
Received August 15, 2020, accepted August 28, 2020, date of publication September 3, 2020, date of current version September 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021499

Alerts Correlation and Causal Analysis for
APT Based Cyber Attack Detection
MEHRAN KHOSRAVI AND BEHROUZ TORK LADANI
Faculty of Computer Engineering, University of Isfahan, Isfahan 81746-73441, Iran

Corresponding author: Behrouz Tork Ladani (ladani@eng.ui.ac.ir)

ABSTRACT The advent of Advanced Persistent Threat (APT) as a new concept in cyber warfare has raised
many concerns in recent years. APT based cyber-attacks are usually stealthy, stepwise, slow, long-term,
planned, and based on a set of varied zero-day vulnerabilities. As a result, these attacks behave as diverse
and dynamic as possible, and hence the generated alerts for these attacks are normally below the common
detection thresholds of the conventional attacks. Therefore, the present approaches are not mostly able to
effectively detect or analyze the behavior of this class of attacks. In this article, an approach for real-time
detection of APT based cyber-attacks based on causal analysis and correlating the generated alerts by security
and non-security sensors is introduced. The proposed method computes the infection score of hosts by
modeling, discovery, and analysis of causal relationships among APT steps. For this purpose, a dynamic
programming algorithm is introduced which works on alerts of each host separately and conducts a long-
term analysis on the attack process to combat the outlasting feature of the APT attacks yet coping with a high
volume of alert information. The proposed method is implemented and extensively evaluated using a semi
real-world dataset and simulation. The experimental results show that the proposed approach can effectively
rank hosts based on their infection likelihood with acceptable accuracy.

INDEX TERMS Advanced persistent threat (APT), attack process modeling, alerts correlation, causal
analysis.

I. INTRODUCTION
The nature of computer attacks has been extensively changed
by entering the cyber warfare to the field of classical wars.
Modern computer attacks are usually targeted and act based
on more definite and organized goals than conventional
opportunistic attacks. Advanced Persistent Threat (APT)
based attacks are considered as the most recent and signif-
icant attacks of this type which are usually designed and
conducted by subversive organizations, governments, pro-
fessional groups, and so on to reach their strategic goals.
Modeling, analysis, identification, and confrontation with
these attacks are new challenges in the field of computer
security [21], [33].

There are two general approaches for detecting APT
attacks: 1) approaches that seek for attack signatures (like
attempting to infect the victim system, trying to communicate
with C&C centers, and trying to destroy or steal informa-
tion), and 2) approaches that seek to model the whole attack
process. Modeling APT attacks by hidden Markov chain,
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decision making trees, and state machine based on attack
steps and reciprocal behavior of attacker and defender are
some examples of methods used in the second category. The
first approach almost neglects the dynamic and intelligent
nature of APT attacks, while the second approach better deals
with the mentioned behaviors.

A major challenge in modeling the attack process of APT
based attacks is that these attacks have a permanent diverse
and dynamic behavior to outlast their presence in the infected
hosts. Having diverse behavior means each attack uses a
collection of new and various technics based on its objectives
and execution conditions. This characteristic makes it hard to
model APT based attacks only based on the known technics
utilized by the previously identified attacks. Hence intro-
ducing approaches to cope with this problem is a challenge
for detecting APT attacks. Having dynamic behavior on the
other hand means the used technics can be changed based on
the attack goals during the APT lifecycle. Since the period
of persistence of an APT is often long, the attacker may
change his/her attack technics by observing the reciprocal
behavior of the victim system in attack time employing detec-
tion and defensive approaches used by the victim system.
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Sometimes this dynamic behavior is managed and executed
by communicating with the command and control (C&C)
centers. The accurate modeling of this dynamic behavior can
help better detecting APT based attacks.

As far as we know, considering the diverse and dynamic
behavior of APT based attacks has not been already
accounted for in this field accurately and fully by the
previously proposed works. The main effect of diverse
and dynamic behavior of APT attacks is to prevent their
events from being fully recorded by existing security sen-
sors or assigning low risk tags to the produced alerts. There-
fore, the IKC associated with these attacks are sometimes not
fully identifiable. An effective solution that we can offer to
deal with diverse and dynamic behavior of APT attacks is
to expand the range of input alerts. Hence we try to identify
more IKC chains or complete the existing chains by consider-
ing alerts recorded by non-security sensors as well as security
sensors and considering alerts with all risk levels (instead
of just high risk alerts). Note that previous works mainly
consider high risk alerts rooted in only security sensors. Our
insight is that considering the accurate causal relationships
among steps of attack in a long period and tracking them
in time, while keeping the analysis in an appropriately high
level of abstraction, considerably help detecting APT based
attacks.

Therefore, in this article, we propose an attack process
model based on correlating the produced alerts by various
security and non-security sensors as a causal relationship
sequence. For this purpose, alerts generated by different sen-
sors are observed in a long time interval, and those that
are more likely to form a sequence of APT attack steps are
identified. The identification is hence based on the analysis of
causal relationships of consecutive stages of the attack chain.
Finally, the result is a score list that shows the probability of
attacking different hosts in the system based on a normalized
attack surface measure computed on the causal attack chains.

The proposed approach considers the challenges of detect-
ing APT-based attacks including their diverse and dynamic
behavior. These issues are less considered in other works
mainly due to the lack of proper algorithms and complexity
of extracting the relationships between attack steps. The pro-
posed method can be implemented as an extension of a Secu-
rity Information and Event Management (SIEM) system to
analyze the events produced by the SIEM for scoring hosts via
modeling and discovery of causal relationships among APT
steps. The proposed method is implemented and extensively
evaluated using a semi real-world dataset and simulation. The
results of evaluations show that attack process modeling used
in our approach can effectively rank hosts based on their
infection likelihood with acceptable accuracy.

The rest of the paper is organized as follows: Section II
introduces the basic concepts of APT based attacks.
Section III reviews the related work. Section IV presents the
architecture and steps of the proposed approach. In section
V we conduct two different experiments to evaluate the pro-
posed method and compare it with other related works to

show its ability to rank the infected hosts and its precision.
Finally Section VI concludes the paper.

II. APT BASED ATTACKS
The best definition for APT attacks can be obtained by the
used title for this concept [1]:

• Advanced (A): APT attackers are sophisticatedly taught
and well organized, their financial resources are sup-
plied, and they use extensive intrusion technologies, data
access, and data manipulation tools.

• Persistent (P): APT based attacks remain stable in the
long term. Attackers seek a high-prioritized and specific
goal instead of instant and temporary goals and keep
their presence in the victim network for a long time (slow
and permanent action).

• Threat (T): The attackers want to damage, disturb,
and/or steal specific data or services.

Some samples of the discovered APT based attacks in
recent years are Operation Aurora attack to Google infras-
tructure in 2009 and some other IT companies like Yahoo
and Symantec; Stuxnet malware attack to Iran nuclear infras-
tructure and industrial systems of some other countries
in 2010 which collected data and changed the victim sys-
tem configuration (Siemens equipment); DarkHotel attack
in 2014 (its new versions in 2018) that aimed at pub-
lic services infrastructures to steal customer’s information;
and recently Kimsuky, APT27, and Lazarus or Vicious-
Panda in 2020 who, according to OSINT, have used
COVID-19-themed traps to target their victims [44].

The steps of an APT-based attack can be considered as
follows:
• Reconnaissance: The attackers in this step collect data
about the target organization’s resources, employees,
and their relationships with other institutions to obtain
their mentioned goals.

• Delivery: This step includes making an email or a link
of destructive code based on the collected data from
the previous step, and sending it via a valid internet
server or appraising the organization users to access to
that link.

• Exploitation: After executing the destructive code by
a victim, the attack path is made by the attacker and
provides the possibility of exploitation. The next step is
setting up a C&C center to manage all communication
with the victim system.

• Operations: This step includes the presence of the
attacker (e.g. via malware or peace of malicious code)
in the victim organization network and exploitation for
a long period.

• Data collection: The attacker collects the target data
in this step through the obtained access permissions in
previous steps. Also, other actions such as changing the
settings or damaging systems are executed in this step.

• Exfiltration: In this step, the obtained information
is packaged and coded precisely and sent to the
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pre-determined servers. Moreover, the attacker tries to
clean his/her presence trace on the victim system.

The above-mentioned steps of an APT-based attack are
known as the Intrusion Kill Chain (IKC) [24]. IKC steps
are normally common in APT attacks and what distinguishes
APT attacks is the target of attack and the techniques used at
each stage. Various, new, and sophisticated technics are used
by the attackers to obtain the attack goals in each step of the
IKC that will usually make a very light trace in forms of low-
risk alerts. The attacker uses all types of deceptive, hiding,
encrypting, and normal behavior imitation technics besides
using the new and varied attacks to reduce his/her detec-
tion probability. This matter usually moves the generated
alerts by security sensors below the detection threshold level
(e.g. alerts with low risk).

III. RELATED WORK
Researches around APT based attacks can be classified into
two categories: definition and detection of the APT attack,
and defeating the APT attack. The researches on the first
issue consider a precise definition of APT attacks, identifying
the execution steps of these attacks, determining their char-
acteristics [1], [7], [9]–[11], [21], [31] and finally detecting
APT attacks [8], [14], [15], [27], [28], [29], [30], [33]. The
works in the second category try to offer prevention mea-
sures or approaches for coping with these attacks by breaking
the IKC or reducing the attack effects [13], [21]–[23], [33].
Note that approaches of this class of works are some-
how dependent on the operational conditions and platforms
(SCADA, Cloud, Cell Phone, Data Center, etc.).

Our work in this article is in the APT attack definition and
detection category. Therefore, let us have a review of several
related previous studies in this category. The selected works
are those that not only are closely related to our work (from
some aspects) but also are mostly pioneers and highly cited
works.

Giura and Wang [1] after describing APT attacks and
their related concepts have suggested a model for describing
APT based attacks. They proposed a new approach to model
APT attacks in the form of an attack pyramid. The aim
of the attacker in the attack pyramid is at the peak of the
pyramid, and the attack environments (physical environment,
user environment, network environment, and other environ-
ments) make the pyramid sides. Joining the events in these
environments makes an attack model. Events occurring in
these environments are recorded by security tools such as
firewalls and IDSs. Subsequently, these events are connected
by applying correlation techniques. The appearance of an
APT attack is detected by analyzing the integrated events
based on the environmental conditions and the time context.
The problem of the large data volume is raised in the pro-
posedmethod while tackling the great amounts of events. The
authors proposed to solve this problem using the MapReduce
technic. A weakness of this work is that it does not consider
the concept of kill chain in APT attacks, i.e. it just considers
the recorded security events with high risk in the system,

and the learning process is just on the environmental con-
ditions and time contexts to integrate the events. Moreover,
the presence of many irrelevant events in APT attacks which
are detected in this model increases the false-positive error
significantly.

Marchetti et al. [15] considered some characteristics of
APT attacks such as being long-term, ordinary behavior imi-
tation, and using encrypted communication as the challenges
of APT attacks detection. The approach of this work is detect-
ing and ranking hosts as victims of APT attacks. Therefore,
an approach based on the detection of abnormal behaviors
based on network traffic analysis by a special focus on the
delivered packet’s characteristics has been proposed. The
focus of this work is on detecting the theft of information by
APT attacks. Hence, the feature change settings and destruc-
tion of the victim’s system information by these attacks are
ignored in this work.

Niu and Zhang [11] considered some characteristics of
APT attacks including their dynamic, unique, and time-
consuming nature. The proposed approach in this work is
based on modeling APT attack steps. Therefore, they intro-
duced a model based on a complex network of the attack
graph which encompasses the time concept too. Note that
in prior works the attack graph did not cover the concept of
time. As a weakness of this work, only the generated security
events by the IDS are considered when switching between
the defined modes of the complex networks. This is while
the APT attacks’ kill chain includes other events that are
neglected in this approach.

Brogi et al. [7] considered some APT attack characteristics
such as forming attack campaign, attack uniqueness, and
long-term process of attack execution as the challenges of
APT detection and modeling. The basic approach of this
work is correlating the generated alerts by IDS in an attack
campaign form. The focus of this work is only on IDS alerts
and input/output traffic of a set of specified victims. This
way, some specific generated alerts are correlated and other
security and non-security alerts are neglected. This matter
causes it to be unable to identify significant parts of the
campaign that are made by probable attacks.

Wang et al. [14] considered some characteristics of APT
attacks such as using the stealthy technics, zero-day vul-
nerabilities, the longtime taken to run an attack, and the
issue of confrontation with the high volume of information
as the challenges of detecting APT attacks. The insight of
authors in this work is to identify C&C centers of APT
attacks through differentiating between valid and non-valid
DNSs and updating their lists. Thus, the characteristics of
the infected DNSs are detected and are used to learn the
algorithm. The main focus of this work is on detecting the
attack event traffic characteristics and its main drawback is
the lack of attention to both the fact that APT attacks use
valid domains too, and C&C centers that rapidly change and
sometimes are hierarchical.

Ghafir et al. [27] considered some APT attack characteris-
tics such as beingmultistage, changing and scraping data, and
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low precision of current detection approaches as the detection
challenges of these attacks. APT attacks are considered as a
four-stage process in this work including the stage of entering
the victim system, C&C communication, reconnaissance, and
exfiltration of the information. The considered APT attack
in this work includes this four-stage scenario in a definite
schedule; otherwise, if a part of this scenario (2 or 3 stages)
is detected in the victim system (in a definite period), they
are known as the sub-set or incomplete attacks. Based on
this definition for APT attacks, a synthetic dataset is used to
evaluate the suggested approach. The basis of the suggested
approach in this work is using machine learning technics to
detect the mentioned described four-stage chains or their sub-
sets. A drawback of this work is that in building the model,
only the network traffic is considered and no host-based event
is used in the proposed model as part of the APT attack
stages. Thus, the produced chain has a lost hook to consider
the generated alerts inside a host which lose detecting many
probable APT attacks.

Harikrishnan and Kumar [29] considered some character-
istics of APT attacks such as their sophisticated structure,
attack uniqueness, and long-term execution process as the
challenges in modeling and detection of APT attacks. The
approach of this work is based on using the generated logs
by Splunk (a SIEM brand) and extracting characteristics
of 100 APT attacks. These features are extracted by compar-
ing the generated logs of the Splunk operation in two attack
and normal modes. However, this work lacks consideration of
the unique nature of the attack (in selecting the characteristics
and symptoms). Furthermore, the events chain of APT-based
attacks in this method limits the suggested approach’s ability
in detecting the probable attacks which leads to APT attack
events in the long-term.

Milajerdi et al. [30] present HOLMES. This tool begins
with host audit data (e.g., Linux audit or Windows ETW
data) and produces a detection signal that maps out the stages
of an ongoing APT campaign. HOLMES work with alarms
that are generated for each host with audit logs. The idea in
HOLMES is to use the information flow between low-level
entities (files, processes, etc.) in the system as the basis for
alert correlation. A drawback of this work is that for attacks
that do not use or implicitly use the system calls, the proposed
approach is ineffective and these attacks cannot be identified.
Furthermore, attacks with multiple entry points cannot be
identified by this approach.

Lajevardi and Amini [31] consider the fact that APT
attacks are multi-stage, hybrid, long-term, and low-level. The
proposed approach in their work is to use low-level inter-
ception and correlation of the operating system events with
network events based on the semantic relationships that are
defined between the entities in the system ontology. In this
scheme,malicious events, especially the events that implicitly
violate the security policies, are deduced and detected based
on the event relations and the defined security policies. One of
the main features of APT attacks is their permanency, but the
approach presented in this article is not capable of analyzing

long-term information flows and identifying attack scenarios
due to the low-level relationships and the high volume of
information. However, this approach can only be effective in
identifying attacks that occur in the short term.

The approaches of the above-mentionedworks and perhaps
other related works are based on either detection of attack
signatures or modeling the attack process. We believe that
APT attacks have a dynamic behavior nature and exploit
new and diverse vulnerabilities and attack techniques. Con-
sequently, approaches based on identifying the attack signa-
tures to counter these attacks are not efficient and/or general
enough. The lack of proper algorithms and the complex-
ity of extracting the relationships between attack steps are
also major weaknesses of the attack process modeling-based
approaches. Table 1 summarizes the reviewed works, their
respective approaches, and their weaknesses.

TABLE 1. Summary of the works and the proposed approaches for
different classes of APT attacks detection.

The goal of this article is to present an approach
for identifying APT attacks by attempting to complement
and eliminate the weaknesses of attack process modeling
approaches. As mentioned earlier, APT attacks occur in the
IKC format, and what distinguishes APT attacks are the
purpose and the techniques used at each stage of the attack.
To this end, in the process modeling of the attack, causal rela-
tionships between the steps of the attack to create the IKC are
considered.
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FIGURE 1. General sketch of the proposed approach for ranking the hosts by the likelihood of infection through APT based attacks.

IV. THE PROPOSED METHOD
In this section, we explain the proposed method for rank-
ing hosts based on their likelihood to be exposed to APT
attacks. For this purpose, we perform a causal analysis of the
meta-alerts generated by both security sensors (like IDS and
antivirus) and non-security sensors (like router and Windows
log management system) to discover probable IKCs against
the given hosts. Each IKC is assigned a score of being a
part of an APT attack against the corresponding host and
finally, a normalized attack surface value is computed for
each host to show its rank of exposure to probable APT
attacks. In the following, at first, the general structure and
steps of the proposed method are formally explained and then
we show how it can be formulated in form of a dynamic
programming algorithm to perform the ranking process in
real-time.

A. GENERAL STRUCTURE AND STEPS
APT based attacks use various attack techniques and exploit
various vulnerabilities (diverse behavior), and their utilized
techniques are subject to change during the time (dynamic
behavior). However, what is nearly permanent in all APT
attacks is the IKC that is constructed and managed by the
attacker. By the way, the attacker in an APT attack tries
to simulate the normal behavior of the system and prevents
passing the thresholds of the detection systems. Therefore,
there are a significant number of events about these attacks
recorded by the non-security sensors that have been consid-
ered as ordinary events of the system with low risk. A model
to describe these attacks will be effective when it can provide
a proper and logical structure for representing the relationship
between various events by connecting the recorded events of
both security and non-security sensors. Our insight is that a
suitable model can be designed to detect independent APT
attacks when the basis of modeling is tracking the IKC. This
model should correlate alerts with different risk levels based

on causal relationships for each host to properly put the
occurred alerts in the chain.

The general sketch of the proposed model is shown
in Fig. 1. As shown in the figure, the process for ranking the
score of infection of hosts by APT based attacks consists of
four stages that are explained as follows.

Step 1: Alert collection
We aim to consider all of the system alerts (security and

non-security) and correlating them based on their causal
relationships. In most of the monitoring systems and pro-
posed models, alerts are labeled with some risk severity
levels e.g. high, medium, and low [45]–[48] and the focus of
almost all works are only on high-risk alerts which are gener-
ated by the security sensors. However, it is to be remarked
that in practice an IKC consists of a series of both secu-
rity and non-security events that are almost with low-risk
levels.

By the way, the approach of the previous works is mostly
based on analyzing all generated alerts by collecting them in a
single general model. Hence, the number of alerts for a given
set of hosts is very high in the duration of time, and hence
analyzing them is so problematic. To overcome this problem,
alerts with low and medium risk levels are always ignored in
previous works. Our idea is to consider and model events of
each host separately instead of modeling the attack for the
whole system. This way, the number of collected alerts for
each separate host will bemanageable. Hence, wewill be able
to consider all the generated alerts (security and non-security)
with all risk levels.

Step 2: Generating Meta-alerts
The underlying principle of every SIEM system is to aggre-

gate relevant data from multiple sources, identify deviations
from the norm, and take appropriate action. We assume that
there is a SIEM that generates alerts with different risk levels
based on monitoring activities of security and non-security
devices in the system. Our proposed method receives the
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generated alerts from a SIEM and ranks hosts based on their
likelihood of exposing with APT attacks.

For this purpose, the first step is to classify the received
alerts into some meta-alerts corresponding to different steps
of IKC using the given alert types. This is an abstraction we
perform to reduce the high number of alerts generated by the
SIEM while yet preserving the required features for doing
our job. As an example, Table 2 shows how we can classify
different generated alerts into four IKC step classes.

TABLE 2. Classification of alerts into IKC steps.

According to Table 2, any of the four labels of Recon-
naissance & Delivery, Exploitation, Operation, and Data col-
lection & Exfiltration is selected to specify the steps where
alerts are placed in the IKC. The alert types in Table 2 are
in fact those that are produced by Ravin SIEM of Payam-
Pardaz [34] using various security and non-security devices.
To distinguish between alerts related to security sensors and
non-security sensors in Table 2, the corresponding tags have
been added to each alert type. Note that, the number of IKC
steps may be considered more than four steps considering
the nature of the system, the alert types produced by the
underlying SIEM system, and the designated granularity for
observing the IKC. Also, note that meta-alerts are gener-
ated regardless of the alert risk levels. As mentioned earlier,
in contrast to some other similar works that consider only
high-risk alerts for analysis, here we consider all risk levels
because of the nature of APT attacks who try to be stealthy
and work below the detection thresholds of the monitoring
systems.

To formalize the model, let us first define the structure of
a meta-alert in the system.
Definition 1: A meta-alert is defined as a six tuple (IPsrc,

Portsrc, IPdst , Portdst , Ai, t ) where IPsrc and Portsrc are
the source IP and source port of the alert respectively, IPdst
and Portdst are the destination IP and destination port of the
alert respectively, Ai is the alert class, and t is the alert time

where T0≤t≤T. T0 is the time of the first alert in the alert
observation window and T is the current time.

Now let us define the set of meta-alerts for a given host.
Definition 2: The set of meta-alerts for a given host h

is defined as MAh = {(IPsrc, Portsrc, IPdst , Portdst , Ai, t)
| IPdst = h}.
Step 3: Finding IKCs
The main goal of this step is to identify the causal rela-

tionships among the attack events in form of IKC. When one
event is likely to be the antecedent for the other event in a
possible IKC, we say they are in a causal relationship; the
former event is the cause and the latter event is the effect. This
may happen when all of the following conditions are met:

1) Co-location: Cause and effect alerts occur on the same
host.

2) IKC ordering: Alert class index (IKC step) of the cause
alert precedes the alert class index of the effect alert.

3) Temporal ordering: The cause alert precedes the effect
alert in time.

This can be formally defined as follows.
Definition 3:Meta-alerts a = (IPsrc, Portsrc, IPdst , Portdst ,

Ai, t ) and b = (IPsrc′ , Portsrc′ , IPdst ′ , Portdst ′ , Ai
′

, t ′ ) are
correlated as a causal relationship from a to b (a b) if all
the following conditions are met:

Co-location: IPdst = IPdst ′ ∧ Portdst = Portdst ′
IKC ordering: i≤ i′

Temporal ordering: t ≤ t ′.
For Meta-alerts within each host, the source address and

destination address are the host address. For this Meta-alerts
also considered ‘‘Null’’ for the field source port and destina-
tion port.

Now we can define the causal relation as follows.
Definition 4: A Causal Relation CRh over the set of meta-

alerts for a given host h (MAh) is defined as CRh = {(a, b) ∈
MAh ×MAh | a b }
The causal relation helps us to define the concept of Causal

Directed Acyclic Graph (CDAG) for a host h. Note that
graphs in which vertices represent events occurring at a defi-
nite time, and edges are always connected earlier time vertices
to later time vertices are necessarily directed and acyclic. This
reflects our natural intuition of causality that means events
can only affect the future and they never affect the past, hence
we have no causal loops.
Definition 5: A Causal Directed Acyclic Graph for a host

h is defined as CDAGh = (V ,E) where V ⊂ MAh is the set
of vertices, and E = CRh is the set of edges.
All directed acyclic graphs have a topological ordering, i.e.

there is at least one way to order vertices such that direction
of all edges is the same along with that ordering. Based on
this concept, now we are ready to define an IKC for a given
host as follows.
Definition 6: An IKC of host h with length n (IKCn

h ) is
a Hamiltonian path in a CDAGh = (V , E) that is defined
as follows:(IKCn

h ) = v1, v2, . . . , vn where vi ∈ V for i =
1, . . . , n and there is a corresponding sequence of edges a1,
a2, . . . , an−1 such that aj = (vj,vj+1)∈ E for j = 1, . . . , n−1.
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Note that a Hamiltonian path is a path in a graph that visits
each vertex exactly once. According to definitions 6, APT
attacks can take the form of a Hamiltonian path of at least
2 steps and up to the maximum step of the IKC. Each step
can have multiple iterations in the path (not in a cycle or a
loop) and meta-alerts of this path are casually correlated.
For example, we can have an IKC chain with length 2 that
contains so many meta-alerts. Note that althoogh an IKC is
a Hamiltonian path, a Hamiltonian path is not necessarily
an IKC.

It should be mentioned that checking whether a graph
contains a Hamiltonian path is a hard problem, at the same
time it is easy to perform such a check when the given graph
is aDAG as in our case. To findHamiltonian paths, we can use
topological sorting. A topological sort or topological ordering
of a directed graph is a linear ordering of its vertices such that
for every directed edge from vertex u to vertex v, u comes
before v in the ordering. It has been shown that any DAG
has at least one topological ordering, and the usual algorithms
for topological sorting have running time linear in the num-
ber of nodes plus the number of edges, asymptotically, i.e.
O(|V |+ |E |) [35]. Therefore, if we assume that the number of
meta-alerts of a given host is m, then |V | = m, |E | is of order
of m2, and the complexity of finding all IKCs of the given
host is of order O(m+ m2) = O(m2).
Step 4: Host Scoring
After finding all possible IKCs of different lengths for the

given host, an assessment of the host infection probability
should be made. Our insight is that hosts with more discov-
ered IKCs, with more complete IKCs, and with IKCs that are
created in a long time are more likely to be infected than other
hosts. For this purpose, we define a measure to estimate the
likelihood of host infection based on the mentioned intuition
to rank the hosts in terms of probability of infection by APT
attacks.
Definition 7: Let IKCn

h = v1,v2, . . . , vn and vj = (IP(j)src,
Port (j)src, IP

(j)
dst ,Port

(j)
dst ,A

i(j) , t (j) ) for all j = 1, . . . , n.We define
Length Impact Coefficient (LIC) and Time Impact Coeffi-
cient (TIC) of IKCn

h as follows:

LIC(IKCn
h ) = |{A

i(j)
| forallj = 1, . . . , n}|TIC(IKCn

h )

= e

t (n) − t (1)

T − T0

Note that the LIC of a given IKC shows the number of distinct
values of Meta-alert types (IKC steps) in the IKC. LIC for
a given IKC is higher as the number of distinct IKC steps
is higher. This indicator helps considering APT attacks that
are not fully recorded by the sensors (i.e. involve fewer IKC
steps) in the infection assessment.

TIC alsomeasures the time required to build the given IKC.
Considering the nature of APT attacks which normally take
place over a long time, the larger the TIC, the more likely the
IKC to be an APT attack. However, any APT attack with any
time interval (long or short) is considered by this indicator in
assessing the level of infection.

Now we are ready to define a combined measure for eval-
uating the infection score of a given host.
Definition 8: Let H be the set of all hosts in the system,

MAh be the set of meta-alerts for a given host h ∈ H , and
{IKC∗h } be the set of all discovered IKCs for host h with
different lengths i.e. {IKC∗h } = {IKC

∗
(1)

h , IKC∗
(2)

h , . . .}, then
the Attack Surface of host h is defined as

AS(h) =
∑

π∈{IKC∗h }

LIC(π )× TIC(π )

and the Normalized Attack Surface of host h is:

NAS(h) =
AS(h)∑
h∈H |MAh|

For ranking hosts in the system against APT attacks, it is
enough to compute the normalized attack surfaces for all
hosts. The hosts with higher normalized attack surfaces are
more likely to be infected by some APT attacks.

B. REAL TIME ANALYSIS ALGORITHM
As mentioned earlier, the complexity of finding {IKC∗h } is
O(m2) where m is the number of meta-alerts in the given
host h. If we assume that the number of all hosts in the system
is k , then the complexity of finding all IKCs is O(km2). This
shows that the number of hosts has a linear effect on the
complexity of the proposed method, and at the same time,
it is not also reasonably so high. Therefore, we can assume
that the main factor in the complexity of the proposed method
is the number of meta-alerts produced by SIEM for each host
in the system.

To have an estimation of the number of meta-alerts for
each host, we can use the number of raw logs in the system.
According to [39], an estimation of the number of all logs
logged for 10K hosts over a period of one day in normal
situations is about 1.5 × 109, and in peak time is about
0.5×109 which can be count totally as 2×109 logs. Therefore,
it will be about 720 billion logs for each year for 10k hosts
and hence about 72 million logs for each host. Note that all
registered logs do not necessarily produce an alert. Alerts
are usually generated by correlating the logs, policies of
each organization, and the algorithms in the SIEMs in terms
of three types of low, medium, and high risks. Regarding
our practical observations with Ravin and other commercial
SIEMS, the rate of alert per log is not more than 1% in most
normal cases, although it may happen that due to considering
special monitoring policies it reaches higher values. Assum-
ing conservatively that 10% of the logs generate the alert,
an average of 7.2 million alerts per host per year will be
generated. This number means we have only less than 20K
alerts per day, for each host.

Because of the nature of the APT attacks, the proposed
method needs to access a long time log for the discovery
of IKCs and computing the attack surface values. However,
as we see, in the real world we have to deal with reasonably
not so high newly generated alerts. Hence, although the com-
plexity of the proposed algorithm is of the square root of the
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total meta-alerts since the rate of generating alerts for each
separate host is not so high, we can implement it as a real-time
ranking system taking advantage of a dynamic programming
approach.

Algorithm 1 Update-NAS
Input: mah

// Newly generated meta-alert for
host h

Output: NAS(h)

//Normalized Attack Surface of
host h

Maintain: Ah, Bh, ASh, TotalMA

// Global data structures
1: t = Ah

// Finding new corrolations; t is a
pointer to Ah

2: repeat
3: Let t = [ikc|IKClist]
4: Let ikc = [ma|MAlist]
5: if (mah  ma) then
6: ikc = [mah|ikc]
7: ASh = ASh + LIC(ikc)× TIC(ikc)
8: TotalMA = TotalMA+ 1
9: NAS(h) = ASh

TotalMA
10: end if
11: t = IKClist
12: until t 6= null

// Checking it with no correlated
yet ones

13: found = no
14: for ∀ma ∈ Bh do
15: if (mah  ma) then
16: newikc = [mah, ma]
17: Ah = [newikc|Ah]
18: Bh = Bh \ {ma}
19: found = yes
20: ASh = ASh + LIC(newikc)× TIC(newikc)
21: TotalMA = TotalMA+ 1
22: NAS(h) = ASh

TotalMA
23: end if
24: end for
25: if (found = no) then
26: Bh = Bh ∪ {mah}
27: end if
28: return NAS(h);

The pseudo-code of updating the normalized attack surface
for a given host h (i.e NASh) shown in Algorithm 1. This
algorithm uses a dynamic programming approach and is done
for the last generated alert of each host separately. The results
are then integrated to rank the hosts in real-time. This way,
the whole process also has a high potential of making it
parallel and is very appropriate for real-time applications.

The algorithm also maintains some global data structures:
list of all IKCs found so far for the given host h (Ah), the set of
meta-alerts for the given host that are not yet correlated with
any other meta-alerts (Bh),the current attack surface for the
given host (ASh), and the number of total meta-alerts used in
all IKCs of all hosts so far.

For each generated meta-alert, first, the correlation of this
alert is checkedwith the identified IKCs in listAh. If a correla-
tion is found, then the corresponding IKC will be completed.
The correlation of the newmeta-alert is then checked with the
meta-alerts in set Bh to check new possible correlations with
the met-alerts in this set. The meta-alert will be added to set
Bh if no new correlation is identified. Each time that list Ah is
updated, the value of NASh is recalculated and updated.

V. EXPERIMENTAL EVALUATION
In this section, we try to experimentally evaluate the proposed
approach. We perform two experiments. The goal of the first
experiment is to evaluate the applicability of the proposed
approach in properly detecting hosts that are exposed to APT
attacks in a semi-real environment. Furthermore, to evaluate
the functionality of the proposed method in attack scenarios
conducted in a long time, a second experiment is conducted
via simulating the behavior of APT attacks in long periods.
In experiments, we use several performance criteria to eval-
uate and compare the proposed approach to the other similar
works.

One of the big challenges of evaluating our work and also
other similar works is that providing real environments and
even real datasets containing logs or events related to APT
attacks is very hard. Hence designing a sound evaluation
procedure is a real challenge. As far as we know, there is
currently no datasets with labeled records of APT attacks.
Specific APT related data is very limited and it is very hard to
construct real-world datasets. This is mostly due to the nature
of APT attacks: they are usually multi-stage and hybrid,
designed for specific purposes, normally generate low-risk
alerts and hence because of their low- risk level do not con-
sidered by detection and monitoring systems, and generally
disappear or change after revealing or identifying their C&C
centers. For these reasonsmost of theworks on detectingAPT
based attacks use their own synthesized datasets instead of the
real-world data [28]–[31].

To respond the mentioned challenge, we tried to provide
a semi-real dataset and conducted simulation to generate the
required meta-alerts. The semi- real dataset is a composition
of a real-world APT attack free alert dataset with an extracted
dataset from a real-world APT attack scenario description.
We call it semi-real because it is synthesized from two real-
world datasets. However, because the duration of the semi
real alert scenariowas not so long, we could not cover evaluat-
ing the proposed method while dealing with the long duration
of APT attacks that is an important feature of these attacks.
Therefore, in the second experiment, we try simulating the
behavior of APT attacks for generating a series of simulated
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events containing both normal events and APT attack events
in a long time and with a large number of hosts.

A. FIRST EXPERIMENT: DETECTING HOSTS
EXPOSED TO APT ATTACKS
In this experiment, we aim to evaluate the applicability of
the proposed method in properly detecting hosts that are
exposed to APT attacks. For this purpose, we first develop
a semi-real dataset containing labeled APT attack IKC meta-
alerts for some random hosts. After that, we perform a 10-
fold cross-validation process. Through this process we find
a proper attack surface threshold using the labeled meta-
alerts in the training fold and then evaluate the method in
discriminating between intact and exposed hosts using the
achieved threshold in the test fold. Also, we compare the
achieved performance results with some reported results of
similar works.

1) GENERATING THE SEMI-REAL DATASET
For generating a dataset of meta-alerts containing labeled
IKC and intact meta-alerts, we took some real-world alerts
generated by a commercial SIEM to create an APT attack
free meta-alert dataset and then randomly injected some APT
attack meta-alerts derived from another dataset of real-world
APT attack traces as labeled APT attack meta-alerts. The
conducted steps for this process are explained in detail as
follows:

Step 1 (Collecting APT attack free data):
We use a dataset of attack free meta-alerts produced by

Ravin, a SIEM system developed by PayamPardaz Com-
pany [35]. Ravin is a commercial SIEM for collecting, ana-
lyzing, correlating, and reporting information about security
and non-security equipment, servers, software, and other
existing sensors in an organization. PayamPardaz released
the Ravin product as a powerful SIEM for the deployment
of Security Operation Centers (SOC) since 2012 and is cur-
rently the most popular domestic SIEM in the Iranian security
market.

The considered dataset is the output of running Ravin in a
company with 250 hosts containing 667K alerts generated for
3.1M investigated logs for a period of 3 days from Septem-
ber 23th to September 26th, 2018. Regarding the available
information during and after the mentioned period and the
type of functionality of the company, we sure that there was
no APT attack in progress during this period. Therefore we
assume that these alerts although may contain conventional
attacks but is APT attack free. Hence we add a meta-alert
tag to all of its alerts according to the procedure described
in Step 2 in Section IV, as well as an ‘‘intact’’ label and use
this dataset as our ground truth data.

The alerts generated by Ravin are in IDMEF format (the
details of the format are described in RFC 4765). As an
example, an alert produced by Ravin and its mapping to a
meta-alert is shown in Fig. 2.

FIGURE 2. A sample alert produced by Ravin and the way of mapping it
to a meta-alert.

Step 2 (Making APT attack meta-alerts):
The Transparent Computing (TC) program is a DARPA

effort for developing technologies and an experimental pro-
totype system to provide forensic and real-time detection of
APTs as well as proactive enforcement of desirable poli-
cies [32]. We have used the report of the third TC adversarial
engagement program (2018) named as TA5.1 Ground Truth
Report Engagement 3 [32]. This program consisted of one
scenario with multiple independent attackers where attackers
consisted of two main groups, a nation-state, and a common
threat and the goal of the nation-state attacker was to steal
proprietary and personal information from the targeted com-
pany. The published report includes 27 APT attack scenarios
conducted fromApril 6th to April 13th, 2018 including typical
APT activities such as browser-induced drive-by initial com-
promises, backdoor injection, privilege escalation, internal
reconnaissance, exfiltration of sensitive assets, and cleanup
of attack footprints. In these attacks, sophisticated attack
vectors such as reflective loading, web-shell capabilities, and
in-memory module loading were used.

At first, we map the described scenario for all APT attacks
in TA5.1 report into the data structures in our formalism.
For this purpose, reading and analyzing each attack sce-
nario manually, the meta-alerts for each arrack vector were
extracted and represented as IKCs. Also for each extracted
IKC, an IKC step-index was derived via analyzing the attack
process and the defined classification process (see Table 2).
Note that regarding the previous definitions and the existing
information for each attack scenario in the report, mapping
attack steps into meta-alerts and hence creating the corre-
sponding IKC is not so hard. As an example, Fig.3 shows
the schematic representation of the extracted IKC for the
‘‘THEIA - Firefox Backdoor with Drakon APT In-Memory’’
attack event. At each IKC step, a short description of the
activities in that step as rationales for the performed mapping
process has been shown.

Step 3 (Injecting TA5.1 APT IKCs into the Ravin
meta-alert dataset):

We have a 7 days of attacks in TA5.1 scenarios and
randomly injected the corresponding IKCs into the Ravin
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FIGURE 3. Schematic representation of the extracted IKC for the ‘‘THEIA - Firefox Backdoor with Drakon APT In-Memory’’ attack event.

meta-alerts dataset (which is 3 days). Assume that a host has
been randomly selected and is a candidate to inject an attack
vector scenario. The following steps are conducted for this
purpose:

1) A random attack scenario in TA5.1 is selected and its
corresponding IKC is derived.

2) Themeta-alert time values in all the derivedmeta-alerts
of the selected attack scenario are adopted. For this
purpose, depending on the time frame in which the
attack will take place on the selected host, we randomly
generate the time for the TA5.1 attack vector and apply
them to the records respectively. For example, if the
attack is to take place within 2 days, we will generate a
random time interval of 2 days for each meta-alert

3) The meta-alert destination IP address values in all the
derived meta-alerts of the selected attack scenario are
adopted. All of them are changed to the selected host
IP address to which we are going to inject the attack.

2) EVALUATION PROCESS
After generating the semi-real dataset, we use it as our ground
truth data to evaluate the proposed approach in properly rank-
ing hosts that are more likely to expose to APT attack. We use
a k-fold cross-validation approach to perform the evaluation
process. The conducted evaluation demonstrates the perfor-
mance of the proposed approach and the extent to which the
results of the proposed method can be generalized and is
independent of the training data. Note that in k-fold cross-
validation, the original sample is randomly partitioned into

k equal sized subsamples in which one is used each time for
testing and the other k-1 is used for training. This procedure
is repeated, and all data is used exactly once for training and
once for testing. Finally, the average result of this k validation
is selected as the final estimate. Base on some researches
[40]–[42] we select to use a 10-fold cross-validation method.
For each iteration of the cross-validation process, we used
225 hosts (including 202 intact hosts and 23 exposed hosts)
in the training phase and 25 hosts (including 22 intact hosts
and 3 exposed hosts) in the test phase.

The NASh criterion for each host is used to rank the
likelihood of exposing hosts to APT attacks. In the training
phases, we try to find the optimal NASh for discriminating
the exposed hosts from the intact hosts (i.e. the threshold
value) based on the synthesized ground truth data. To do
the optimization process we tried to maximize F1-score (The
harmonic mean of precision and recall) by exploring the state
space of the threshold value.

3) EVALUATION RESULTS
To show the effectiveness of the proposed approach, we con-
duct a sensitivity analysis experiment to analyze the effects
of considering different security and non-security sensors and
impact severity tags (risk levels).

The result of applying the optimum threshold value found
in a sample round of the training phase and its corresponding
test phase are shown in Fig. 4 in which all alerts generated
by security and non-security sensors with any risk levels
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FIGURE 4. The classification results in one round of evaluation based on
the values of NAS (considering alerts generated by both security and
non-security sensors with all risk levels).

TABLE 3. The Results of evaluation with 10-fold cross-validation process.

are considered. The circle (red) and rhombus (blue) samples
are truly classified exposed and intact hosts respectively, and
the triangle (yellow) samples are the misclassified samples
according to the optimum threshold value found in this round
of evaluation.

After achieving the optimum threshold values for each
iteration, the average of all 10 iterations was obtained and
was used to evaluate the performance in the test phase. The
evaluation results including recall, precision, accuracy, FPR,
and F1-score are shown in Table 3. Note that these criteria are
the standard measures used in machine learning works [43].
The values in Table 3 are the averages of the values over
10 rounds of tests in the 10-fold cross-validation process.
As we see, the highest precision in Table 3 is achieved when
both security and non-security sensors and all alert types
are used. Besides, the highest recall parameter is achieved
when only security sensors and high risk alerts are used.
This means considering non-security sensors and low risk
alerts cost in lightly decreasing the recall (less sensitive
detection) while much increasing the precision (more precise
detection). However, yet the harmonic average of precision
and recall (F1-score) is achieved when all sensors and alerts
with all risk levels are considered. By the way, regarding
high volume of alerts produced by SIEMS, normally it is
preferable to have more precise systems than more sensitive
systems.

B. SECOND EXPERIMENT: DEALING WITH LONG
TIME ATTACK SCENARIOS
Our second experiment focuses on the long-term nature of
APT attacks. As mentioned earlier, at the moment, we could
not find any log or alert dataset to cover APT attack data in
the long run (i.e. several months or years). Therefore, in this
experiment, such a dataset is produced via simulation. For
this purpose, we simulate the so-called ‘‘sleep & wake up’’
behavior of APT attacks that are typically used to extend the
time of the attack [31].

The objective of conducting the second experiment is to
investigate the ability of the proposed approach in 1) identi-
fying hosts that are targeted by APT attacks over a long time,
and 2) recognizing APT attacks before completion in as early
stage as possible.

1) SIMULATING THE BEHAVIOR OF APT
ATTACKS IN A LONG TIME
One of the important and distinguishing features of APT
attacks is the long duration of these attacks that sometimes
last from a few months to a year or even more. The reason
for the long span of the attack is to prevent it from being
detected by existing sensors and detection techniques. In the
sleep & wake-up technique, the attacker performs part of the
attack process, then enters the so-called sleep phase and does
not perform any activity in the victim’s set for a significant
time, and then continues the attack process when it wakes up.
This behavior of falling asleep and waking up intermittently
over a long time causes the ineffectiveness of time-based
window detection techniques. Also, this technique makes the
detection methods that either have a computational overhead
problem or are based on checking time-related close correla-
tions ineffective.

FIGURE 5. 10 scenarios for simulating APT attacks over a period
of 365 days.

We use 10 different scenarios to model the technique of
sleeping and waking up APT attacks according to Fig.5.
In each of the 10 scenarios, the process of executing and
sleeping the attacker is examined in a 365-day time frame.
These scenarios can be traced every day for 365 days, but
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FIGURE 6. Comparison of NAS of intact and exposed hosts in a period of 365 days according to 10 different scenarios.

4 phases of 90-day intervals are used to model the injection
process and also to compare the results.

To achieve the experiment objectives, we have written a
Java code for simulating the behavior of attackers to generate
meta-alerts for 10K hosts. The specifications of the system
on which the simulation was performed are as follows:
- Windows 10 with Core i7 CPU - 3.40 GHz with 128GB

of RAM
In the simulation process, we estimated that for 10K hosts,

60 billion logs will be recorded in a month, thus producing
about 720 billion logs for a 12-month interval. Assuming
1% of this number will lead to producing meta-alerts, about
7.2 billion alarms were generated for 10K hosts. To produce
the simulated alerts for each host we first generate a series
of random meta-alerts for each host and then labeled APT
attack related meta-alerts are injected into the series with a
365-day timeline according to the 10 mentioned scenarios
over four 90-day time phases. For example, according to the
fifth scenario, the attacker performs the first stage of the
attack in the first 90 days. It then performs the second and
third stages of the attack in the second 90 days. It then enters
the sleep phase, and after a 90-day pause, performs the fourth
stage of the attack in the last 90 days of the interval. At the end
of each 90-day injection phase, the value of NAS is calculated
and examined.

The process of injecting attacks is as described in the
first experiment. We use the APT attack scenarios of the
TA5.1 report collection to do the job gain. 9500 hosts out
of 10K hosts are considered as intact and 500 hosts are

intended for exposure to APT via injecting the attack vec-
tors. There are 10 different scenarios for injecting attacks on
these 500 hosts, so we applied a common scenario for every
50 hosts. Finally, the achieved NASs are used to compare the
exposure and intact hosts under different scenarios at the end
of each 90 days.

2) SIMULATION RESULTS
To compare the values of the NAS index for the hosts of
the simulated set in different scenarios and situations over a
period of 365 days we have shown the cumulative results of
the experiments in Fig. 6. This figure consists of two parts:
The graphs on the left side show the status of the NAS index
for 9500 hosts in normal condition (in four 90-day phases).
The graphs on the right side show the corresponding status of
the NAS index for the 500 hosts with injected attack scenarios
(in four 90-day phases). In each diagram in the left side,
10 different scenarios are separated by dashes.

As can be seen from Fig. 6, the NAS is not increased
significantly as long as the attack is in its first and second
stages, but as soon as the attacker enters the third stage of
the attack and about 75% of the attack scenario is completed,
it is increased significantly and its value is distinguishable
from normal hosts. Hence the time window determines the
correlation between alerts. As a result, no matter how much
the attacker tries to prevent the attack from being detected
using the sleep-wake technique, it will not affect the process
of measuring the NAS index and attack detection.
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The first objective of this experiment was to investigate the
effect of conducting APT attacks in long runs on the number
of detected host infections. Scenarios 1 to 9 can be considered
for this purpose. As we see in all 9 scenarios, over time and
with the completion of the attack, the NAS affected by the
attack is increased and finally exceeds the threshold of 0.25 at
the fourth 90-day phase.

The second objective of this experiment was to examine
whether it is possible to identify APT attacks before complet-
ing all their steps. Scenarios 2 to 7, and 10 can be considered
for this purpose. The results of the experiments show that
after conducting the third step by the attacker, the NAS value
approaches the threshold 0.25 and in most cases exceeds it
which shows that the corresponding hosts are exposed to the
attack.

C. COMPARISON AND DISCUSSION
Due to different conditions of the evaluation process and lack
of standard datasets for APT attacks, a quantitative com-
parison of the detection performance of the proposed work
with other similar works is not straightforward. However,
assuming that all works are evaluated in an almost sound
process, comparing the results of the proposed approach with
other researches who have reported similar performance cri-
teria makes sense. Fig. 7 shows the position of the proposed
approach and three other similar works (who reported the
required performance values) in the ROC (Receiver Oper-
ating Characteristic) space. Note that approaches who are
placed near point (0, 1) in the ROC space have better per-
formance than others. The position of the proposed approach
in the ROC space (0.8710, 0.1379) shows that it brings in a
better balance between recall and FPR parameters than other
compared approaches.

FIGURE 7. The position of the proposed approach and some similar
works in the ROC space.

Table 4 numerically compares our proposed method and
other similar works regarding the available reported perfor-
mance indexes. Note that thementioned results of other works
are based on their reported values. However, although the
experimental setup and environments of these works are dif-
ferent, assuming their achieved results are sound, we can use
them to compare the works. As this table shows, because of
the lack of required information, we are not able to precisely

TABLE 4. Comparison between the results of the proposed work and
other similar works.

judge the superiority of a work over others although totally
the achieved results of our proposed work are acceptable.
However, it is necessary to mention that the works are dif-
ferent from some aspects (e.g. working real-time or offline,
considering the whole alerts set simultaneously or per host,
and so on) that makes it difficult to judge only based on the
achieved quantitative performance indexes when comparing
the works together. For this reason, we discuss some qualita-
tive aspects of similar works and compare other works with
ours as follows that show some important advantages of the
proposed method over other similar ones:

• Balancing the early attack detection and accuracy: It
is always desirable to detect APT attacks as earlier as
possible before completely involving the victim. For this
purpose, most approaches such as [7], [11], [14] try
to detect APT attacks in the first phase of APT attack
process (i.e. reconnaissance & delivery). This however
almost leads to a high percentage of false alarms. As was
shown in Fig. 6, the proposed approach tries to detect
attacks continuously through all stages of the attack
process. This approach that is more consistent with the
nature of the APT attacks, brings in the highest available
accuracy during the attack life cycle increasingly. Note
that regarding the simulation results, the attack detec-
tion errors of the proposed approach at the first to the
fourth stage of the attack process are 43.16%, 25.34%,
14.10%, and 10.47% correspondingly, that show a bal-
ance between early detection and high accuracy.

• Combating APT attack outlasting: APT attacks operate
over a long and slow time frame. Approaches such
as [11], [27], [29] that rely on time window to iden-
tify or emphasize the closeness of alerts and events
in the correlation are almost unsuccessful in precisely
identifying these attacks. At the same time, the long
period of attack activities makes it necessary to deal with
analyzing a large amount of information. According
to [31], all existing approaches are ineffective in the
face of outlasting features of APT attacks. The proposed
approach uses a dynamic algorithm that slices the alerts
based on separate hosts from one side and lets the desired
time window be extended as necessary as possible from
the other side. Therefore it can combat the outlasting
feature of the APT attacks, yet successfully dealing with

162654 VOLUME 8, 2020



M. Khosravi, B. T. Ladani: Alerts Correlation and Causal Analysis for APT Based Cyber Attack Detection

a high volume of alert information using a divide and
conquer approach.

• Ranking the hosts in terms of likelihood of being
infected with APT attacks: In large organizations that
work with large numbers of hosts, it is very important
to identify which hosts are affected by APT attacks and
how likely they are to be infected. Especially with lim-
ited manpower, organizations need to have priorities for
considering hosts. The approach presented in this article
taking advantage of NAS measure makes it possible to
rank hosts in terms of their infection likelihood. Note
that works who try to rank hosts are not either real-
time or are not able to early detect APT attacks [11].
Moreover, as far as we know, there is no work to deter-
mine the likelihood of infection by APT attacks for each
host. The work that ranks hosts like [15] only determines
a priority list.

• Hybrid and wide risk range alert correlation: To pre-
cisely detect APT attacks we need to observe alerts
generated due to the activities of various network and
host sensors, i.e. we need to perform a hybrid alert
correlation. By the way, we need to consider alerts with
a wide risk range, rather than only high-risk alerts. The
need for hybrid and wide risk range alert correlation
has been overlooked in most previous works. As of
this writing, there has been only one approach ([31])
that does hybrid alert correlation (i.e. considering both
network and host alerts). Another problem with existing
approaches is that they only consider high-risk alerts and
ignore other medium- and low-risk alerts because they
are reluctant to encounter large amounts of information
in modeling [1], [7], [27]. As care about neither the alert
origin nor the alert risk level in the proposed method,
it can more accurately detect APT attacks.

VI. CONCLUSION
In this article, a method for modeling and detecting APT
attacks is presented in which intrinsic characteristics of these
attacks such as being stealthy, stepwise, slow, long-term,
planned, and based on a set of varied zero-day vulnerabilities
are considered. The proposed approach is based on causal
analysis to correlate meta-alerts produced by SIEMs to dis-
cover probable IKCs against the given hosts. Each IKC is
assigned a score of being a part of an APT attack against the
corresponding host and finally, a normalized attack surface
value is computed for each host to show its rank of exposure
to probable APT attacks.

Two experiments were designed to evaluate the proposed
approach. In the first experiment, by combining two real
datasets from a commercial SIEM and the reported attack
scenarios in the TA5.1 report, a labeled dataset from the
actual APT attacks was generated to use it in evaluating
the proposed approach. The results of the first experiment
show the acceptable accuracy of the proposed model in real-
time detection of APT attacks. In the second experiment,
a fully simulated dataset of meta-alerts with injected APT

attack vector meta-alerts was generated. Using this dataset
we evaluated the functionality of the proposed method in
different slow and long-term attack scenarios. The results of
this experiment showed the ability of the proposed method
in the detection of ongoing APT attacks especially when we
face outsmarting behaviors in attack scenarios.

The proposed method can be implemented as an extension
to SIEM tools to equip them with a real-time facility for the
ongoing ranking of hosts in the organization according to
their likelihood of infection to APT attacks.

This research has the potential for more work and can be
continued in the future in different directions. For example,
in addition to causal relationships in the correlation process,
we can use information flow between alerts as well as con-
textual information to enrich the way of finding and scoring
IKCs. This way, we can hope to do a more accurate detection
with lower false positives. Furthermore, the proposed causal
analysis method and the real-time algorithm can be adapted
to different contexts such as fraud detection who deal with
similar conditions. Note that in fraud detection problems
we face similar underlying alert generation infrastructure as
well as smart fraudsters who have similar APT attackers’
characteristics.

ACKNOWLEDGMENT
The authors would like to thank their colleagues from
PayamPardaz, especially Ahmad Reza Norouzi for assistance
with collecting Ravin meta-alert dataset and also his com-
ments that greatly improved the manuscript. They would
also like to thank Amir Hosein Aliakbarian for helping them
during the course of evaluation in this research.

REFERENCES
[1] P. Giura and W. Wang, ‘‘Using large scale distributed computing to unveil

advanced persistent threats,’’ Sci. J., vol. 1, no. 3, pp. 93–105, 2012.
[2] B. Krekel, G. Bakos, and C. Barnett, ‘‘Capability of the People’s Repub-

lic of China to conduct cyber warfare and computer network exploita-
tion,’’ US-China Econ. Secur. Rev. Commission, Washington, DC, USA,
Res. Rep, 2009.

[3] B. Hartman, D.Martin, and D. R. Moreau, ‘‘Mobilizing intelligent security
operations for advanced persistent threat,’’ RSASecur. LLC, Bedford,MA,
USA, Tech. Rep. 11313-apt-brf, Feb. 2011, pp. 1–16.

[4] M. Antonakakis, C. Elisan, D. Dagon, G. Ollmann, and E. Wu, ‘‘The
command structure of the Aurora botnet,’’ Dambala, Atlanta, GA, USA,
Tech. Rep. US-9686291-B2, Mar. 2010, pp. 1–32.

[5] B. Binde, R. McRee, and T. J. Oconner, ‘‘Assessing outbound traffic to
uncover advanced persistent,’’ SANS Tech. Inst., North Bethesda, MD,
USA, Tech. Rep. JWP-Binde-McRee-OConnor, May 2011, pp. 1–35.

[6] Microsoft. (2011). Microsoft Remote Desktop Protocol (RDP). [Online].
Available: http://bit.ly/UGGZCy

[7] G. Brogi and V. V. T. Tong, ‘‘TerminAPTor: Highlighting advanced per-
sistent threats through information flow tracking,’’ in Proc. 8th IFIP Int.
Conf. New Technol., Mobility Secur. (NTMS), Nov. 2016, pp. 1–5.

[8] S. Siddiqui, M. S. Khan, K. Ferens, and W. Kinsner, ‘‘Detecting advanced
persistent threats using fractal dimension based machine learning classifi-
cation,’’ in Proc. ACM Int. Workshop Secur. Privacy Anal. (IWSPA), 2016,
pp. 64–69.

[9] G. Brogi and E. Di Bernardino, ‘‘Hidden Markov models for advanced
persistent threats,’’ Ph.D. dissertation, Caen-Normandy Univ., Caen, Paris,
2017.

[10] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, ‘‘A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1851–1877, 2nd Quart., 2019, doi: 10.1109/COMST.2019.2891891.

VOLUME 8, 2020 162655

http://dx.doi.org/10.1109/COMST.2019.2891891


M. Khosravi, B. T. Ladani: Alerts Correlation and Causal Analysis for APT Based Cyber Attack Detection

[11] W. Niu, X. Zhang, G. Yang, R. Chen, and D. Wang, ‘‘Modeling attack
process of advanced persistent threat using network evolution,’’ IEICE
Trans. Inf. Syst., vol. 100, no. 10, pp. 2275–2286, 2017.

[12] S. Chandran, H. P, and P. Poornachandran, ‘‘An efficient classification
model for detecting advanced persistent threat,’’ in Proc. Int. Conf. Adv.
Comput., Commun. Informat. (ICACCI), Aug. 2015, pp. 2001–2009.

[13] A. Juels and T. F. Yen, ‘‘Sherlock Holmes and the case of the advanced
persistent threat,’’ in Proc. 5th USENIX Workshop Large-Scale Exploits
Emergent Threats, 2012, p. 2.

[14] X. Wang, K. Zheng, X. Niu, B. Wu, and C. Wu, ‘‘Detection of command
and control in advanced persistent threat based on independent access,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[15] M. Marchetti, F. Pierazzi, M. Colajanni, and A. Guido, ‘‘Analysis of
high volumes of network traffic for advanced persistent threat detection,’’
Comput. Netw., vol. 109, pp. 127–141, Nov. 2016.

[16] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler, ‘‘Combating advanced
persistent threats: From network event correlation to incident detection,’’
Comput. Secur., vol. 48, pp. 35–57, Feb. 2015.

[17] Y. Wang, Y. Wang, J. Liu, and Z. Huang, ‘‘A network gene-based frame-
work for detecting advanced persistent threats,’’ Proc. 9th Int. Conf. P2P,
Parallel, Grid, Cloud Internet Comput., Nov. 2014, pp. 97–102.

[18] A. Vance, ‘‘Flow based analysis of Advanced Persistent Threats detect-
ing targeted attacks in cloud computing,’’ in Proc. 1st Int. Sci.-Practical
Conf. Problems Infocommun. Sci. Technol., Kharkov, Ukraine, Oct. 2014,
pp. 173–176.

[19] G. Vert, B. Gonen, and J. Brown, ‘‘A theoretical model for detection of
advanced persistent threat in networks and systems using a finite angular
state velocity machine (FAST-VM),’’ Int. J. Comput. Sci. Appl., vol. 3,
no. 2, pp. 41–64, May 2014.

[20] K.-F. Hong, C.-C. Chen, Y.-T. Chiu, and K.-S. Chou, ‘‘Ctracer: Uncover
C&C in advanced persistent threats based on scalable framework for
enterprise log data,’’ in Proc. IEEE Int. Congr. Big Data, Jun./Jul. 2015,
pp. 551–558.

[21] S. Singh, P. K. Sharma, S. Y. Moon, D. Moon, and J. H. Park, ‘‘A com-
prehensive study on APT attacks and countermeasures for future networks
and communications: Challenges and solutions,’’ J. Supercomput., vol. 75,
no. 8, pp. 4543–4574, Aug. 2019, doi: 10.1007/s11227-016-1850-4.

[22] R. Abreu, D. BobrowDave, and D. Burke, ‘‘Diagnosing advanced per-
sistent threats: A position paper,’’ in Proc. 26th Int. Workshop Princ.
Diagnosis, 2015, pp. 193–200.

[23] A. R. Hern, A. C. VieIRA, and S. HHoumb, ‘‘Detection of advanced
persistent threats using system and attack intelligence,’’ Proc. Emerg., 7th
Int. Conf. Emerg. Netw. Syst. Intell., 2015, pp. 91–94.

[24] J. J. Mulligan, ‘‘Kill Chain, analysis of the 2013 target data breach,’’
U.S. Congr., Senate, Committee Commerce, Sci., Transp., S. Rep.114-50,
Mar. 2014.

[25] M. Parkour. (2013). Contagio Malware Database. [Online]. Available:
http://contagiodump.blogspot.ca

[26] P. S. Ferrell, ‘‘Apt infection discovery using DNS data,’’ Los Alamos Nat.
Lab. (LANL), New Mexico, NM, USA, Tech. Rep. LA-UR-13-23109,
2013.

[27] I. Ghafir, M. Hammoudeh, V. Prenosil, L. Han, R. Hegarty, K. Rabie,
and F. J. Aparicio-Navarro, ‘‘Detection of advanced persistent threat using
machine-learning correlation analysis,’’ Future Gener. Comput. Syst.,
vol. 89, pp. 349–359, Dec. 2018.

[28] J. V. Chandra, N. Challa, and S. K. Pasupuleti, ‘‘A practical approach to E-
mail spam filters to protect data from advanced persistent threat,’’ in Proc.
Int. Conf. Circuit, Power Comput. Technol. (ICCPCT), Mar. 2016, pp. 1–5.

[29] V. N. Harikrishnan and G. T. Kumar, ‘‘Advanced persistent threat analysis
using Splunk,’’ Int. J. Pure Appl. Math., vol. 118, no. 20, pp. 3761–3768,
2018.

[30] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. N. Venkatakr-
ishnan, ‘‘HOLMES: real-time APT detection through correlation of sus-
picious information flows,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 1137–1152.

[31] A. M. Lajevardi and M. Amini, ‘‘A semantic-based correlation approach
for detecting hybrid and low-level APTs,’’ Future Gener. Comput. Syst.,
vol. 96, pp. 64–88, Jul. 2019, doi: 10.1016/j.future.2019.01.056.

[32] Darpa-I2o/Transparent-Computing. Accessed: Aug. 12, 2020. [Online].
Available: https://github.com/darpa-i2o/Transparent-Computing

[33] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, ‘‘A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1851–1877, 2nd Quart., 2019.

[34] Payampardaz Ravin SIEM Product. Accessed: Aug. 12, 2020. [Online].
Available: https://payampardaz.com/en/ravin/

[35] O. Vernet and L. Markenzon, ‘‘Hamiltonian problems for reducible flow-
graphs,’’ in Proc. 17th Int. Conf. Chilean Comput. Sci. Soc., Nov. 1997,
pp. 264–267, doi: 10.1109/SCCC.1997.637099.

[36] S. W. R. Kevin, ‘‘Unique topological ordering,’’ Algorithms, 4th ed. Read-
ing, MA, USA: Addison-Wesley, 2011, pp. 598–599.

[37] S. A. Cook, ‘‘A taxonomy of problems with fast parallel algorithms,’’ Inf.
Control, vol. 64, nos. 1–3, pp. 2–22, Jan. 1985.

[38] E. Dekel, D. Nassimi, and S. Sahni, ‘‘Parallel matrix and graph algo-
rithms,’’ SIAM J. Comput., vol. 10, no. 4, pp. 657–675, Nov. 1981.

[39] Aspiretss.com. 2020. EPS Calculator–Aspiretss–Aspire Tech. Accessed:
Aug. 12, 2020. [Online]. Available: http://www.aspiretss.com/tools

[40] K. Ron, ‘‘A study of cross-validation and bootstrap for accuracy estimation
and model selection,’’ in Proc. Int. Joint Conf. Artif. Intell., 1995, pp. 1–7.

[41] S. Borra and A. Di Ciaccio, ‘‘Measuring the prediction error. A comparison
of cross-validation, bootstrap and covariance penalty methods,’’ Comput.
Statist. Data Anal., vol. 54, no. 12, pp. 2976–2989, 2010.

[42] S. Arlot andA. Celisse, ‘‘A survey of cross-validation procedures formodel
selection,’’ Statist. Surv., vol. 4, no. 0, pp. 40–79, 2010, doi: 10.1214/09-
SS054.

[43] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classifi-
cation Perspective. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[44] APT Trends Report Q1 2020. Accessed: Aug. 12, 2020. [Online]. Avail-
able: https://securelist.com/apt-trends-report-q1-2020/96826/

[45] Us-Cert.Cisa.Gov. (2020). CISA Cyber Incident Scoring System |
CISA. Accessed: Aug. 12, 2020. [Online]. Available: https://us-
cert.cisa.gov/CISA-Cyber-Incident-Scoring-System

[46] Security.ias.edu. (2020). Priority And Severity Levels | IAS Security.
Accessed: Aug. 12, 2020. [Online]. Available: https://security.ias.edu/
priority-and-severity-levels

[47] Docs.microsoft.com. (2020). Insider Risk Management Alerts - Microsoft
365 Compliance. Accessed: Aug. 12, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/microsoft-365/compliance/insider-
risk-management-alerts?view=o365-worldwide

[48] CIS Alert Level Information. Accessed: Aug. 12, 2020. [Online]. Available:
https://www.cisecurity.org/cybersecurity-threats/alert-level/

[49] P. W. Holland, ‘‘Statistics and causal inference,’’ J. Amer. Stat. Assoc.,
vol. 8, no. 81, pp. 945–960, 1986.

MEHRAN KHOSRAVI received the B.Sc. degree
in software engineering from the Shahid Chamran
University of Ahvaz, Iran, in 2010, and the M.Sc.
degree from Azad University, Iran, in 2012. He is
currently pursuing the Ph.D. degree in computer
engineering with the University of Isfahan (UI),
Iran. His research interests include software secu-
rity and network security, malware analysis, and
security risk management.

BEHROUZ TORK LADANI received the bach-
elor’s degree in computer engineering from the
University of Isfahan (UI), Isfahan, Iran, in 1996,
the M.Sc. degree in software engineering from
the Amirkabir University of Technology (Tehran
Polytechnic), Tehran, Iran, in 1998, and the
Ph.D. degree in software engineering from Tarbiat
Modares University, Tehran, in 2005. In 2005, he
joined UI, where he is currently a Professor and
the Dean of the Faculty of Computer Engineering.

He is the author of more than 40 articles. His research interests include
modeling, analysis, and verification of security in information systems,
including software security (vulnerability detection and malware analysis)
and soft security (computational trust and rumor control in social networks).
He is a member of the Iranian Society of Cryptology (ISC) and the Edi-
torial Board of the International Journal of Information Security Science
(IJISS). He has been a Program Committee Member of the International ISC
Conferences on Cryptology and Information Security (ISCISC). He was the
ProgramCommittee Chair of the ISCISC 2008 that was held in theUniversity
of Isfahan. He is the Managing Editor of the Journal of Computing and
Security (JCS).

162656 VOLUME 8, 2020

http://dx.doi.org/10.1007/s11227-016-1850-4
http://dx.doi.org/10.1016/j.future.2019.01.056
http://dx.doi.org/10.1109/SCCC.1997.637099
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1214/09-SS054

