature inside the transformer,
the temperature between the resin (transformer body) and the
environment was taken into account for this research work.

The heating of the primary and secondary windings was
calculated by the resistance variation method, according to
standard IEC 61869-1 and IEC 61869-3 and the heating of
the other parts was measured by thermocouples.

On the other hand, the transformer was tested at 1.0, 1.2,
1.5, 1.7, and 1.9 times the nominal voltage of high-voltage
winding. In all the cases, stable thermal conditions were
achieved, i.e., stabilization was obtained when the temper-
ature difference of the thermocouples on the transformer
resin wall and the average temperatures with respect to the

FIGURE 16. Maximum temperature variation according to the volume of
the secondary winding.

FIGURE 17. Maximum temperature variation according to the volume of
the insulation between the primary and the secondary.

FIGURE 18. Maximum temperature variation according to the volume of
the magnetic core.

environment did not vary by 1◦C during three consecutive
readings in a 30-minute interval.

The used values of the resistors load in the secondary
winding was according to the heating power of the trans-
former. Once the temperature of the transformer was stabi-
lized, the hot ohmic resistance of the high voltage winding
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FIGURE 19. Maximum temperature variation according to the volume of
the transformer body.

FIGURE 20. Minimum temperature variation according to the volume of
the transformer body.

FIGURE 21. Maximum temperature variation according to the surface
between the transformer body and environment.

was firstly measured. After one hour, the temperature at the
low voltage winding was also measured.

Table 6 shows the input parameter values of the melt-resin
medium voltage instrument transformer to which the heating
test was applied.

TABLE 5. Sensitivity analysis results.

FIGURE 22. Sensitivity value and mse for each input variable.

Table 7 contains the results obtained during the laboratory
heating tests, as well as the temperature results obtained from
the ANN. It can be observed in Figure 25 that the maximum
temperature in the transformer primary (Y1) and secondary
winding (Y2) and the maximum contour temperature (Y7), all
of them obtained from the heating test, grows as magnetic
induction and core losses increase. Figure 26 shows a similar
behavior with data predicted by the ANN, with an increasing
tendency in the temperature. The closeness of the values
predicted by the ANN with the values obtained in the heating
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FIGURE 23. Instrument transformer during the heating test.

FIGURE 24. Test circuit for temperature measurement of instrument
transformers.

test is showed in Figure 27, where both data sets follows the
same pattern.

The values obtained from the heating test and the ANN
show a MSE of 2.71% taking into account all measured
values, therefore Y1 has a corresponding MSE of 3.13%, Y2
of 3.10% and Y7 of 1.90%.

Where:

A =
(
X1
X2

)
(1.0), B =

(
X1
X2

)
(1.2), C =

(
X1
X2

)
(1.5),

D =
(
X1
X2

)
(1.7), and E =

(
X1
X2

)
(1.9).

VIII. CONCLUSION
This article introduces a new approach to predict the tem-
perature of hot spots in the components of a cast resin dry-
type instrument transformer. It provides a reference point
for instrument transformer designers to identify the hot
spots in the different components of the transformer. This

TABLE 6. Input variables of the transformer under thermal test.

TABLE 7. Input variables of the transformer under thermal test.

FIGURE 25. Maximum temperature obtained from the heating test with
input variables indicated in Table 7.

approach starts with the transformer design by FEM; then,
data obtained in the previous step are stored in a database;
these values are used for training 1110 ANNs; finally,
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FIGURE 26. Maximum temperature obtained from the ANN with input
variables indicated in Table 7.

FIGURE 27. Maximum temperature obtained from the heating test and
the proposed ANN with input variables from Table 7.

the ANNs with the best performance were validated with the
data obtained from a physical model manufactured for this
purpose. This methodology is the main contribution of this
research article. The dependence of a lab and the transformer
manufacturing is the unique limitation in this proposal, but
with data obtained from simulations developed in COMSOL
the ANNs can be validated. The best ANN shows accurate
prediction with a MSE average of 2.71% with respect to the
thermal tests. With the use of a large number of inputs in
the design of the ANN in conjunction with the algorithm
implemented to vary the number of hidden layers and the
number of neurons for each hidden layer, we got an ANN
with good performance (mean quadratic error = 0.003455)
and a great correlation in the input/output data (R = 1). The
variation of temperatures obtained from finite element sim-
ulations and those obtained from the ANN are very similar,
and there is also a similarity pattern that depends on the volu-

metric and superficial dimensioning of each component of the
transformer. Moreover, a transformer was manufactured in a
laboratory of Arteche North America S.A. de C.V. in order to
validate the results produced by the ANN, obtaining a MSE
equal to 2.71%.With the results of this researchwork, the best
ANN can be used together with optimization techniques to
improve the efficiency and reliability of dry-type instrument
transformers. As future work, this ANN will be used as the
fitness function in an evolutionary algorithm to optimize the
design of transformers.

APPENDIX
Nomenclature

3D Three-dimension
ANN Artificial Neural Networks
FEM Finite Element Method
HL Hidden layers
LMS Least-Mean-Square
MSE Mean Square Error
NN Neurons per layer
ε Emissivity of the surface (dimensionless quantity)
σ Stefan Boltzmann’s constant (W/(m2 ◦C4))
α Absorptivity of the surface (dimensionless

quantity)
C Specific heat (J/(kg ◦C)
f Frequency (Hz)
H Convective heat transfer coefficient (W/(m2 ◦C)
I1 Current in the primary winding (A)
I2 Current in the secondary winding (A)
k Thermal conductivity (W/(m ◦C))
l1 Length of the primary winding conductor (m)
l2 Length of the secondary winding conductor (m)
MSEi Mean Square Error of predicted values without

data for input variable Xi
P Total losses of the transformer (W)
Pc Total core losses (Watts/kg)
Pcu Total winding losses due to the Joule effect (W)
Pcu1 Primary winding losses (W)
Pcu2 Secondary winding losses (W)
Pe Eddy current losses in the core (W)
Ph Hysteresis losses in the core (W)
Q Heat source (W/m3)
Qconv Heat transfer source per convection (W/m2)
Qrad Heat transfer source per radiation (W/m2)
R Correlation between input and output data
R1 Resistance of the primary winding conductor (�)
R2 Resistance of the secondary winding conductor

(�)
S1 Conductor cross sectional area in the primary

winding (m2)
S2 Conductor cross sectional area in the secondary

winding (m2)
Si Sensitivity of the model to variable Xi
T Temperature (◦C)
t Time (s)
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T∞ Environment temperature (◦C)
tm Network targets
Ts Surface temperature (◦C)
V Volume of the heat source (m3)
Xm Network inputs for m = 1,2,. . . ,26
B Flux density (T)
δe, δh Constant depending on the type of core material
ρ Mass density (kg/m3)
ρ1 Resistivity of the conductor in the primary

winding (�.m)
ρ2 Resistivity of the conductor in the secondary

winding (�.m)
X1 Primary voltage (V)
X2 Secondary voltage (V)
X3 Number of primary turns
X4 Number of secondary turns
X5 Primary winding inner diameter (mm)
X6 Primary winding outer diameter (mm)
X7 Secondary winding inner diameter (mm)
X8 Secondary winding outer diameter (mm)
X9 Primary winding height (mm)
X10 Secondary winding height (mm)
X11 Primary winding layers
X12 Turns per layer in the primary winding
X13 Primary wire (AWG)
X14 Secondary wire (AWG)
X15 Frequency (Hz)
X16 Magnetic induction (T)
X17 Number of primary winding papers
X18 Primary wire cross-section (mm2)
X19 Secondary wire cross-section (mm2)
X20 Primary resistance (�)
X21 Secondary resistance (�)
X22 Applied test voltage (kV)
X23 Primary winding losses (W)
X24 Secondary winding losses (W)
X25 Core losses (W)
X26 Environment temperature (◦C)
Y1 Maximum temperature in primary winding (◦C)
Y2 Maximum temperature in secondary winding (◦C)
Y3 Maximum temperature in the insulation between

primary and secondary winding (◦C)
Y4 Maximum core temperature (◦C)
Y5 Maximum temperature in the epoxy resin (◦C)
Y6 Minimum temperature in the epoxy resin (◦C)
Y7 Maximum contour temperature resin - environment

(◦C)
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