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ABSTRACT At present, various vulnerabilities and malicious programs are still constantly threatening
the system security, and in-depth analysis of legitimate applications and malicious code is an important
link of security defense under the current security situation. Dynamic binary analysis is the important
method in the field of binary analysis, and after years of research and development, many valuable results
have been achieved, and some mature tools generated have been widely used in practice. But it still faces
multiple challenges in terms of analysis efficiency, deployment, and the impact on the target program.
Based on the existing research, this article proposes a new lightweight hypervisor-based dynamic binary
instrumentation method, which uses the virtualization features of new processors to perform transparent and
efficient execution interception of the target program, so that it can instrument the target program and redirect
the original execution. To take full advantage of the interception solution, we further present a compact
inline dynamic taint analysis method that enables fine-grained data flow analysis of the target program with
multiple processes and kernel modules. Experiments in the real environment show that the proposed method
is effective and efficient in the binary instrumentation and analysis, it can achieve a good balance in analysis
performance, availability and stealthiness, and can be applied to the practical analysis scenarios.

INDEX TERMS Binary program, dynamic analysis, hypervisor, instrumentation, taint analysis.

I. INTRODUCTION
Today, the cyber security situation is more complicated,
various kinds of advanced threats are constantly emerging,
and endangering the security of the target information sys-
tem, especially the advanced persistent threat. It is impor-
tant to analyze the vulnerabilities and malicious code that
are related to threat activities in depth, in order to extract
the threat intelligence information. On the one hand, many
researchers focus on the security analysis of the legitimate
software, to find out the existing vulnerability and submit it
to the manufacturers for repair in advance. On the other hand,
researchers face a large demand for malicious code analysis
to prevent further malware spread and infection. In most
cases, security analysts face the analysis of binary programs,
where static analysis and dynamic analysis are commonly
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used methods [1]–[3]. To improve the analysis efficiency,
stealthiness and applicability is an issue that has been con-
tinuously researched with the development of hardware and
software technology [4]–[8].

Static analysis usually can obtain the higher code coverage
and better performance, but there are difficulties in analyzing
the dynamic generated code [4]. Meanwhile the dynamic
analysis method is widely used in practical analysis due to
the ability to detect the actual execution path and behaviors
of the target program [9], [10]. In this case, the coarse-
grained dynamic analysis often tracks the process, file and
network operations of the target program based on the func-
tion level [11]. The fine-grained method can be used to ana-
lyze the target program at the instruction level, mostly based
on the dynamic binary instrumentation (DBI). There have
been a lot of research in the past many years, which produces
some practical results, such as Pin [12], DynamoRIO [13],
Valgrind [14]. In recent years, new tools such as Frida [15]
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and QBDI [16] can support multiple platforms and analysis
code writing by scripting languages such as JavaScript and
Python, which further simplifies the development of analyt-
ical tools. Because dynamic instrumentation methods can be
used to analyze the target program at the instruction level,
it firstly needs to intercept the program execution and rewrite
the native code dynamically, mainly including two levels.
One is analyzing the program running in user mode inside
the operating system (OS), based on the method similar to
the just-in-time (JIT) compilation, which translates the native
instructions and builds the equivalent executable code in the
new memory space. At this point, the instrumentation tool
often exists as the parent process of the target process, and
inject some related functional modules into the target process
space [6]. The runtime performance of some programs may
be significantly reduced, due to the large amount of execution
interception and instruction translation in the instrumentation
process [17], [35]. The other is building the analysis frame-
work outside the operating system, which is usually based
on the emulator or virtualization methods such as QEMU,
VMI to implement the translation and analysis of the target
instructions [5], [29], [32]. Although some frameworks can
support fine-grained analysis in the system-wide, it is dif-
ficult to obtain abundant semantic information of the target
program at runtime, and often there also exists problems such
as analysis performance and deployment.

Actually, dynamic binary instrumentation is widely used in
malicious code analysis, program security analysis, software
protection and other fields [18]–[22], and lots of ideas and
methods for program analysis are implemented and verified
based on it [33]–[37]. Although it faces some problems and
challenges in practical applications, such as: affecting the
runtime performance of the program, occupying large amount
of memory resources, and confronting the anti-analysis tech-
niques [4], [23], it is still worth us to take countermeasures to
make it effective in the actual analysis scenario [4], [7].

Therefore, based on the existing research work, we pro-
poses an efficient dynamic binary instrumentation and anal-
ysis method named HyperAnalyzer (HA), which intercepts
and instruments the target program on the basis of the
lightweight virtualization framework, extended page table
(EPT) and virtualization exception (#VE) mechanisms of
the new processor, so that the fine-grained dynamic anal-
ysis at the instruction level can be performed. Compared
with existing analysis methods, the proposed method can
intercept the program execution and accomplish the code
instrumentation more efficiently, which is easy to deploy and
apply in the target operating system, and achieves a better
balance in the aspects of performance overhead, transparency,
deployment, and the impact on the running program. It inter-
cepts the execution of target program and constructs the
corresponding analysis code mainly in kernel space, which
can easily obtain rich semantic information at runtime, and
will be more advantageous in countering the anti-analysis
techniques than in user mode. In addition, the analysis frame-
work can be directly deployed in the target system, and can

support the analysis of both the user-mode code and kernel
modules.

The main contributions of this article are as follows:
Firstly, this article proposes the new lightweight dynamic

binary instrumentation and analysis method, which can effec-
tively intercept and instrument the target program at runtime
based on the latest hardware virtualization technology, then
further implements the specific fine-grained analysis. It can
instrument the entire or part of the program from kernel space,
obtain the semantic information easily and reduce the impact
on the runtime environment of target program.

Secondly, on this basis, this article further presents a com-
pact inline analysis method for the dynamic taint analysis,
which is closely combined with the proposed interception
solution. It can be used to perform the dynamic taint analysis
of the target program more efficiently, so that we can accom-
plish the complicated analysis more easily including the data
flow propagation between multiple processes, the interaction
between user mode programs and kernel modules.

Finally, this article implements the prototype framework
of the proposed method on the Windows platform, and uses
multiple kinds of real programs to evaluate the performance
of instrumentation and specific analysis. We also verify the
effectiveness of dynamic taint analysis and kernel driver
analysis by using the actual scenarios.

II. METHOD DESCRIPTION AND FRAMEWORK DESIGN
Similar to the traditional method, The proposed method first
needs to intercept the execution of the target program, but the
difference is that here we accomplish the interception of code
execution by controlling the access permissions of corre-
sponding code pages of the target program based on the EPT
mechanism [26], [31]. In fact, the processor with EPT mech-
anism has been widely available in commercial products, and
many studies have applied its features to program debugging
analysis, software protection, and so on [26], [30], [32]. The
architecture overview of the proposed method is shown as
Fig. 1, it first deploys and loads a specific kernel module
in the target operating system, and enables the virtualiza-
tion function supported by the target processors, then con-
verts the operating system to run as the virtual machine
(VM) or guest OS mode. Therefore, the processor model of
the target machine needs to have the relevant features that
support the successful application of the proposed method,
which can be generally met on the prevailing processors and
personal computers.

The modules and workflows involved in the method are
mainly located in kernel space of the target system, as shown
in Fig. 1. There are multiple monitors in the kernel that
track the behaviors of target program, and the monitoring
mainly depends on the hooking of the relevant system calls
and internal kernel functions in the guest OS. The process
thread monitor can capture the creation and exit events of
the processes and threads associated with the target pro-
gram in real time, and correspond it with other relevant
runtime information, also manage the program execution
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FIGURE 1. Architecture overview of HyperAnalyzer.

switch between native mode and analysis mode at runtime.
The module in the hypervisor is mainly responsible for sup-
porting the management and configuration of the running
state of virtualization environment, and is also used to handle
the non-maskable or special VM exit events. There are two
main tasks included in the analysis, one is that when the
program generates the virtualization exception or fault during
the execution, we parse and instrument the relevant code in
the virtualization exception handler. The instructions related
to the system calls should also be intercepted and handled
during the program execution. The second is the continuous
tracking of the executable code loaded by the target program
at runtime, and modifying the access permission of the corre-
sponding guest physical address in the EPT paging structures,
so that all the code execution of the target program can be
intercepted and redirected.

A. EXECUTABLE PAGE TRACKING
The execution of target program involves user space and
kernel space, although most programs only contain modules
in user mode. In this situation, the code executed in kernel
mode by the target thread belongs to the operating system
kernel or device drivers. To simplify the complexity and
improve accuracy, we track the target code executed in user
mode and kernel mode respectively. Because program code
is stored in shared memory pages on most system platforms,
that is, the same memory pages are simultaneously mapped
into the virtual memory spaces of multiple processes or the
kernel. Therefore, it is necessary to continuously track and
monitor the code loading of the target program to distin-
guish between private code pages and shared code pages,
while monitoring the changes of memory access permissions
of related pages, such as read, write and execute, in order
to make correct analysis of the target program, reduce the
impact on the whole system and other applications, and

control the resource overhead during the analysis. When the
process of the target program is created, some physical pages
of executable code have been already allocated in thememory
space. For these pages, we can get the physical addresses
by traversing directly the process page table before the main
thread is executed, and then continue to track the changes of
the code that is dynamically loaded at runtime of the target
program.

For tracking the executable code in user mode, we can
simply achieve this by hooking the function calls associated
with the page allocation and access permission modification
of the operating system. Specifically, the kernel functions for
memory allocation are hooked to monitor the physical page
allocation in user space, and the system internal functions for
modifying memory access permissions can also be hooked
to track the allocation of virtual memory and the changes
of access permissions related to the target process. On the
basis of monitoring the process activities and memory state
changes of the target program, we can distinguish the mem-
ory pages between code and data, private and shared. Then,
to reduce the impact on other programs and the whole system,
we replicate the shared pages in the target process, and remap
the original virtual addresses to the replicated physical pages
in the page table, then set the access rights of the new pages
to non-executable in the EPT entries. Therefore, the execu-
tion of any instruction of the target program will generate
a virtualization exception, which will be further delivered
to the guest OS and handled in the kernel space. As shown
in Fig. 2, a new physical page is allocated for each shared
page loaded by the target process and is used to replace the
original mapping entry in the page table. Then the original
page and the new page are kept in sync, which means that
the data of the two are consistent. In addition, if the program
attempts tomodify the original shared page, it will also trigger
the copy-on-write mechanism of the system, so we should
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FIGURE 2. Remapping of the shared memory pages.

have a special treatment for this situation and ensure that
the operating system still performs normal management of
the page. Therefore, when the target program writes to the
original shared page, the analysis framework can also capture
the operation and restore its mapping to the original physical
page in the page table, then leave the situation to the system
for processing. After done, the newly allocated private page
will also be included in the scope of interception. Finally,
when the analysis of the code page is completed, the mapping
of its physical page in the page table can be restored to its
original state as needed.

For easy lookup and tracking, we establish a direct map-
ping table between the base addresses of the original shared
page and the newly allocated private page. Thememory space
of the mapping structure itself is allocated in kernel space,
for 32-bit platform, 4 MB of memory space is occupied,
the top 20 bits of base address of the original shared page
are used as an index to find the corresponding page address
and relevant information through the mapping table. It is
important to note that because the shared pages are localized
bymodifying the process page table directly, themodification
is still imperceptible to the execution of target program, but to
avoid affecting the system’s normal management of memory
working set of the target process, we also need to modify
the physical page database structure (_MMPFN) related to
the original shared page in the kernel. We set the values of
some fields in the corresponding structure such as the page
type (type) and working set index (WsIndex), still treat it as a
shared page and continue to track its state changes.

The tracking of executable code in kernel mode can be
carried out directly based on the monitoring of accesses to the
page table of target process. Because the memory resource
and code in kernel space is also shared, and it is stable in

most cases, we can directly replicate the target page and
remap the original virtual address to the newly allocated
physical page in the page table for the code of system kernel
and loaded drivers that need to be analyzed, referring to the
previous paragraph. For other dynamic loading code, it can be
tracked based on the interception of write access to the page
table of target process [26]. Another thing to note is that in
order to ensure systemic performance and stability, this is just
tracking the kernel code executed in the target thread context
as needed, rather than tracking the code that is executed in
kernel space of the entire system.

B. EXECUTION INTERCEPTION AND REDIRECTION
On the basis of localization and tracking of the code executed
by the target program, the program execution can be inter-
cepted based on the access control for fetching instructions
from the physical pages which is supported by the EPT
mechanism. When an access violation is triggered, it can be
further delivered to the guest OS according to the feature of
virtualization exception in the new generation of processors.
So if the access permissions of target physical pages in EPT
entries are modified to non-executable, any instruction exe-
cution of the target program will generate a virtualization
exception.

However, frequent virtualization exceptions will also cause
a sharp decline in the performance of the system and pro-
gram [31], so we use the method called ‘‘redirection on
exception’’ to avoid this situation. In the handling of an
exception, the basic block of the program is used as a unit to
parse and rewrite. When the execution of an instruction of the
basic block is intercepted, we disassemble and parse the next
instructions until a branch instruction, rebuild the equivalent
code blocks in the new memory area, and then redirect the
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FIGURE 3. Execution interception and redirection on the basic block granularity.

FIGURE 4. Mapping of the original address to the redirection information structure of
generated code.

original execution to the newly allocated code that is called
as generated code here. As shown in Fig. 3, the execution of
the instruction at 77cc0625 generates an exception, then the
subsequent execution is redirected to 12822000 that points a
newly allocated code block, into which additional analysis
code can also be inserted according to the specific analy-
sis requirements. Then the subsequent execution generates
another exception at 77cc0643, which is handled the same
as mentioned above. However, it is important to note that
in this exception, we will modify the direct jump address
77cc0643 of the last block to the newly allocated address
175b6000 so that the subsequent execution can directly jump
from that block to the newly allocated code to avoid another
exception.

The execution interception solution makes full use of the
hardware performance, compared with the JIT method, it can
greatly improve the transparency and efficiency of intercep-
tion. In addition, this method can also capture the dynamic
code modification in the writable page, usually modified by
the program self at runtime. In specific applications, we can
also only intercept part of the code pages, such as the specific
modules or functions. Because the main components are built

at the kernel and hypervisor levels, part of the kernel address
space can also be used to store the generated code. The
framework is still highly transparent to the analysis of the
program in user mode, which can be used to online analyze
multiple processes simultaneously, and can safely restore the
target program from being analyzed to native execution.

1) EXECUTING CODE GENERATION
As mentioned above, the original code is parsed and instru-
mented when the execution of target program generates the
virtualization exceptions, then the execution will be redi-
rected to the newly generated code. Therefore, in the excep-
tion handling process, we first check whether the basic block
that cause the exception has been parsed. In order to improve
the search efficiency from the original instruction address
to the newly generated executable code, we construct a
three-level index structure, denoted as CodeMap, which is
similar to the page table structure, as shown in Fig. 4. So if
an exception is generated at the address ins_addr, we can
obtain the corresponding redirection information structure
denoted as redirect_info throughCodeMap[ins_addr], which
contains the original address, the address of generated code,
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FIGURE 5. Construction of the generated code for the direct jump instruction.

and so on. For 32-bit platform, the primary index table needs
to occupy 4 MB of additional memory space, and the space
consumptions of the latter two levels structures depend on
the size of the code actually loaded by the target program at
runtime.

In the handling of virtualization exception, if the corre-
sponding basic block has been parsed, then the execution
of the target thread is directly redirected to the newly gen-
erated executable code. For the unparsed basic block, first
we disassemble and parse the binary code, then allocate
memory areas in the target process space to store the newly
generated code, and also build the corresponding redirection
information structure and create the mapping entry. Finally,
the branch instruction at the end of the basic block is specially
handled, including two cases, direct jump and indirect jump.

In the case of direct jump, the destination address is derived
from the original code and the relative offset of the jump
target will change when the execution of original code is
redirected, so we need to re-establish the link between differ-
ent generated executable code blocks to reduce the number
of virtualization exceptions. In the generated code, the con-
ditional jump instruction is reconstructed with the uncondi-
tional jump instructions, which will link different generated
code blocks to ensure that they are continuously executed,
and allow the processor to perform the branch prediction
when executing the code, and improve the execution speed
possibly. As shown in Fig. 5, the left side is the sequential
execution of two program basic blocks, which will generate
two exceptions; the right-hand side is the partial procedure
of exception handling. When the exception is handled at the
first time, the generated code is allocated and built, and the
original jump instruction is also transformed. In addition,
the corresponding structure redirect_info is pre-allocated for
the basic blocks that maybe executed subsequently, and the
redirect_info of current basic block is also added to the

src_list field in the pre-allocated structures. In this way,
when the instruction of subsequent basic block is executed
and intercepted, we can get all the other basic blocks that
may be executed to the basic block generating the current
exception through its corresponding src_list field, and update
unconditional jump addresses of the corresponding generated
code. As shown in Fig. 5, in the first exception handling, the
generated code for the original block starting at 77cc0625 is
created, and the corresponding redirect_info of 77cc0625 is
added to the src_list of the redirect_info structure correspond-
ing to 77cc0643. Then, in the second exception handling,
apart from creating the generated code for the original block
starting at 77cc0643, the jump target address 77cc0643 of the
generated code corresponding to the original block starting
at 77cc0625 is modified to 175b6000 so that the subsequent
execution will directly reach the desired code and avoid the
additional exceptions. In fact, there is also a more direct way
to obtain the basic block executed last by the target thread,
which is to insert the additional instruction in the newly
generated code to record the execution information, and it
slightly increases the size and execution overhead of the target
code.

Indirect jump instructions such as ret, call ecx also need
to be transformed. First, the jump target address is obtained
dynamically at runtime, then the corresponding generated
code can be found from the CodeMap structure and executed
as the new jump target later, which can be implemented
through a small piece of assembly code, so the number of
virtualization exceptions can be further reduced. Because
the basic block including the jump target address may not
yet be executed, in this situation, the address of generated
code stored in redirect_info is still the original address of the
program’s basic block, and it will be updated in the handling
process of next virtualization exception. For the instruction
such as sysenter, int, which will lead to the privilege level
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FIGURE 6. Diagram of interception and analysis for part of executable pages.

switching of the processor, it can be also transformed the
same as the above case.

2) SYSTEM CALL HANDLING
Because there exists the user callback and asynchronous
procedure call (APC) mechanism in the operating system,
when the user thread returns from the system kernel to the
user space, it may not sequentially execute the instruction
that follows the system call instruction leading to the switch
of privilege levels before. For example, when the thread
returns from the kernel on the Windows platform, it first
enters into the function ntdll!KiUserApcDispatcher if a user
APC call is present. Since we have tracked all the executable
code of the target program, the above execution can also
be intercepted, but it will also generate a non-executable
virtualization exception first when the target thread returns
from the kernel. To further reduce the number of exceptions,
additional processing can be done on the return procedure of
system calls. On the Windows system, for the functions such
as nt!KiServiceExit that involve the returning from kernel to
user space, the interceptor can be placed before the iretd or
sysexit instruction in these functions. The handling process
is similar to the last section, which first obtains the runtime
return address, and then finds the corresponding address to be
executed actually through the CodeMap structure.

3) EXECUTION MODE SWITCHING
If the entire target program or most of the modules are ana-
lyzed, the executable code pages are tracked when the target
program starts to run, then all the instructions executed can
be parsed and rewritten. If only a small amount of code needs
to be instrumented and analyzed, we can forbid the execute
permissions of physical pages that contain the target code
only in the EPT entries, and then instrument all the executed
code which is involved in these pages.

As shown in Fig. 6, we intercept and analyze the execution
of the code located in the page with the base address 551000
after handling lots of non-execute virtualization exceptions,
the original code page will be transformed to the generated
code blocks in the right-hand of the figure, in which the
specific analysis code of the target instructions can also

be placed and executed without generating any virtualiza-
tion exception. However, the native execution to the address
551000 from the code outside the page will still generate an
exception, but the impact of analysis on the running program
is actually reduced, since the program mostly executes the
native code. Moreover, if the program execution still gen-
erates a large amount of exceptions, it may also affect the
runtime performance of the target program and the operating
system, as shown in Fig. 6, if the instruction at 43a212
is executed frequently. In this case, the fault profiler can
be added to the exception handling procedure to count the
number of exceptions occurred at a specific address, and
when it exceeds a threshold, we continue to intercept and
rewritten the source page from which the execution jumps
to the address, in order to reduce the performance impact
of excessive exceptions. If we only need to analyze a few
instruction addresses, as shown in Fig. 6, the instructions are
located at 5510a9 and 551379, similar to the above, we then
intercept and instrument the entire page that contains these
instructions, but only instrument a few basic blocks of the pro-
gram and insert the specific analysis code, while other origi-
nal code of the page remains unchanged in the newly gener-
ated code blocks and the branch instructions also need to be
handled.

When the target program is prepared to be analyzed, but
it has already been running normally, then the instruction
that generates the first non-executable exception may not be
located at the beginning of the program’s basic block, which
is likely to be in the middle. In this case, we still take the fault
address as the starting point of a basic block, then parse and
instrument the code forward until the branch instruction.

In the analysis process, if we want to exit the analysis for
some code pages, then configure the corresponding pages to
be executable in the EPT entries. When the execution of the
target thread jumps out of the generated code and enters into
the original code again, the program continues to run natively.

4) SELF-MODIFYING CODE
Some special programs will modify the code that has been
executed at runtime, usually presented as self-modifying
code, which is more common in advanced malware or JIT
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FIGURE 7. Interception and analysis of the dynamically modified code. When the non-writable
exception occurs, the generated code that has been built in the page is rolled back, as shown as symbol
¬; The non-executable exception will be generated again when the execution above continues,
as shown as symbol ­, in the exception handling, check if the basic block is changed, and the
corresponding generated code will be rebuilt if it is modified, otherwise, restore the jump stub at the
beginning to dummy instructions.

code optimization [4]. The analysis method should be able
to track and handle this situation to adapt to the binary
analysis under different scenarios. In order to achieve this
goal, on the basis of the execution interception of the instruc-
tions contained in the executable page, if the page is also
writable at the operating system level, we will further inter-
cept the write accesses to the page based on EPT mech-
anism. As a result, with the help of the above scheme,
we can timely find out how the executing code is modified
at runtime, and check whether the generated code has been
changed actually, then the modified original code is reparsed
to rebuild the generated code. So we introduce the additional
str_hash field in redirect_info, as shown in Fig. 7, to quickly
determine whether the original basic block of the target
program has been changed through the simple string hash
algorithm.

Specifically, when intercepting the write operations to
the executable page, first we obtain all the basic block
information involved in this page based on the redirect_info
structures, and then change the dummy instructions at the
beginning of the generated code to a jump stub which can
make the subsequent execution to the original code for each
related basic block, so that subsequent execution of the basic
block will generate the non-execute exception again. After
that, we continue to change the executable page to be writable
on the EPT level again, which will enable the subsequent
writes to succeed.

When the code execution of modified page is intercepted
again later, we first checkwhether it is located in a basic block
that has been executed, and verify whether the code has been
changed actually according to the string hash, then reparse
and re-instrument the modified code. Finally we restore the
interception of write operations on the page to continuously
capture the subsequent code modification during the execu-
tion of the target program. The diagram of code modification
and execution interception is shown in Fig. 7.

C. COMPACT INLINE ANALYSIS
Based on the method described above, then we can instru-
ment and analyze the target program according to the actual
requirements. In order to make full use of the interception
solution proposed in this article, we continue to present the
compact inline analysis method to perform the dynamic taint
analysis at instruction level. In actual analysis, byte-level
taint analysis can help us complete most of the fine-grained
analysis tasks, and the taint sources and sinks are mostly
located at the entry points of library functions or system calls.
In this case, we can use more compact assembly instruc-
tions to implement the required analysis functions to avoid
additional performance overhead at the higher level analysis.
The analysis code is mixed with the original code, which is
similar to the analysis on the traditional instrumentation, but
the difference is that the analysis code here is embedded in
the original code, which means that the original instructions
keep the same in the final generated code.

On 32-bit Windows platform, the segment register FS
always points to the thread environment block (TEB) struc-
ture during the thread execution in user mode, which is thread
related. We can use the memory space of TEB that is not
used to store the analysis state of general registers for each
thread in the taint analysis, and save the partial context infor-
mation, actually, a larger storage space can be obtained by
extending the upper limit of the segment. In kernel mode, the
FS segment register points to the processor related structure
KPCR, through which the thread related structure ETHREAD
can be further referenced, but the context information during
the thread execution needs to be saved using the thread stack
in kernel space. Because the byte-level taint analysis is used
here, for the analysis state of the process memory space of
target program, the same size of additional memory space is
used to store the state based on the virtual address. That is,
when the accessible memory page is allocated for the target
program, meanwhile we allocate the corresponding memory
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FIGURE 8. Generation and execution of the specific analysis code.

page in the target process space to store the analysis state
and build the map entry in the mapping table, similar to the
mapping structure for the generated code blocks. The entire
mapping table on 32-bit platform occupies 4 MB of memory
space, denoted as StateMap here. For the memory address
addr, its corresponding analysis state is stored at ‘‘st_addr
= StateMap[addr � 12] + addr & 0xFFF’’ in most cases.
Therefore, the update process of the memory analysis state
during the analysis will be simplified, and the memory space
required for storing the analysis state is related to the size
of memory allocated for the target program at runtime, and
is more relevant to the number of physical pages actually
allocated, which is relatively limited in practical applications.

In particular, when a single instruction reads or writes
across pages in the execution of the target program, and if
the virtual addresses allocated for storing the analysis state is
discontinuous, then the analysis for the instruction execution
above could lead to the reading and writing errors of the
analysis state. For this situation, a guard page can be allocated
following the state storage page, and then the analysis error
caused by the cross-page modification can be detected and
corrected. Also note that if the memory page for storing the
analysis state is not yet allocated in the analysis, and a page
access exception will be generated when the analysis code
accesses the analysis state. For this case, we will allocate and
build the state storage page in the page fault handler. The
above situation often occurs when we fail to track all the
memory allocation of the target program or the physical page
of the virtual memory has not been allocated.

In the process of execution interception and code instru-
mentation, the specific analysis code for dynamic taint anal-
ysis is generated in sync, and the relevant context state of
the target thread is saved before and after the execution of
the analysis code, in fact, only several register values need

to be saved. We can also use the thread related memory
area that the FS segment register points to as a tempo-
rary buffer to store the register value (e.g., ‘‘mov fs:[70h],
eax’’). In order to reduce the number of context switches due
to the information saving during the analysis of the target
program, we appropriately delay the analysis of the code
between two consecutive memory access instructions, and
then place the analysis before analyzing the latter memory
access instruction. The temporarily unanalyzed code mostly
involves register operations, and we don’t need to obtain
the runtime value during the common taint analysis, but the
general registers still need to be used to complete the taint
propagation. Therefore, the delayed analysis can avoid saving
the thread context again. As shown in Fig. 8, the analysis
of the code #2 is delayed until the execution of analysis
code #3, and the original thread context only needs to be
saved and restored once. As discussed above, the sinks are
mostly selected at the function level in the taint analysis, so
the delayed analysis does not affect the timely acquisition of
the analysis results, and instructions or addresses for special
attention can be addressed separately.

III. PROTOTYPE IMPLEMENTATION
We implement a prototype of the proposed framework on the
32-bit Windows platform, the entire code is included in a ker-
nel driver module, where the hypervisor component is imple-
mented based onHyperPlatform [42], and the udis86 [43] tool
is used to disassemble and parse the binary code.

For the hypervisor component, we make a small
amount of changes on HyperPlatform. Specifically, in the
VmpInitializeVm function, only one EPT structure is con-
structed, which is then shared by all processors. In theVmpSe-
tupVmcs function, we turn off the unnecessary VM exit
options (e.g. cr3_load_exiting), and configure the options
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such as ept_violation_ve, enable_vm_functions to enable the
virtualization exception function. In addition, we need to
set the parameters (e.g. kEptpIndex, kEptpListAddress and
kVmFunctionCtrl) in the VmcsField to enable the function
that reloading the EPT table in the non-root mode.

The other code including about 5,000 lines will be run
mainly in the kernel context of the target system. Target
processes and threads are tracked by the callback functions
registered with the exported kernel functions. Once the target
process is created, we allocate the resident memory space
for storing the generated code. During the execution of tar-
get program, the functions of adjusting process working set
are hooked inline to facilitate tracking the physical memory
page allocation and release, then the permissions of physical
pages related to target code in the EPT entries are set to
non-execute, and the pages for storing the memory analysis
state are also allocated. The entry and exit points of sys-
tem calls are also intercepted to redirect the execution after
returns to the user mode, although for non-open source sys-
tems, such interception approaches need to overcome some
challenges, for example, version changes, kernel protections,
and so on. In addition, we modify the IDT entries of each
processor, register the new routine KiTrap14 to handle virtu-
alization exceptions, and hook the original routine KiTrap0E.
In the #VE handing procedure, we disassemble and parse
the target binary code, then construct the new execution
and analysis code. The instruction VMFUNC and kernel
function KeIpiGenericCall are used to implement the page
access permission changes and the execution synchronization
between different processors, when intercepting the code
self-modifying.

IV. EXPERIMENTS AND RESULTS ANALYSIS
This article implements the prototype framework of the anal-
ysis method based on the 32-bit Windows platform, and uses
various kinds of real programs to evaluate its performance
and effectiveness. The main experimental environment is the
common desktop computer, which is configured with Intel
i5-7500 @3.40GHz 4 cores, 4 GB memory, 120 GB solid
system disk and 500 GB data disk, and the operating system
installed is 32-bit Windows 10 (10240).

A. INSTRUMENTATION PERFORMANCE EVALUATION
To evaluate the impact of mere dynamic instrumentation
on the program execution, we choose Pin (3.11-979988)
as a comparison. The proposed framework can be directly
deployed on the target system to analyze the installed pro-
grams, which is similar to the Pin tool. When the target
program is executed and instrumented by Pin, the trace
granularity instrumentation is used to interpret and execute
the program code [12], only the number of basic blocks
encountered by Pin is counted in the callback registered by
the interface TRACE_AddInstrumentFunction, and no actual
analysis code is added into the target program. This also
means that the target program is only executed under the Pin
environment [35]. Likewise, the proposed framework also

intercepts the target program execution and instruments the
code based on the basic block granularity. The experimental
purpose is to only evaluate the performance of the dynamic
execution interception and code rewriting. In the experiment,
first, the real programs are used for experiments, we choose
various types of system built-in programs, and commonly
used compression programs such as 7-Zip (18.05) and Win-
RAR (5.30), and the specific programs are shown in Fig. 9.
Specifically, certutil is used to calculate the sha256 hash
value of the text file, and wmic is used to obtain the basic
bios information in the experiment. Then cscript and mshta
are used to download the file based on vbscript and javascript
respectively, and a graphical window will briefly pop up dur-
ing the execution of the latter program. To avoid the impact of
code loop execution after the instrumentation is completed,
the size of each file handled is set to 1 KB. In addition,
except for two compression programs, others are command
line programs. Each experiment scenario is repeated 10 times
at least, and the average of the recorded data is token as the
experimental result shown as Fig. 9 and Table 1.

The execution time shown in Fig. 9 is the increased value
based on the native execution time of the target program.
From the figure, it can be seen that the time overhead of
instrumenting the target program by the proposed method is
lower than Pin tool, which is presented in various types of
programs. As shown in Table 1 and Fig. 9 together, with the
increase of the number of basic blocks executed by the target
program, the execution time increases gradually when Pin is
used as the instrumentation tool, but the proposed method
is less affected. A large amount of code loading in a short
time could cause the time increase of instrumentation, and
excessive time spending may lead to the execution failure of
the delay sensitive code, for example, malware often uses
time-based analysis detection techniques. For the analysis
under the proposed framework, only a new basic block is
executed by the program, the virtualization exception will be
generated and handled in most cases, and the total number of
exceptions is in a lower range, so the exception impact on the
runtime performance is small. In fact, frequent virtualization
exceptions can also have a significant impact on the execution
of the target program, which has been studied and discussed
in the previous work [31]. In Table 1, it can also be observed
that although the target program creates many threads and
loads a lot of modules during the execution, it does not result
in a significant impact on the interception efficiency. Simi-
larly, the amount of memory pages actually allocated by the
program also keeps the overhead of memory used for storing
the generated code and analysis state within a reasonable
range. In addition, as shown in Table 1, the number of virtual-
ization exceptions is slightly higher than the number of basic
blocks, these extra exceptions are generated in the process
of building and linking different generated code blocks, also
including the interception that fails to cover all return points
of system calls. In general, the interception solution proposed
in this article has a small impact on the execution of the target
program in most cases.
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FIGURE 9. Increased execution time due to the dynamic instrumentation.

TABLE 1. Data statistics for the execution interception based on program
basic blocks.

Then we perform the same experiments on the SPEC
CPU 2006 benchmark using the test workload, to avoid the
impact of loop execution of the generated code by instru-
mentation. In the experiment, we exclude some programs
that failed to compile successfully in the target environment,
and a few programs that takes up a large amount of mem-
ory at runtime. As shown in Fig. 10, more results can be
obtained, first, in most cases, HA has a high interception
speed, and it also takes a little more time than Pin tool for
a few programs. This is because these program code has
fewer basic blocks and includes fewer instructions, so the
instrumentation process can be done quickly, and then the
program will execute mainly the existing code in a loop.
For example, such as 458.sjeng, it only generates about
10 thousand basic blocks and 50 thousand instructions in
the execution process. And this also shows that the exe-
cution overhead of HA in terms of generating and linking
code is more than Pin in some cases. In fact, the Pin tool
spends more time to generate execution code and arrange
its memory layout, and the goal is to achieve better perfor-
mance in the code loop execution after the instrumentation is
completed. For example, for 400.perlbench and 445.gobmk,
the time overhead caused by the instrumentation is cumu-
lative, because the test workload contains multiple program
re-executions.

B. TAINT ANALYSIS EVALUATION
On the basis of above experiments, we further use multiple
types of programs to comprehensively evaluate the perfor-
mance and resource overhead of the instrumentation and
specific analysis, first, the real programs are used which are
shown in Fig. 10, which involve file compression, encryption,
format conversion, and network communication. When test-
ing, the target program is executed with the default parameter,
and the size of the file handled is 1 MB of text file, moreover,
a local server is built upon Python to avoid the impact of
network speed. Compared with the last experiments, this
time we add the tests of the built-in compression program
makecab and the encryption program GnuPG (2.2.20), also
use the third-party tool aria2c (1.34) for file downloading,
and use the FFmpeg (4.0.2-static) tool to convert the wav file
(Windows\Media\Ring05.wav) to the mp3 format. To avoid
the impact of graphical interactions on Pin, the command line
version of the target program is used here.

The experimental results are shown in Fig. 10, we calculate
the program execution time of test scenarios separately, where
HA indicates that the target program is only instrumented
without inserting the analysis code, while the DTA suffix
means that the dynamic taint analysis is synchronously per-
formed based on the instrumentation. For the analysis with
Pin, the taint analysis code is created based on the libdft
(3.1415alpha) engine [17], which can be easier to migrate
to the Windows platform. We compile the source code with
VS2015, while using the byte-level analysis and the O3 opti-
mization scheme. HA_DTA mea ns instrumenting and ana-
lyzing the same instructions, where some uncommonly used
instructions are excluded on the basis of the original libdft,
and the specific names of the instructions instrumented here
are shown in Table 2. In the performance testing, the callbacks
of target process creation and exit are token as the taint source
and sink respectively, that is when the first instruction of
the target program is executed, the instrumentation and taint
analysis begins until the target process exits. From the exper-
imental results it can be observed that the method proposed in
this article can achieve high analytical efficiency in analyzing
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FIGURE 10. Increased execution time due to the dynamic instrumentation on the SPEC CPU 2006.

TABLE 2. Instrumented instructions for taint analysis in the experiment.

various types of real programs, and the performance overhead
of the target program under the analysis is very close to the
native execution. Therefore, this method can be better used
in real-time monitoring and analysis, and reduce the impact
on the running program. In addition, the average CPU usage
for various analyses is similar to that of traditional analysis,
which would increase due to the introduction of additional
analysis. On the one hand, it depends on the original CPU
usage during the native execution of the program. On the
other hand, it depends on the time spent on the analysis and
the impact can be ignored when the analysis time is short.

The other statistics are shown in Table 3, as the size of
handled file increases, the amount of memory dynamically
allocated by the target program increases, and the memory
space of storing the analysis state also increases, but the
overall memory overhead is within an acceptable range.
At the same time, the usage of memory that is used to store
the generated code and build the specific analysis code is
also within a reasonable range. Although the performance of
analysis is affected by various factors, the proposed method
still performs efficient taint analysis for different application

TABLE 3. The experimental statistics of the analysis for different
programs.

scenarios in practice. In the analysis of different programs,
a small number of exceptions are generated, which also leads
to the lower impact on the whole system.

To further evaluate the performance impact of the compact
inline analysis, we continue to perform the experiments with
some of the test programs above, but the size of the file han-
dled by each program is increased to 10 MB this time. In the
experiment, the compression program WinZip (21.0) and the
graphic conversion tool ImageMagick (7.0.10-dll) are further
introduced, then we use the latter to convert the JPG image
with the size mentioned above to the PNG format. In the same
way, the native execution time and the analysis time of the
target program are recorded separately. As shown in Fig. 12,
compared with the traditional analysis, the compact inline
analysis proposed here can still achieve high analytical per-
formance with the growth of the handled file size. Similar to
the traditional instrumentation, the inline analysis also leads
the original code to expand, but the more compact analysis
instructions are adopted to reduce the overhead of excessive
context switches. Code instrumentation and memory alloca-
tion are performed in kernel space, which also reduces the
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FIGURE 11. Analysis performance comparison of different programs.

FIGURE 12. The analysis time when larger file is handled in the execution of different programs.

switches between user and kernel mode. So it can mitigate the
runtime performance reduction of the target program while
achieving the same analysis goal. In fact, the more times the
generated code is executed, the greater the cumulative impact
on the execution time of the program.

On the basis of real program testing, finally we continue
using SPEC CPU 2006 to evaluate the performance of taint
analysis, and use the ref workload this time. Unlike the actual
program above, most benchmark programs do not involve
file outputs, which can reduce the impact of disk I/O on
processing large files. In addition, most benchmark programs
also load less code which will soon be instrumented dur-
ing the execution, and then enter the loop execution of the
existing generated code. After the experiment is completed,
the elapsed time of native program execution is used as the
baseline to calculate the speed reduction ratio under the other
analysis scenarios. As shown in Fig. 13, the experimental
results are similar to the above tests, for the vast majority of
programs, HA can achieve the better analysis performance
than the traditional analysis based on Pin. Because it uses
more streamlined instructions to complete the byte-level taint

analysis, and reduces the amount of overhead generated by
the execution switches between the analysis code and the
native code in the traditional analysis, it is better to control
the program performance reduction of the overall analysis
in the long time execution. On the other hand, because HA
is mainly located in kernel space, it is able to make full use
of the advantages of large-page memory accesses. Since we
do not analyze the floating point related instructions such
as SSE, AVX, the analysis has a small effect on the execu-
tion of the program that focuses on floating point arithmetic
(e.g. 433.milc, 444.named). It is also shown that the perfor-
mance of HA will be slightly lower than the Pin tool for the
analysis of the less instrumented programwith long execution
(e.g. 470.lbm), as discussed also in the last section.

C. CASE STUDY
1) ANALYSIS OF POWERSHELL SCRIPTS
The powerful PowerShell command-line environment has
been integrated into the latest Windows system, and Power-
Shell scripts are widely used in systemmanagement andmali-
cious programs. We use the proposed method to analyze the
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FIGURE 13. The execution slowdown for the analysis on SPEC CPU 2006.

FIGURE 14. Example of code modification in the execution.

execution of PowerShell scripts at the instruction level. In the
experiment, the executed script uses the System.net.webclient
object to download the text file of 1 KB from the local
server. In analysis, the kernel functions such as NtDevi-
ceIoControlFile and NtWriteFile are intercepted as the taint
source and sink respectively. When the target data is received
from the network, it is marked as tainted, and the analy-
sis state of the data to be written will be checked in the
file writing process. In multiple experiments, we can all
succeed in capturing the data flow propagations, and the
results show that this method can be applied to the analysis
of complicated programs. The average time spent of the
analysis process is about 15 s while the native execution
of the script takes about 2.5 s, and some specific results
of the experiment are shown in Table 3. As seen from the
table, the program dynamically loads lots of modules and
produces a large number of basic blocks during the execution.
When analyzing the execution above based on the Pin tool,
the entire analysis process takes nearly 100 s, which is too
expensive.

Because the PowerShell environment is built on the .NET
framework, it actually calls the .NET modules when the
target script is interpreted and executed. While the .NET
code is executed, the common language runtime (CLR) will
immediately compile the intermediate code to the executable
instructions on the target platform, so the PowerShell pro-
gram will involve the modifications to the original binary
code in the script execution process. An example is shown

TABLE 4. Experimental statistics of file downloading analysis based on
PowerShell script.

in Fig. 14, The JIT process is triggered when the function
at 1b1672c0 is called first time, which will compile the
intermediate code to the platform related executable code,
while modifying the jump target at the beginning of the
original function. The proposed method can also capture and
handle the situation. As shown in Table 4, during the entire
analysis, the number of modifications captured at page level
is about 13 K times which results in the additional 92 K
intercepts of instruction execution to check the code changes
of the basic blocks located in the affected page, although
only nearly 700 basic blocks have been actually changed.
This could fully capture the changes of the code during the
execution, and does not have a large impact on the analysis
performance.

2) FUNCTION CALL ANALYSIS OF AFD DRIVER
On the Windows platform, the AFD driver is the ancillary
driver that supports the Winsock function used by user mode,
it means that some of the steps need to be handled by this
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driver, when using the socket function to send and receive
data in user space. In this experiment, we write two basic
socket programs, using the send and sendto function to send
the TCP packets and UDP packets respectively, then try to
explore the handling process for the two types of sending
packet by the AFD driver.

In order to achieve this goal, we use the method of this
article to instrument the test program in user space, and
also instrument the code of AFD driver loaded in the kernel.
When the generated and analysis code is built in kernel space,
the context information is saved as needed through the kernel
stack of the target thread. Because the driver code in kernel
space is shared by all the applications and the operating
system itself, and to avoid the impact on the system opera-
tion, we also replicate the physical pages related to the AFD
driver and remap the virtual addresses in page table of the
target process only. In fact, after the system boot is finished,
the driver is loaded in the kernel, and 63 physical pages have
actually been allocated for storing its code and data. In the
modification of page table of the target process, we need to
replicate the allocated original physical pages, replace the
values of corresponding page table entries, and also replicate
a page directory table that contains these page table entries
above. After that, we further modify the access permissions
in the EPT entries for the relevant replicated pages.

Through multiple experiments, it can be found that the
performance impact on the running system is negligible for
the analysis of packet sending in both cases. About 720 vir-
tualization exceptions are generated by the code execution in
kernel mode and about 650 basic blocks of AFD driver code
are produced for the process of sending TCP packets, which is
less for the UDP case. The number of exceptions generated is
higher than the number of parsed basic blocks, because there
is also the execution from the external kernel modules to the
AFD driver, such as tdi, tcpip, and nt. Finally, we recorded
the sequence of target addresses of call and jmp instructions
generated in the execution, about 200 records are generated
in the experiment for send, and about 160 for sendto. Then
the two sequences are compared using the file comparison
tool, and the partial differences are shown in Fig. 15, we can

FIGURE 15. Contrast of the call sequences for different sending
functions, and the red part is the difference.

easily observe the difference between the AFD driver’s han-
dling processes for the two types of data sending, and can
obtain the specific function names and the invoked functions
in the external modules. From this case analysis, it can be
seen that the proposed method can also be able to ana-
lyze the driver code in kernel space, which shows the good
applicability.

V. RELATED WORK
The dynamic binary instrumentation and analysis method can
be applied in many areas such as malicious code analysis,
vulnerability analysis, software debugging, there exists a lot
of research on dynamic analysis, and this article describes and
discusses the related work mainly in two aspects.

A. ANALYSIS BASED ON APPLICATIONS
There are widely used instrumentation tools such as Pin [12],
DynamoRIO [13], Frida [15], based on these tools vari-
ous methods of data flow analysis or taint analysis can be
quickly implemented [37]. The recently proposed method
Instrew [40] uses LLVM to implement the binary code trans-
lation and analysis, which can further improve the analysis
efficiency. Tinyinst [41] can be used to instrument and ana-
lyze part of the program, which is similar to the proposed
method for this respect. The advantage of instrumentation
in user mode is that it is relatively easy to implement the
software based program dynamic translation, and can pro-
vide rich development interfaces that enable users to quickly
implement the required analysis tools. The downside is that
there is a lack of sufficient capabilities to counter the anti-
analysis techniques used by malware in user mode, and it
also results in lower analysis performance in some cases.
In comparison, the core part of proposed framework is located
in kernel space, which will be more flexible in coping with
the analysis detection techniques, and it can achieve the
higher instrumentation performance in most cases. In addi-
tion, to further improve the analysis efficiency on the foun-
dation of instrumentation, more efficiency specific binary
analysis methods have been proposed. On the one hand,
the execution of the original program is decoupled from the
analysis procedure, such as ShadowReplica [33], on the other
hand, the online information recording is combined with the
further offline analysis, such as StraightTaint [35], and most
of these studies are still based on the traditional instrumenta-
tion methods. In this article, a new dynamic instrumentation
solution and the matching online taint analysis method are
proposed, based onwhich other specific analysis methods can
also be applied.

B. ANALYSIS BASED ON VIRTUALIZATION
AND HARDWARE
To improve the scope and stealthiness of the analysis,
more and more studies are using virtualization methods
and hardware features [5], [8]. The behaviors of mali-
cious programs can be analyzed within the system range,
such as DRAKVUF [11], Panorama [28]. In the aspect of
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virtualization, the framework DECAF is implemented based
on the QEMU emulator [10], [29], which can also support
the fine-grained analysis. Ether [32] is also a framework for
analyzing the whole system based on the customized hyper-
visor. These studies can further improve the capability of
program analysis, but also have difficulties in the deployment
and flexibility. SPIDER [26] andMALT [27] mainly focus on
improving the transparency of debugging and analysis, but
there are challenges in the aspects of semantic information
acquisition and automated analysis. Both PEMU [24] and
PinOS [25] are the analysis frameworks that extend the Pin
tool to support the analysis of the whole system, but the
issues such as availability, performance, and semantic gaps
still exist. In comparison, this article intercepts the execution
and analyzes the target program based on the virtualization
exception and system kernel, which has better performance
and flexibility, and can perform the program analysis by
directly loading the kernel module on the target system. It can
directly obtains the semantic information of target program at
runtime, and achieve the better balance in terms of availability
and stealthiness. In addition, there also exists some record and
replay systems [38], [39], which are essentially the offline
analysis methods based on the runtime recording by the code
instrumentation.

VI. DISCUSSION
This article presents the new program instrumentation and
analysis method, and implements the preliminary proto-
type framework. Compared with the existing mature tools,
although it has better analytical performance, flexibility
and applicability in some analysis scenarios, there are still
some imperfect places currently, for example, not providing
rich user development interfaces, lack of a good dynamic
memory management and garbage collection mechanism,
non-optimized memory layout of the generated code, only
supporting the byte-level analysis currently, etc., which can
be improved in further work referring to the existing analysis
tools and methods. This method has certain universality and
can be complemented with mature analysis tools to accom-
plish the analysis work in the cases of delay sensitive code
and kernel modules.

In response to the anti-analysis and detection adopted by
the target program, similar to the traditional analysis meth-
ods, the proposed method still needs to face many chal-
lenges. However, compared with the analysis method in the
application layer, it will be easier and effective to adopt
countermeasures in kernel space, and can use the protection
mechanism based on the virtualization techniques. Since the
target operating system is directly converted to run in the
virtualized mode while analyzing, the method still has a
certain advantage in the aspects of the hidden of virtualization
characteristics and the usability, compared with the methods
based on the emulator and virtual machine.

This article presents a new solution for dynamic program
execution interception, it can rewrite part of the program,
and leave other code to run in native mode. In addition,

the proposed solution could also be implemented through
modifying the permissions of page table entries in the kernel,
but it causes more interference in memorymanagement of the
operating system and lacks stability to some extent.

At present, this article implements the framework on
the 32-bit platform, and performs the relevant experiments.
In fact, when the target program takes up a great deal of
memory, it will lead to a lack of memory addresses for
analysis, whichwill be improved on the 64-bit platform.Next,
the experiment needs to be extended to the 64-bit environment
and the latest hardware platform. In addition, the method
proposed could be easy to achieve in other platforms, but it
should be further strengthened in the perfection of design and
the stability of prototype implementation.

VII. CONCLUSION
This article proposes a new dynamic instrumentation and
analysis method for binary programs, which can accomplish
automatic fine-grained analysis of the target program and
its kernel modules based on the new virtualization mecha-
nism. The architecture of this method is simple, which is
easy to implement and apply in the actual analysis scenario
quickly. Lots of real experiments have shown that the
method is effective, and has high analytical performance and
applicability.

At present, we implement the prototype of the method on
the Windows platform and verify its feasibility, but there still
exist shortcomings. Next, we will improve the design and
implementation of the framework, introduce the user mode
interface, and enhance the ease of use. Assembly tools can be
introduced to increase the automation of the analysis code
generation, so that other analysis functions can be quickly
implemented. We could optimize the method of code gener-
ation in the instrumentation and perform experiments on the
64-bit platform, in order to further enhance the application
capability in actual analysis.
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