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ABSTRACT Multi-microgrid (MMG) system is a newmethod that concurrently incorporates different types
of distributed energy resources, energy storage systems and demand responses to provide reliable and inde-
pendent electricity for the community. However, MMG system faces the problems of management, real-time
economic operations and controls. Therefore, this study proposes an energy management system (EMS) that
turns an infinite number of MMGs into a coherence and efficient system, where each MMG can achieve its
goals and perspectives. The proposed EMS employs a cooperative game to achieve efficient coordination and
operations of theMMG system and also ensures a fair energy cost allocation amongmembers in the coalition.
This study considers the energy cost allocation problem when the number of members in the coalition
grows exponentially. The energy cost allocation problem is solved using a column generation algorithm. The
proposed model includes energy storage systems, demand loads, real-time electricity prices and renewable
energy. The estimate of the daily operating cost of the MMG using a proposed deep convolutional neural
network (CNN) is analyzed in this study. An optimal scheduling policy to optimize the total daily operating
cost of MMG is also proposed. Besides, other existing optimal scheduling policies, such as approximate
dynamic programming (ADP), model prediction control (MPC), and greedy policy are considered for the
comparison. To evaluate the effectiveness of the proposedmodel, the real-time electricity prices of the electric
reliability council of Texas are used. Simulation results show that eachMMG can achieve energy cost savings
through a coalition of MMG. Moreover, the proposed optimal policy method achieves MG’s daily operating
cost reduction up to 87.86% as compared to 79.52% for the MPC method, 73.94% for the greedy policy
method and 79.42% for ADP method.

INDEX TERMS Coalition, column generation algorithm, cooperative game, convolutional neural network,
energy management system, multi-microgrid, RES, forecasting.

I. INTRODUCTION
In smart grids (SGs), microgrid (MG) is a small network
of electricity users with distributed energy resources (DERs)
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that is either standalone or connected to the main grid.
DERs are energy generation units located within the end-
users. MG provides a reliable and efficient power that
supplements the main grid in the case of unexpected rise
in energy demands, blackouts as well as loss of energy
productivity. It also provides an independent energy to
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the community. In spite of these numerous advantages of
a MG, challenges also exist like technical challenges,
such as system control and protection of renewable energy
sources (RES). Other challenges are regulatory policies and
customers’ participation [1]–[4]. To resolve the technical
challenges, especially the high penetration of RES in MG,
numerous works have been reported by [5]–[11]. However,
most of the above-mentioned works focus on day-ahead and
time-of-use scheduling plans. To deal with the regulatory
challenges, authors in [12] compare the different regula-
tory challenges of different ownership of MG models that
vary based on context and usage. Ownership of MG mod-
els include: a utility model, district heating model, land-
lord model, customer-generation model and co-op model.
The regulatory challenges are categorized into informa-
tion instruments, economic instruments, and command-and-
control instruments [12].

The idea of MG has been used successfully in sev-
eral sensitive areas like military, hospitals, and airports to
achieve resilience energy supply [13]. Due to the benefits of
MG technology, researchers, power industry and stakeholders
are beginning to consider this technology. However, because
of the intermittent nature of DERs, benefits of this technol-
ogy have not been fully explored. In literature, researchers
focused more on providing energy management (EM) of MG
in terms of load curtailment and demand side management.
As a result, mechanisms for the coalition of more than one
MGs require further explorations. Table 1 provides the abbre-
viations used throughout this paper.

TABLE 1. Abbreviations.

This paper proposes a method for the coalition of
multi-MG (MMG) to achieve energy efficiency and man-
agement, which in turn provides energy cost savings and
real-time optimal scheduling policy. Section II presents the
related work. Section III elaborates the proposed system
model. In Section IV, the problem formulations are described.
Simulation results and discussion are presented in Section V.
Finally, Section VI provides the conclusion and future work.

II. RELATED WORK
The world’s environmental concerns and power crises have
raised the need for RES, which is a clean alternative energy
source to fossil fuels. Themajor hindrance of integrating RES
into the power system is its insufficient energy generation and
intermittent nature. The power system is a centralized uni-
directional energy flow and generations. On the other hand,
RES forms part of the MG, which provides bidirectional
energy flow. This section discusses the review of related
work in four subsections based on MMG system, cooperative
game theory approach, column generation algorithm (CGA)
approach for MMG system, and real-time optimal scheduling
policy of ESS.

A. MULTI-MICROGRID SYSTEM
Nowadays, because of the under-utilization of RES,
the power system is experiencing a large inflow of the exces-
sive energy. To simultaneously manage RES of several MGs,
a new paradigm known as MMG system has emerged.
MMG system refers to the integration of different MGs by
spatial distance to achieve grid control [14]. The objective
of MMG is to combine different DERs that can achieve
high energy resilience and stability of the system through
efficient energy exchange. In addition, owners of MG can
conveniently participate in the energy market based on their
energy generations, distributions and sales. TheMMGsystem
architecture is similar to the traditional power grid, which
operates based on the duration of certain operating rules.
The authors in [15] describe a framework of MMG system
based on interface, layer and cost. However, the coordination
of MMG into a bulk energy system is not considered in
the proposed framework. Similar work in [16] presents the
framework of MMG system based on the system of sys-
tems architecture. This framework uses bi-level optimization
to handle each MG as a multi-stage robust optimization
(RO) problem. However, the bi-level optimization does not
address the uncertainty of energy demand and supply.

Kou et al. [17] propose a model predictive control (MPC)
scheme for MMG EM via coordination of individual MG
operation to economically balance system-wide supply and
demand. Chebyshev inequality and delta method are also
used in quadratic and nonlinear systems to deal with com-
plexities of demand and supply. However, it does not find a
fair allocation of expenses to each MG. Holjevac et al. [18]
provide a detailed evaluation of the disparateMG by applying
MILP for annual simulations. They have also extended the
model for short-term, daily operational analysis with receding
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horizon MPC. This model aims at optimizing the flow of
various energy generators, coordinating each MG entity and
exchanging energy between entities of other MGs. How-
ever, the model has no significant effect on the estimated
short term operating cost. Also, it takes an intolerably long
time for MILP problem to be solved. The authors of [19]
propose decentralized saddle point dynamics and quadratic
programming to solve the optimal power problem. The meth-
ods suggested achieve low active power loss and high RES
utilization. Nevertheless, there is high network connectivity
involved, and no thought is given to achieve energy cost sav-
ings. RES and fluctuations of load consumption create issues
in the operation of MMG. Therefore, authors in [7] propose
optimal day-ahead scheduling of MMG using an enhanced
particle swarm optimization (PSO) to minimizeMG’s operat-
ing cost. However, there is the problem of parameters tuning,
which may lead the model to either premature convergence
or fall into a local optima. To execute real-time control and
reduce the communication cost of MMG, authors in [20]
propose a bi-level gamemodel for voltage control. The model
consists of an incentive mechanism derived from the Stackel-
berg game, which maximizes the payoff of each MG while
neglecting arbitration agent. The author of [21] propose a
cooperative EM strategy for integrated operations of MMG.
This strategy is a stochastic predictive control that solves the
coupling constraints problem. However, most of the proposed
methods for MMGs are based on deterministic condition,
which is tedious to handle the intermittent nature of RES.

B. COOPERATIVE GAME THEORY FOR MULTI-MICROGRID
SYSTEM
Cooperative and non-cooperative games make up the funda-
mental building blocks of a game theory, as shown in Fig. 1.

FIGURE 1. Types of game.

From the figure, game theory’s outcome can be in the form
of either decision theory, probability theory or utility theory.
Each game aims to achieve a globally balanced status, mean-
ing that each player’s interest is not further satisfied, and it is
known as the Nash equilibrium for the non-cooperative game

and core status for the cooperative game [14]. Within a coop-
erative game, coalition optimization models reach the global
optimum. Subsequently, cost-allocation models achieve a
rational distribution of benefit to each player. The coalition
aims to address competing stakeholder concerns (i.e., global
and local). The applications of a cooperative game in SG are
discussed in [22]–[27] and [28]. In this study, we employ
a CGA to generate nucleoli solution that achieves the core
status. The authors of [29] present a survey on the various
concepts of game theory for the MG. However, applications
of the cooperative game for the coalition of MMG have not
gained full explorations. Although, authors in [14] propose a
mechanism that ensures a fair distribution of dis-satisfaction
of expenses among a group rational MG. The mechanism
is a nucleolus core solution based on bender decomposi-
tion (BD) to maximize player’s payoff in a cooperative game
scenario. However, the real-time energy operation based on
one step optimization ofMMG’s operating cost for short term
purposes is not considered. In addition, BD has not been
applied to several objectives, as its convergence needs many
iterations. Unlike the cooperative game, a non-cooperative
game relies on each player’s overall individual payoff while
neglecting the players’ global welfare.

C. CGA APPROACH FOR MULTI-MICROGRID SYSTEM
The authors in [30] propose nested column-constraint and
generation (CC&G) method for distributive scheduling of
MMG, which is based on stakeholder-parallelizing distribu-
tion optimization. This method uses an enhanced analytical
cascading method to achieve energy optimization. However,
knowledge about the probability functions of uncertainty
parameters and high computational burden are expected with
the proposed model. To achieve optimal collaboration of
MMG, authors in [31] propose a two-stage optimization-
based collaboration operation method to minimize operating
cost of MMG. Nonetheless, the drawback of the proposed
method is the computational effort required at each stage of
the optimization operation. The authors of [32] use CC&G
method for MG daily operations while considering the uncer-
tainty in RES. The proposed method reduces the investment
cost as well as operating cost for eachDER.However, the pro-
posed method does not include a real-time EM of MMG. The
authors of [33] propose a modified CC&G model to mini-
mize the total load consumption while controlling the battery
storage systems, electric vehicle fleets and the aggregation of
cooling appliances. The proposed model is a two-stage RO
while considering the uncertainty of foresting error from load
consumption and generations. The authors of [34] propose a
modified CC&G method to address the probability-weighted
RO (PRO) problem. The proposed model maximizes the
overall profit for long-term planning while considering the
uncertainty of wind power and microturbine. Also, PRO opti-
mizes the DERs allocation based on the worst-case scenarios.
However, the method does not provide clear conclusions
about the distribution of probabilities used.
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D. REAL-TIME OPTIMAL SCHEDULING POLICY OF
ENERGY STORAGE SYSTEM
In MG, the cost of operating ESS in real-time operations is
another challenge that requires urgent attention. The authors
of [35] use the hidden, marginal charging and discharging
opportunity costs for ESS’s operation. Also, the authors
proposed a two-layer model, which has a upper layer that
allocates power optimally to each generator and a lower layer
that solves the dispatch problem using a Lagrangian function.
Another work in [36] reviews centralized and distributed
ESS with service distribution. The proposed work uses a
multi-agent control strategy that coordinates the distributed
ESS. In the proposed strategy, an autonomous agent commu-
nicates over a sparse network through neighbor-to-neighbor
to achieve cooperative goals. However, ESS’s real-time oper-
ations in the MG are challenging, as they are difficult to
evaluate the users’ complex behaviors and RES’s intermittent
nature. The authors of [37] provide MPC based hybrid of
Kalman filters and time series analysis to schedule on-line
operations of ESS. The proposed model has a feedback cor-
rection mechanism that examines and adjusts the forecasting
error of theMPC based model. The authors of [38] use virtual
inertia control based on MPC to achieve stability of the sys-
tem and to assess the effect of high RES penetration on ESS.
Also, the authors have compared their control with fuzzy
logic and remote virtual control systems to determine the
control’s robustness. Nonetheless, the above studies resolved
the scheduling problem of MG’s operations in real-time and
provided strategies to address uncertainties that may occur
in the future. However, the type of models and prediction
horizons and parameters are factors that determine accurate
results of the proposed approaches.

Most of the recent studies focus on artificial intelligence
techniques for real-time EM of a MG. With the intelligent
approach, real-time operations of MG can be formulated
as either a stochastic or a sequential decision problem. In [39],
the authors propose a finite-horizon Markov chain decision
process (MDP), approximate dynamic programming (ADP),
and deep recurrent neural network (RNN) to obtain the
optimal real-time scheduling strategy of an MG. The pro-
posed methods reduce the operating costs of the MG without
prior distribution knowledge of the uncertainty in RES. The
authors of [40] use ADP based economic dispatch algo-
rithm for intra and day-ahead scheduling of a MG operations
under the uncertainties of RES. The proposed algorithm is
used for sample training while a Monte Carlo method and
piece-wise linear approximation function are also used to
detect uncertainty and to make prediction. Also, the work
minimizes the impact of uncertainty incurred by RES, elec-
tricity prices and loads on MG’s operations. The authors
of [41] propose policy and value iteration functions to address
the optimal EM of a battery as well as MG’s control system
via ADP. The proposed policy includes the value iteration
function that decreases monotonically and converges to the
Bellman’s solution. Other applications of ADP are examined
in [42]–[45] to achieve battery’s efficiency and coordination.

However, the above studies have proposed methods that are
difficult to handleMG’s scheduling, especially if high dimen-
sional state spaces are involved. Also, ADP implementation
regarding ESS coordination with conventional distributed
generators while considering the constraints of MG’s power
flow is an open question.

Based on the literature above, none of the authors applies
CGA for the coalition of MMG to achieve energy cost sav-
ings. Hence, using CGA for the coalition of the MMG is
the focus of this study. In addition, energy exchange among
MMG and market players require further explorations and
improvements. Furthermore, applications of the cooperative
game have not gained full explorations.

The objectives of this study mainly focus on addressing
the limitations of the existing solutions in the literature while
minimizing the computational cost of the proposed system.
For instance, firstly, the authors of [39] propose a dynamic
EM of a single MG using a deep RNN to implement the
estimation of the one-step long term operating cost. However,
RNN faces the problem of dimensionality. When the amount
of space in the state increases exponentially, the model can
result in low precision and low efficiency. It also becomes
computationally difficult to solve large and complex MG
distribution networks to automate global policy. Therefore,
solutions that turn an infinite number of MMGs into a coher-
ent and efficient system, where each MG can achieve its own
goals and perspectives are required. The proposed solutions
should include a machine learning models to estimate the
short-term daily energy cost of the MMG. Secondly, authors
in [14] propose a BD algorithm to derive the coalition with
a high degree of dis-satisfaction concerning the fair cost
allocation and finds the upper bound of the optimum solution
for the cooperative game. However, BD uses a generalized
procedure to solve the MILP problem and also reduces the
number of variables at the expense of an increasing number
of constraints. In addition, BD requires several iterations
for convergence, especially when enumeration method is
applied to a small coalition group. Therefore, the algorithms
that address the limitations of BD by minimizing the total
expenses obtained by the grand coalition are required. Also
the proposed algorithms should be able to reduce the number
of enumerations as the number of coalitions increases.

This study is the extension of our previous work [46],
where our initial work focuses on the non-cooperative game,
and in this paper, the contributions are listed below.

1) This study proposes an EM system (EMS), which
converts an infinite number of MMG into a coherent
and efficient system, where each MG can achieve its
goals and perspectives. The proposed EMS manages
and controls the real-time operation of each MG, while
minimizing the computational effort required at each
stage of the optimization operation.

2) A CGA is proposed in this study to derive the nucleolus
core solution that provides fair distribution of expenses
among coalition members in a cooperative game. In the
cooperative game, each MG is a player that hopes to
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FIGURE 2. Proposed multi-microgrid network.

maximize its own payoff via energy cost savings. The
proposed method is compared with the method of [14]
and Shapley [28].

3) A deep CNN is proposed in this study to execute
the one-step estimation of the aggregated energy cost
for short-term purposes. In the proposed deep CNN,
the fully connected layer is enhanced using condi-
tional restricted Boltzmann machine (CRBM). More-
over, the proposed deep CNN is compared with other
existing models in the literature.

4) An optimal scheduling policy for real-time MG’s oper-
ation is proposed while taking into account the power
flow constraints. For the analysis, the proposed optimal
scheduling policy is compared with the existing MPC,
greedy policy and ADP policy.

III. SYSTEM MODEL
In this study, the MMG network of Fig. 2 under consid-
eration is a grid-connected mode that actively participates
with the main grid via energy exchange using the real-time
pricing mechanism. The network is made of multiple inter-
connected single residential MG (sub-grid), where there is
an inter-active behavior of energy among each sub-grid. This
study assumes that every sub-grid has a photovoltaic (PV),
thermal generators, wind turbine, hydro-solar, dispatchable
load, and each sub-grid is attached to a sub-grid storage sys-
tem. Moreover, each RES output is connected to different bus

nodes, while each domestic load is satisfied from its own sub-
grid, then if there is surplus energy from the sub-grid storage,
it can be sold to other sub-grids or the main grid through
the EMS. All sub-grids use bidirectional AC/DC converters
(BADCs), which ensure the overall sub-grids’ stability and
voltage support. Each sub-grid is connected to one another
via local connector, while the overall sub-grids are connected
to the main grid via point of common coupling (PCC) only
if it can provide the same frequency rating as the main grid.
Because of the intermittent behaviors of the RES, its energy
output is regarded as uncertainty in the operation of all sub-
grids. The EMS manages the operations of each sub-grid
in the network to exchange energy and performs coalition
EM for each rational sub-grid to achieve energy cost sav-
ings using nucleolus and Shapley solutions. These solutions
formed the core in cooperative game, where each sub-grid is
a player that hopes to minimize its total expenses from the
coalition of sub-grids. The EMS performs a real-time opera-
tion through a one-step optimization of sub-grid’s operating
cost for short-term purposes. Therefore, a deep CNN that
estimates the aggregate operating energy costs of sub-grid
is explored. Also, a real-time scheduling policy method of
sub-grid is performed by the EMS. To ensure real-time capa-
bility and application, this study uses both IEEE 30-bus and
118-bus distribution systems to evaluate the performance and
efficiency of the proposed system. The distribution systems
used in this study are considered because they are widely
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used by the research community for MMG [14] and [19].
The internal topology of each MG as shown in Fig. 3, which
is adopted from [47] consists of three thermal generators at
bus 1, 2 and 8, while the wind power output is connected to
bus 5, and bus 11 is used for the PV power output.While solar
plus hydropower output supplies bus 13.Moreover, each RES
is assumed to be an independent MG as well as the player in
the cooperative game.

FIGURE 3. Description of the internal topology of each MG.

The works of [39] and [47] inspire us to construct the
proposed formulations for the problem statement. The section
below discusses the conventional DGs, dispatchable loads,
and the energy exchange with the main grid. Afterwards,
the optimal operating cost of the MMG is formulated.
Lastly, the formulation of the cooperative game is discussed.
To avoid verbosity, this study only concentrates on the objec-
tive functions to show its contributions.

IV. FORMULATION OF A REAL-TIME SCHEDULING
PROBLEM
At time t , the kth conventional DGs cost is expressed as
the sum of the total generation cost of thermal generators
Ctg(t), wind turbine Cws(t), solar system, Css(t) and small
hydro-solar Cssh(t). Thus, the total cost Ck

total(t) of DGs is
defined in Eq. (1) [47].

Ck
total(t) = [Ctg(t)+ Cws(t)+ Css(t)+ Cssh(t)], (1)

where

Ctg(t) =
TG∑
n=1

an + bnEtg,n(t)+ cn, (2)

Cws(t) = GwsEws(t), (3)

Css(t) = HssEss(t), (4)

Cssh(t) = HsshEssh(t)+MsshEssh(t). (5)

where an, bn and cn are the parameters of nth thermal gen-
eration costs for the total thermal generators, TG. Thermal
generation power at time t is denoted as Etg,n(t). Let Gws
and Ews(t) be the direct cost coefficient of wind plant and

scheduled wind output power at time t . Hss and Ess(t) be
the direct cost of the PV and scheduled solar power output
at time t . Lastly, Hssh, Essh(t) and Mssh are the direct cost
coefficients of the small hydro-solar, scheduled power from
the small hydro-solar at time t and direct cost of the small
hydro-solar unit, respectively.

A. DESCRIPTION OF THE DISPATCHABLE LOADS
Due to the flexibility of demand-side loads in theMMG, loads
influenced by electricity prices can be dispatched to meet the
supply constraints. The active and reactive loads are used
to define the total l loads of the dispatchable loads (DLs)
ACTLDL,l(t) at time t using Eq. (6) and (7), while the load
shedding for busy days is given in Eq. (8) [39].

ACTLDL,lmin (t) ≤ ACTLDL,l(t) ≤ ACTLDL,lmax (t), (6)√
(RACTLDL,l(t))2+(ACTLDL,l(t))2| cosφ|

= |ACTLDL,l(t)| ∀t. (7)

where cosφ is the power factor. ACTLDL,lmin (t) and
ACTLDL,lmax (t) are the minimum and maximum lth DLs of the
ACTLDL(t). During the busy days, loads of the users are
shed in order not to interrupt the energy supply and to avoid
excessive burden on the energy generation plants. Therefore,
a piece-wise linear function of a two-segment load shedding
cost for lth DLs is defined by Eq. (8).

CDL,l
t =


m0 (ACTL

DL,l
max (t)− ACTLDL,l(t))+ c0,

if ACTLDL,l(1) ≤ ACTLDL,l(t),
m1 (ACTL

DL,l
max (t)− ACTLDL,l(t))+ c1,

if ACTLDL,l(1) > ACTLDL,l(t).

(8)

where the constant of coefficients are denoted as m0, m1, c0
and m1.

B. DESCRIPTION OF THE ENERGY STORAGE SYSTEM
In this paper, the state of charge (SOC) defines the charg-
ing and discharging operations of ESS. Heuristic approach
is considered for the SOC, such that if τ (t) Preal(t) ≤
20 cents/kWh, then it is charging; on the other hand,
if τ (t) Preal(t) > 20 cents/kWh, then it is discharging; where
τ is the SOC decision binary variables (τ ∈ [0, 1]). Where at
time t , Preal(t) is the real-time electricity prices. Let the SOC
power of ESS be denoted as ESOC (t), and EESS (t) is energy
level of ESS. The Eq. (9) and (10) describe the constraints of
the ESS [39].

0 ≤ ESOC (t) ≤ ESOCmax (t), (9)

EESSmin (t) ≤ EESS (t) ≤ EESSmax (t), (10)

where EESSmin (t) = 60 kWh and EESSmax (t) = 30 kWh are the
minimum and maximum energy level of ESS. The EESS (t) is
further optimized using the Eq. (11).

EESS (t) = EESS (t − 1)+ λchτESOC (t)− (1− τ )
ESOC (t)
λdch

,

(11)
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where λch = λdch = 0.98 is the efficiency of the charging
and discharging, respectively.

C. DESCRIPTION OF THE POWER EXCHANGE
The main grid at time t performs energy exchange with the
MMG using the constraints in Eq. (12), (13) and (15) [47],
respectively.

−ACTLGmin(t) ≤ ACTLG(t) ≤ ACTLGmax(t),

(12)

(ACTLG(t))2 + (RACTLG(t))2 ≤ (CapGmax)
2, (13)

where at certain time t , the active and reactive energy
exchange are denoted by ACTLG(t) and RACTLG(t).
Whereas, ACTLGmin and ACTL

G
max are the minimum and max-

imum active energy exchange and CapGmax is the maximum
energy that is either bought from or sold to the main grid.
In order to achieve the system’s energy balance, the energy
of each bus in the distribution system must be equal to the
differences between energy generation and load on that bus.

ACTLG − ACTLGli − Vi
N b∑
j=1

Vj[gijcos(dij)

+bijsin(dij)] = 0,

RACTLG − RACTLGli − Vi
N b∑
j=1

Vj[gijcos(dij)

−bijsin(dij)] = 0, ∀i ∈ N b. (14)

where dij = di − dj be the voltage angle difference between
the buses i and j. Vi and Vj are the voltage at bus i and j,
respectively. RACTLGli and ACTL

G
di are the reactive and active

lth load demands at bus i. bij is the set of buses i and j
with susceptance, and gij is the buses i and j with transfer
conductance. The operational limits of all the generators are
defined as:

ACTPmintgi ≤ ACTPtgi ≤ ACTPmaxtgi , ∀i ∈ N
tg

ACTPminws ≤ ACTPws ≤ ACTPmaxws ,

ACTPminss ≤ ACTPss ≤ ACTPmaxss ,

ACTPminssh ≤ ACTPssh ≤ ACTPmaxssh ,

RACTPmintgi ≤ RACTPtgi ≤ RACTPmaxtgi , ∀i ∈ N
tg

RACTPminws ≤ RACTPws ≤ RACTPmaxws ,

RACTPminss ≤ RACTPss ≤ RACTPmaxss ,

RACTPminssh ≤ RACTPssh ≤ RACTPmaxssh . (15)

where ACTPmintgi and ACTPmaxtgi are the ACTPtgi minimum and
maximum active thermal generating capacity. ACTPminss and
ACTPmaxss are the ACTPss minimum and maximum active
capacity. The ACTPminssh and ACTPmaxssh are the minimum and
maximum active power of the Essh. Likewise, RACTPmintgi
and RACTPmaxtgi are the RACTPtgi minimum and maximum
reactive thermal power. RACTPminss and RACTPmaxss are the
RACTPss minimum and maximum reactive solar power.

RACTPminssh and RACTPmaxssh are the minimum and maximum
reactive power of the RACTPssh combined generation. The
buying cost of energy is calculated by Eq. (16).

Cbuy(t) = ACTLG(t)Preal(t). (16)

D. FORMULATION OF OPTIMAL OPERATING COST
The aggregate operating cost of the MG is considered as the
sum of the cost of conventional generators, loads dispatch-
able or load shedding costs. To ensure efficient operation of
MMG, this study uses an ancillary service cost bought from
themarket. Thus, it addresses the power deviation ofEdeviationt
from the dispatch problem. The ancillary services cost AS(t)
at time step t is defined as:

AS(t) = |Edeviation(t)| β Preal(t). (17)

where β is a constant factor, and

Edeviation(t) = 1fEloss(t), (18)

where 1f is the frequency deviation [47] and Eloss(t) is the
energy loss and it is defined as:

Eloss =
nl∑
q=1

gij[V 2
i + V

2
j − 2ViVjcos(dij)], (19)

where nl is the number of transmission lines. Vi and Vj are the
voltages of transmission lines for buses i and j, respectively.
Hence the aggregate operating cost is defined as:

v(t) =
k∑

dg=1

Cdg
total(t)ω

dg(t)+
l∑
i=1

CDL,i(t)+ Cbuy(t)+AS(t).

(20)

where ωdgt has two decision values, i.e.,‘‘0’’ to denote DG not
in use and ‘‘1’’ to denote DG is in use. The total operating
cost is used as the reward function for the MDP. The action
function of MDP defined by MG is constrained by the set of
all possible actions at time step t using Eq. (9). The transition
probability depends on the dynamics of ESS using Eq. (11).
The state variables of the DGs and real-time prices follow a
joint probability distribution, which is based on the historical
output.

1) FORMULATION OF OPTIMAL SCHEDULING POLICY
The state variable at time t is defined as S(t) =

(ED(t),ACTPtg(t), ACTPss(t), ACTPws(t), ACTPssh(t),
Preal(t),EESS (t)). The transition from the state t−1 to state t
under the action A(t) is defined as Strans = S(t−1)×A(t)→
Prob(S(t)), where Prob(.) is the transition probability. Note
that the state variables of EESS (t) in S(t), the transition state
is determined by Eq. (11). The state variables of DGs and
Preal(t) are defined by their joint probability distributions.
However, it may be time-dependent and temporal coupled
state variables. Also, the state variables depend on historical
and conditionally dependent outcomes [39].
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Presently, the objectives of the MMG EM depend on the
set of optimal policy µ that reduces the total operating costs
of the MMG. The optimal scheduling policy is defined as:

Vpolicy(t) = Min
µ∈FP [

T∑
t=2

v(S(t − 1),A(t), S(t))], (21)

where FP is the set of feasible policies µ for making the
decision rules that determine the action A(t) at time t . The
state transition follows aMarkovian policy, which tells us that
the transition probability depends on the previous state, and
it is defined as:

Prob(S ′(t)|S ′(t − 1),A(t))

= Prob(S ′(t)|S ′0,A(1), . . . , S
′(t),A(t)), (22)

where S ′(t) is defined as:

S ′(t) = S ′(t − 1)+ [θ (t), 0, . . . , 0,ED(t),ACTPtg(t),

ACTPss(t),ACTPws(t),ACTPssh(t),Preal(t), 0, . . . ]T , (23)

where θ (t) is defined as:

θ (t) = λchτESOC (t)+ (1− τ )
ESOC (t)
λdch

. (24)

Thus, Eq. (21) is rewritten as:

Vpolicy(t) = Min
µ∈FP [

T∑
t=2

v(S ′(t − 1),A(t), S ′(t)|S ′(t − 1))].

(25)

E. FORMULATION OF THE MULTI-MICROGRID SYSTEM
COALITION OPERATION MODEL
In this study, the overall objective function is defined as the
minimization of the total cost of energy generations. A coali-
tion mechanism is proposed based on a cooperative game.
A sub-additivity is initiated, which encourages each player
to participate in the grand coalition via a fair cost allocation.
The coalition could be individual rationality, group rationality
and grand rationality. To make a coalition, this study for-
mulates Shapley and nucleolus solution, individually. The
reasons for selecting CGA over BD proposed in [14], is that
BD uses a generalized procedure to solve the MILP problem
and also reduces the number of variables at the expense
of an increasing number of constraints. BD requires sev-
eral iterations for convergence, especially when enumeration
method is applied to a small coalition group. BD approach
is evaluated based on master problems and sub-problems.
The sub-problem optimizes the dissatisfaction values in the
master problem before the upper bound and lower bound
converge uniformly [14]. The sub-problem involves an exten-
sion of Taylor series first-order approximation. Note that the
authors in [14] consider cost allocations of MG that does not
form part of the grand coalition. On the other hand, the CGA
method solves RO problems and eliminates any negative
reduced cost through repeated iterations.

In the MMG cost allocation problem, each MG is a player
that hopes to minimize its allocated expenses. Each player

establishes a coalition with one another, after satisfying some
set of conditions described in subsection IV-E1. A grand
coalition includes all players that are most beneficial. The
cooperative game consists of three essential components,
i.e., a set of players i = {1, 2, . . . ,N } who participate in
the cooperation, the coalition S(S ⊂ N ), which is the subset
of the players and a grand coalition N , which consists of all
players participating in the cooperation. Let {i} be a singleton
coalition comprising of the single independent player. Using
the above definitions, the cost allocation is formulated as:

SC = v(N )−
v(N )
{i}

, (26)

NSC = v(N )−
∑
j∈N

SCj. (27)

Let separable cost SC be first alloted expenses of each player
and non-separable cost NSC be the reminder expenses after
the SC is alloted to all players.

1) CONDITIONS FOR FORMING THE GRAND COALITION
The cooperative game often depends on the establishment of
a grand coalition that follows the concept of sub-additivity,
which depends on the cost function. The larger a coalition
is, the more efficient a coalition will be by sub-additivity.
Sub-additivity means that every player is given an incentive
to join the grand coalition. The gamewith a non-empty subset
implies that there is an existence of fair cost allocation, only
if all players accept to be part of the grand coalition. The
sub-additivity game is expressed as:

v(S)+ v(T ) ≥ v(S ∪ T ), (S ∩ T = ∅; S,T ⊂ N ), (28)

where ∅ is the empty set, S and T are the two disjoint
coalitions. Thus, the sub-additivity is the necessary condition
for establishing the grand coalition. The concept of the core
is introduced in this study to provide a proper understanding
of nucleoli. A core is those conditions that the set of alloca-
tions must satisfy. It motivates all players to take part in the
cooperation. Note that the core can be referred to as individual
rationality, group rationality and grand rationality, which are
defined in Eq. (29) - (31).

ali ≤ v(i), ∀i ∈ N , (29)∑
i∈S

ali ≤ v(i), ∀S ⊂ N , (30)∑
i∈S

ali = v(N ). (31)

The individual as well as group rationality is defined as the
allocation AL = {al1, al2, . . . , aln}, which the core achieves
energy cost savings. Individual or group rationality is used to
compare coalition or player that does not engage in the grand
coalition, N . The grand rationality refers to the total energy
cost each player will get, and it is equal to the total energy cost
of the grand coalition. In this study, a comparison of the two
unique core solutions such as nucleolus [14] and Shapley [48]
is presented in the simulation section.
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2) CORE BASED ON NUCLEOLUS SOLUTION
To minimize the maximum expenses v(S) of any
coalition S [14], the expenses of coalition S for each player
PL, is calculated as:

Nuc(PL : S) =
∑
i∈|S|

ali − v(S), (32)

where the minimization of expenses is defined for PL as:

Max
S⊂N Nuc(PL : S) ⇒ min,

s.t.
∑
i∈N

ali = v(N ). (33)

In this study, nucleolus solution is obtained using the CGA
discussed in Subsection IV-E4.

3) CORE BASED ON SHAPLEY SOLUTION
Shapley method is used to calculate the average marginal cost
of all the existing coalitions, which is calculated as [48]:

Shp(i) =
∑

S⊆N , i∈S

(n− s)!(s− 1)!
n!

[v(S)− v(
S
{i}

)], (34)

where n ∈ N and s is the number of players in coalition such
that S(s = |S|). EachMG participating in the game is a player
to manage energy and get a fair allocation. The allocation
for each player is obtained from v(S), and the distribution of
allocation ALdis is defined as:

ALdis =

{
SC, if SC ≤ v(s),
Shp(i), if SC > v(s).

(35)

Note that in Eq. (35), we substitute Shp(i) with the result of
Eq. (41) to get a fair allocation of expenses to players.

4) FINDING NUCLEOLUS SOLUTION USING COLUMN
GENERATION ALGORITHM
In this study, a CGA finds the nucleolus of a core, which
solves the grand coalition problem. The essence of imple-
menting CGA is to minimize the total expenses obtained
by the grand coalition while each player hopes to maximize
its payoff (cost savings). As the number of coalitions and
players increases, it becomes inefficient and difficult to solve;
thus, CGA resolves this problem by reducing the number of
enumerations. CGA is studied to solve the vehicle scheduling
problem [49], sea traffic scheduling problem [50], location
routing problems [51], job scheduling problem [52], and fleet
designing problem [53]. However, the CGAmethod is under-
explored in the field of MMG. The Algorithm 4 describes
the implementation of the proposed CGA of the fair energy
cost allocation. The objective function of the energy cost
allocation problem is defined as:

Min[Max v(c)]
c∈S ,

s.t. Eq. (9)− (10),

∀ c ∈ Z. (36)

However, for the sake of computation, the function v(c) is
nonlinear. The fundamental idea of column generation is
adopted from [54]:

S∗ = {c ∈ S}, ∀ c ∈ Z. (37)

S is a finite vector set. In fact, if S is assumed to be dis-
crete, then S∗ is a finite collection of points (i.e., S∗ =
{mmg1,mmg2, . . . ,mmgp}), which denotes the collection of
MMGs and p is the total number of MMGs. However, 9 is
binary, while S∗ falls within its convex hull’s utmost points,
represented as conv(S∗). So, denoting the bounded polyhe-
dron via utmost points is related to the decomposition of
Dantzig Wolfe [55]. For any MMG mmg ∈ S∗, it can be set
to mmg as:

mmg =
∑

1≤w≤p

mmgw9w, (38)

subject to convexity constraints,∑
1≤w≤p

9w = 1, (39)

9w ∈ {0, 1} such that if 9w = 1 is a member of the grand
coalition, then if 9w = 0 is not in the grand coalition. So,
w = 1, 2, . . . , p. Assume rw = mmgw and aw = Ayw, v(w) is
derived from the column generation form as:

max
∑

1≤w≤p

rw9w,∑
1≤w≤p

aw9w ≤ b,∑
1≤w≤p

9w = 1. (40)

Note: the generation of columns is an integer linear program-
ming problem, while the initial problem is a nonlinear objec-
tive function. By linearization,mmg =

∑
1≤w≤p aw9w, while

S can be decomposed, i.e., S = ∪i≤j≤nSj. Each set S∗j = {xj ∈

Sj : ∀ xj ∈ Z} is denoted as S∗ = {mmgj1,mmg
j
2, . . . ,mmg

j
p}.

Let r(mmgjw) = r jw and Ayjw = ajw be the column generation
form of the Eq. (20) and the different convexity constraints
for each Sj is rewritten as:

min
∑
1≤j≤n

∑
1≤w≤pj

r jw9
j
w,∑

1≤j≤n

∑
1≤w≤pj

ajw9
j
w ≤ b,∑

1≤w≤pj

9 j
w = 1, j = 1, 2, . . . , n, (41)

where 9 j
w ∈ {0, 1}, w = 1, 2, . . . , pj and j = 1, 2, . . . , n.

Suppose the subsets for the generation of columns are the
same, then Sj = S− = {mmg1,mmg2, . . . ,mmgp}. Hence,
one subset of S− with 9w =

∑
j9

j
w will represent it. Nev-

ertheless, the total constraint,
∑

1≤w≤pj9w = n will override
the convexity constraints, where 9w ∈ Z ≥ 0. In addition,
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the generation of columns is formulated as the restricted
master problem (RMP), which requires a limited number of
variables and thus, new variables can be introduced.

Fig. 4 shows the flowchart for the proposed CGA. In the
flowchart, CGA works by finding any negative reduced cost
and this problem is divided into two, i.e., master and sub-
problem. The original problem, which is the master problem
has a single subset of variables; whereas, the sub-problem is
the new problem, which is known as new variables. There-
fore, a double variable is obtained in RMP for the each con-
straints. If the sub-problem is solved, and if the sub-problem
objective function value is negative, then apply a negative
reduced cost to RMP. RMP is resolved until a new set of dou-
ble values is created by the RMP that is non-negative. Con-
sequently, the sub-problem creates the set of non-negative
reduced costs [56].

FIGURE 4. Flowchart for the proposed CGA.

F. TRAINING OF DEEP CONVOLUTION NEURAL NETWORK
CNN is among the well known deep neural network, which
is a multi-layer neural network [57]. CNN structure is built
based on multiple layers like operators of convolutions and
max-pooling. Applications like natural language processing,
video and image recognition are using CNN. The authors
of [58] present a hybrid of wavelet transform and deep CNN
for deterministic PV power forecasting. The authors of [59]
propose an on-line method for voltage security analysis using
deep CNN. However, CNN is under-explored in the context
of MMG.

InMG, because of the stochastic behavior of RES, it will be
tedious to determine the regularity of energy. Also, since there
is scalability issue of connecting neurons of CNN, therefore,
a deep CNN is proposed in this study to solve this problem by
connecting neurons to its neighboring neurons. To recognize

a time-dependent progression, RNN is the best model for
that. Although, the authors of [60] resolve the time-dependent
problem by proposing a recurrent CNN, which does not
rely on segmentation technique or any task-specific features,
however, consider large input while limiting the capacity of
the model. This study considers the differences in sequential
data and use them as input data to the convolution layer.
Note that larger differences in the sequential data will indicate
larger amounts of movement and the effect will be similar
to RNN. Authors in [61] propose a hybrid transfer learning
algorithm based on CNN and an improved CRBM. In their
algorithm, CRBM is used to enhance the fully connected
layer of CNN. The limitations are described as: (1) the
improved CRBM is based on maximum likelihood probabil-
ity of intermediate region, which may be biased for small
samples, thereby reducing its optimality properties, (2) its
complexity may grow exponentially as the number of features
increases, (3) the proposed algorithm may be sensitive to the
choice of starting values and (4) the feature selection method
may not capture trends of different periods as well as the
trends of the same periods.

Our proposed deep CNN consists of three layers, as shown
in Fig. 5. The first layer is the input layer, which receives
a sequence of data. The second layer is the feature learning
layer, which extracts feature from input data. Convolution
preserves the input by learning features using small squares of
input data. A rectified linear unit (ReLU) uses small squares
of data and accounts for the interaction effects between the
predicted data, and the actual data. It also accounts for the
nonlinearity effects. By convention, ReLU is a function that
returns 0 if any negative input is received, and it returns the
same value for any positive input. In addition to the second
layer, is the max-pooling, one for each convolution. Each
pooling returns a maximum value of the anticipated output
of the convolution. The third layer is the fully connected
layer. Its name denotes that the k-neurons are connected
to the neurons of the max-pooling. There is a problem of
weak generalization that occurs when the number of training
samples is small, and the number of neurons is large, which
may cause overfitting or over-parameterization. To solve this
problem, fully connected layer is trained by a conditional
restricted Boltzmannmachine (CRBM) [62]. Hence, the deep
CNN architecture is described as follows:

1) The input layer Im,t = {i1,1, i2,2, . . . , im,t } (t is the
time step and m is number of parameters) receives the
weekly periodical values of the optimal policy at time
t − 1. The data preprocessing of Im(t) is performed
to remove erroneous values, which may be caused
by reason of the failure of the proposed optimal pol-
icy method. Therefore, Im(t) is interpolated using the
formulation:

Im,t =


Im,t−1 + Im,t+1

2
, if Im,t+1 ∈ NaN ,

Im,t , if Im,t+1 /∈ NaN ,
(42)
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FIGURE 5. Description of our proposed deep CNN. (’w’ is the network weights; ’a’ and ’b’ are the network biases; ’h’ is
the hidden neurons; ’v’ is the output layers and ’u’ in the input layers of the condition restricted Boltzmann machine).

whereNaN means not a number. To ensure that the out-
liers are removed from the interpolated dataset, a max-
min normalization is used to scale the interpolated
dataset.

2) A 2-D convolution layer is used to extract at regular
interval the features from 2-D input data. However,
the feature Za+1,b+1, which is derived from the Eq. (43)
is used.

Za+1,b+1 = f (w.(k1(Ia+2,b+2)+ k2(Ia+2,b+2)+ b)),

(43)

where w is the weight term, f () is a nonlinear function
such as the hyperbolic tangent [63], b is the bias, k1 and
k2 are the derived kernel functions. k1 is obtained by
subtracting the sum of two rows values from the current
first-row value, which capture trends of different peri-
ods. While k2 is derived by subtracting the sum of two
columns values from the current first-column value,
which captures trends of the same periods. Finally, fil-
ters are applied to data and feature maps are produced.

3) TheReLU layer takes an input and performs a threshold
operation on it and also assigns all negative numbers
to the mean of its corresponding value. Computing the
mean operation may introduce some local translation
invariance to the model.

4) Max pooling takes an input and reduces the size of it
by taking the maximum value in each non overlapping
block. In this layer, overfitting is resolved by taking the
abstracted form of data representation, whichwill even-
tually reduce the dimensionality and computational
cost via reduction in the number of parameters. The
max pooling ensures that the model learns the basic
translational invariance of internal representation of the
data.

5) In the fully connected layer, the energy function is
adjusted, and classification is performed on the fea-
ture extracted dataset. However, to improve the fully

connected layer, CRBM adopted from [64] is used.
CRBM is the extension of the restricted Boltzmann
machine, and it is known for modelling time series
and human activities. Conceptually, CRBM works
through the derivation of higher-level values from the
lower-level values. From Fig. 5, CRBM is examined
based on mathematical description in terms of energy
function, learning rules and probability reference. Note
that the CRBM model captures different trends within
a single set of parameters. It also ensures real-time
inference efficiently by minimizing contrastive diver-
gence [65]. Once CRBM is trained, more layers can be
added. The initial layer is preserved, and the sequence
of the hidden state vector is influenced by the given
input [65]. The equations for weights and biases used
in this paper are obtained from [64] and the other
parameters of CRBM used are learning rateϒ = 10−3,
hidden layer= 10; output layer= 1; momentum= 0.9
and weight decay = 0.002.

The proposed formulations are implemented using an iter-
ative algorithm, as shown in Algorithm 1. Transition from
S ′(t − 1) to S ′(t) depends on optimal function values.
Lines 5-6 show that at the start of the iteration, since W
is randomly generated; however, there is a possibility that
the value of |W (g + 1) − W (g)| may be larger than the
convergence tolerance ε, which may cause unending loop.
To solve the problem, ε is normalized at line 6. The periods
δt = 1, 2, . . . is created to train the network1W , until it con-
verges, which leads to the improvement of the network. The
process is repeated until it can no longer get the improvement
of weight matrix of the proposed deep CNN, i.e., |W (g +
1) − W (g)| < ε. Thus, the close optimal policy is derived
recursively.

V. CASE STUDY
In this section, the objective function of the proposed scheme
is implemented on two test cases based on IEEE 118-bus [14]
and IEEE 30-bus [19] distribution systems, respectively.

VOLUME 8, 2020 161387



O. Samuel et al.: Towards Real-Time Energy Management of MMG

Algorithm 1 Proposed Iterative Algorithm

1 Initialized all weights and biases of deep CNN to a
minimum value;

2 Convergence tolerance ε = 10−4;
3 Set the learning rate ϒ , where 0 < ϒ < 1;
4 Set g = 0;
5 if |W (g+ 1)−W (g)| > ε then
6 ε = |W (g+ 1)−W (g)| + 0.1;

7 while |W (g+ 1)−W (g)| < ε do
8 Propagate initial state S ′(t);
9 Propagate training period δt by solving Eq. (25);
10 Train the CNN;
11 W (g+ 1) = W (g);
12 Calculate 1W = W (g+ 1)+ ϒ ;
13 g = g + 1;

14 return
Minimize
A(t) [v(S ′(t),A(t), S ′(t)+ V ′policy(S

′(t)))+1W ];

However, we do not modify these distributed systems.
The first test case validates the effectiveness of MMG
coalition, while the second test case confirms the effi-
ciency of the proposed method for cost allocations.
In addition, monthly wind turbine and photovoltaic data
are collected from the national renewable energy laboratory
and national wind technology centre [66]. A battery with
the capacity of 60 kW/380 kWh is used for energy stor-
age [39]. The ancillary service price considered is twice the
real-time electricity price. The hourly demand loads are taken
from [39] and the hourly electricity prices are taken from
ERCOT [67].

Simulations are implemented usingMatlab and power flow
computations are performed using Matpower software tool.
To avoid the repetition of formulating the optimal power flow
model, which is not the focus of this study. This study adopts
the formulations proposed by [47] for the implementation
and used the results as the input parameters to implement
our proposed system. Deep learning is implemented using
the Matlab deep learning toolbox and the parameters used
are taken from [58]. All simulations and results are obtained
through the Matlab. Moreover, all results validate the effec-
tiveness of the proposed algorithm. The hardware platform is
a personal computer with 8 GB RAM and central processing
unit of 1.60 GHz.

Fig. 6 shows the actual 24 hours of real-time electricity
prices and netloads. From the figure, it is observed that during
the first 1-5 time slots, electricity users’ netloads begin to
rise. There are upward and downward patterns of netload
in the subsequent time slots, which is due to the users’
behavior. However, it is observed that the real-time prices
are unstable during the 1-19 time slots, which drastically
drop at the 21-time slot and eventually rise at the 24-time
slot. The reason is that during this time slot, load demand is
minimized.

FIGURE 6. Electricity price and netload.

A. AN ANALOGY WITH OTHER METHODS
To ascertain the efficacy of the proposed optimal policy
method, greedy, MPC and ADP policies are used as the
benchmark methods for the comparisons. The proposed opti-
mal policy method finds the accurate day-ahead scheduling
plan. Fig. 7 shows the different scheduling policy methods
versus the average cumulative costs. From Fig. 7, average
cumulative cost reported by the proposed optimal policy
method and theADP-h5 policymethod have fast growth at the
1–5 time slots. It is observed that an extra power is purchased
for charging the battery, which means that the real-time
prices are low (i.e., τ (t) Preal(t) ≤ 20 cents/kWh). As the
real-time prices increase, the energy from the battery will be
discharging to meet the load demands of electricity users,
which implies that energy cost savings are achieved. Based on
the results, the proposed optimal policy method has a lower
average cost from 1-24 time slots as compared to the other
methods. It also confirms that the proposed optimal policy
method is effective and can provide an accurate day-ahead
scheduling plan within these time slots.

FIGURE 7. Showing the results of average commutative cost of different
scheduling policies.

In Table 2, the summary of the daily operating costs in
terms of mean, median, minimum, maximum, the first quar-
tile (Q1), third quartile (Q3) and the standard deviation (Std)
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TABLE 2. Daily operating cost for one week test data.

versus the demand-side policy methods are presented. From
the results, the proposed optimal policy method achieves a
reduced cost of $168.96 as compared to its counterparts.
Considering that there are fluctuations in the demand loads,
electricity prices and the renewable generations, the mean of
MPC and ADP policy methods are relatively close to one
another. It also confirms that these methods can adapt to such
fluctuations.

Table 3 shows the average daily operating costs of the DGs.
The proposed optimal policy method achieves the minimal
grid operating cost of $166.85 as compared to its counter-
parts. From the results, ADP policy method performance is
close to the proposed optimal policy method in terms of
the grid’s operating cost. Note that the proposed optimal
policy method achieves better performance in terms of cost
reduction for all DGs as compared to other policy methods.

TABLE 3. Analysis of the average daily operating cost of DGs.

B. EVALUATION OF THE PROPOSED DEEP CNN WITH THE
EXISTING MODELS
Fig. 8 and Fig. 9 show the forecasting results of optimal
function values of the proposed and different forecasting
models. A brief description of the existing forecasting models
is provided in this subsection. Encoder model is used to
solve sequence-to-sequence prediction problem. It involves
predicting the next value in a real-valued sequence. It also
takes input and converts it to a fixed-sized vector and makes
a prediction based on the fixed-sized vector [68]. Support
vector machine (SVM) model is a discriminative classifier
that solves a wide range of classification problems. It uses
labelled training data and produces an optimal hyperplane
that categorizes the output data [69]. Artificial nueral net-
work (ANN) calculates the gradient of the energy function
concerning the weight of the network using the chain rule.
It is also used in training multi-layers networks [70]. RNN
is a type of neural network that operates over a temporal
sequence of the input vector, where the connection between

FIGURE 8. Showing the forecasting results of optimal function values
of 24 hours for all models.

FIGURE 9. Showing forecasting results of approximate function value
of 24 hours for all models.

nodes creates a directed graph. It also uses memory to process
the sequence of input vectors [39].

From the results in Fig 8, the proposed deep CNN is
close to the actual data. However, the SVM model is not
as efficient as its counterparts. Moreover, SVM model is
unable to generalize the actual data. Similarly, Fig. 9 con-
firms that RNN and SVM models do not predict accurately
as compared to the proposed deep CNN and ANN models,
respectively. It is observed from the results that the Encoder
model over-forecast the actual data. The reason is that the
Encoder model works well for short sequence of data, how-
ever, inefficient for a long sequence of data, as it is difficult
for the Encoder model to memorize the whole sequence of
data into a fixed-sized vector. Also, as the sequence of data
size increases, its performance degrades accordingly.

VOLUME 8, 2020 161389



O. Samuel et al.: Towards Real-Time Energy Management of MMG

The performance of the proposed deep CNN is evalu-
ated using the mean absolute percentage error (MAPE), and
root mean square error (RMSE) [71]. The smaller value of
the error provides better forecasting accuracy. MAPE and
RMSE are used to evaluate the accuracy of proposed models,
as shown in Table 4. The RNN model achieves the high-
est RMSE value as compared to its counterparts, which is
due to the curse of dimensionality problem. ANN model
achieves second lease RMSE value close to the proposed
deep CNN model; however, the proposed deep CNN model
achieves the least values of MAPE and RMSE as compared
to its counterparts. Other statistical parameters like the mean
and standard deviation (Std) show that the proposed deep
CNN, ANN and Encoder models have relatively close values.
Note, the minimal Std value of RNN model is due to under
forecasting of the actual data. Also, the mean value is calcu-
lated as the average of predicted optimal function values.

TABLE 4. MAPE and RMSE analysis of the different models.

C. COMPUTATIONAL COMPLEXITY
The computational time for all models is presented in Table 5.
The computational time of the proposed deep CNN model is
11.54 s as compared to 169.66 s for RNN model and 12.18 s
for Encoder model, which are known to be deep learning
techniques; while SVM and ANN models have 0.62 s and
0.99 s, respectively. In deep learning models, the maximum
training time goes to the backpropagation process and the
input sizes. Based on the proposed CNN model, the number
of calculations depends on input and the number of filters.

TABLE 5. Computational time.

D. ADAPTABILITY OF THE DEMAND SIDE
This study demonstrates the scenarios of dispatchable loads
with different shedding costs. The parameters of the dispatch-
able loads are taken from [39]. For comparison, the prediction
horizons such as 6 h and 5 h are examined, individually.
The performance of the methods of the ADP policy and
MPC policy are shown in Fig. 10 and Fig. 11, respectively.
MPC-6h policy method uses the battery efficiently via charg-
ing for the all time slots. The charging of battery occurs due to

FIGURE 10. Scheduling results of MPC-6h method.

FIGURE 11. Scheduling results of ADP-6h method.

low electricity prices. However, within these periods, energy
is obtained from the main grid. Whereas, Fig. 11 shows the
battery is discharging at time slots t1, t17, t19, t22 and t24,
which are used to satisfy the load demands.

Fig. 12 shows that dispatchable loads are available for
consumption in eventually all the time slots. Whereas, Fig. 13
shows instabilities in the dispatchable loads during load shed-
ding. Load shedding occurs when the estimated active power
is not balanced properly during transmission. Load shedding
problem is addressed using load balancing that defines a
threshold value and as well as the number of load reductions.

E. EVALUATION OF THE PERFORMANCE OF THE
PROPOSED COALITION METHOD
In this subsection, the proposed topology of each MG
described in Fig. 3 is used and its parameters are taken
from [47].

1) FIRST TEST CASE USING IEEE 30-BUS DISTRIBUTION
SYSTEM
The simulation is performed for 168 h to ascertain the
economy of the MMG coalition behavior for a long period
to match the real world situation. The final costs for two
coalition methods, i.e., nucleolus and Shapley are presented
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TABLE 6. Comparison of energy allocation costs for the different models (30-bus system).

FIGURE 12. Power consuming of dispatchable loads in a busy day for the
MPC-6h method.

FIGURE 13. Power consumption of dispatchable loads in a busy day for
the ADP-5h method.

in Table 6. As seen from the simulation results, each MMG
receives energy cost savings, which substantiates the eco-
nomic benefit of the MMG coalition operation. The proposed
Nucleolus with CGA model achieves better performance in
terms of high energy cost savings for MMG as compared to
nucleolus with BD [14] and Shapley model [28], respectively.
The improvement is achieved because the proposed nucleolus
with CGA model has the ability to minimize the maximum
expenses by eliminating negative energy cost reductions. The
results of Shapley model do not provide reduced energy
cost allocation as compared to its counterpart models. It is
assumed that the Shapleymodel is not a core, it uses additivity

FIGURE 14. Solar generation.

in which themodelmust find the sum of participating players’
expenses individually and calculates the weight of each par-
ticipant. Independent MGs that do not participate in coalition
have high energy costs as compared to their counterparts.

2) MULTI-MICROGRID COOPERATION ECONOMY ANALYSIS
In this subsection, a single MG (MG 10) is considered for
analysis purposes. Energy generation cost is reduced via
mutual energy exchange amongMMGs, which also increases
the efficient usage of zero cost renewable energy. Fig. 14
shows the actual solar power generation, while Fig. 15 reports
the generation of small hydro-solar unit for independent oper-
ation. In the independent operation case, small hydro-solar

FIGURE 15. Independent operation.
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TABLE 7. Comparison of energy allocation costs for all models (118-bus system).

FIGURE 16. Coalition operation.

unit needs to supply its own power independently and may
incur high energy cost during generation, as there is no energy
exchange. From Fig. 16, the coalition operation case shows
more small hydro-solar generations than the independent
case. The reason is that, when forming the grand coalition,
MMG with small hydro-solar generation receives energy
from MMG with much solar generation and less user’s load
demand than the independent MG.

3) SECOND TEST CASE USING IEEE 118-BUS DISTRIBUTION
SYSTEM
In this subsection, the IEEE 118-bus network consists of three
thermal generators at bus 1, 4 and 6, while the wind power
output is connected to bus 1, 4, 6, 19, 26, 27, 36, 40 and 46,
and buses 8, 12, 18, 19, 24, 25, 26, 27, 31, 32, 34, 36, 40, 42,
46 and 49 are used for the solar PV power output.While small
hydro-solar output supplies bus 10 and 36. The parameters of
the IEEE 118-bus distribution system used for simulations are
taken from [47].

The energy allocation costs of the coalition for all models
are presented in Table 7. As shown from the results, each
MMG receives energy cost savings, which substantiates the
economic benefit of the MMG coalition operation. From the
results, the proposed nucleolus with CGAmodel has reduced
energy allocation cost as compared to nucleolus with BD
model [14]. However, in the Shapley model [28], there is
a drastic reduction of energy allocation cost for all MMGs
as compared to its counterpart models. The achievement of
Shapley model is based on assigning a random value to the
weight of allMMGs. However, the drastic reduction in energy
allocation cost by Shapley model may create financial prob-
lems when the energy allocation cost, is set below the cor-
responding expenses borne by each MMG. Overall, the pro-
posed model allows the MMG to exchange power within the
distribution system and argument power consumption of its
neighboring MMG for economic benefits.

VI. CONCLUSION
In this paper, each MG achieves energy cost savings effi-
ciently through the coalition of MMG. A mechanism for fair
allocation of expenses to each MMG is proposed in this work
to ensure MMG’s stability. The proposed mechanism uses
CGA to obtain the core solution for the cooperative game.
Simulation results show that the MMG system that imple-
ments our proposed nucleolus with CGAmodel achieves high
energy cost savings as compared toMMG systems that imple-
mented nucleolus with BD, Shapley and MMG without a
coalition, i.e., independent MG. However, the nucleolus with
BD model requires high computing resources as the num-
ber of MMGs increases. Similarly, Shapley model assigns
a random weight to each MMG based on factorial, which
becomes computationally infeasible as the number of MMG
grows exponentially. Furthermore, simulation time shows the

161392 VOLUME 8, 2020



O. Samuel et al.: Towards Real-Time Energy Management of MMG

robustness of our proposed nucleolus with CGA model with
execution time of 0.1955 s as compared to the execution time
of 0.2920 s for nucleolus with BD model, and execution time
of 41.3569 s for Shapley model. From the simulation results,
our proposed deep CNN model achieves the minimal MAPE
value of 0.70 and RMSE value of 0.34 as compared to the
other models.

This study also proposed an optimal policy model for the
dynamic EM of MMG in real-time. The proposed model is
compared with three existing policy models, such as greedy
policy, ADP policy and MPC policy. Moreover, the proposed
optimal policy method achieves MG’s daily operating cost
reduction up to 87.86% as compared to 79.52% for the MPC
method, 73.94% for the greedy policy method and 79.42%
for ADP method.

In future, this study intends to improve the proposed
method with reinforcement learning. In this way, a closed-
loop control policy may optimally schedule the ESS opera-
tions. It will also consider a situation when a fault occurs in
a short circuit of MMG constrained at its initial setup. As a
result, there are chances that system recovery may surmount
to high operating cost, which may be averted by the proposed
method.
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