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ABSTRACT Polarimetry is typically restricted to far-field characterization of a target using beam-like
waves, which results in a 2 × 2 scattering matrix representation under two orthogonal in-plane polariza-
tion bases. However, a short-range (or radiative near-field) microwave polarimetric approach can recover
a 3 × 3 polarimetric matrix representing a full vector polarimetric response of the imaged object. The
computational imaging method retrieves this full polarimetric response by utilizing an ensemble of randomly
polarized probing fields from a cavity-backed metasurface antenna as the enabling technology. In this paper,
we describe the polarization states of the non-planar vector sensing fields with three-dimensional (3D) Jones
vectors and examine the polarization diversity with the polarization ellipses in 3D space. Corresponding 3D
polarimetric target parameters are derived from the 3D polarimetric matrix and the diagonalization process
of this matrix. The generalized 3D target parameters disclose direct details of the imaged object which
are otherwise inaccessible to the conventional 2 × 2 polarimetric scattering matrix description, especially
the polarimetric features along the range direction. The target parameters reconstructed in experiments
validate the effectiveness of our 3D polarimetric near-field imaging framework and the parameterization.
The advanced processing and parameterization of 3D polarimetry indicate great potential applications in
many short-range microwave imaging scenarios.

INDEX TERMS Microwave polarimetry, computational imaging, radiative near field, electromagnetic
metasurface.

I. INTRODUCTION
Polarimetric microwave imaging exploits the vector nature of
electromagnetic waves to measure scattering responses of a
target using different polarization combinations of the trans-
mitter and the receiver. Many aspects, including geometrical
and electrical characteristics of scatterers and the observation
geometry, can contribute to the complicated local scattering
response of the target [1], [2]. With interpretation of the
polarimetric response by separating these aspects, polari-
metric imaging has shown to unveil more characteristics
of the target-wave interaction than purely scalar microwave
imaging [3], [4]. In conventional microwave polarimetry,
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the polarimetric signature of the target can be represented
by a 2 × 2 scattering matrix, which is commonly measured
by four combinations of two orthogonal polarization states
of the transmitting and receiving antennas. For more general
scenario, a covariance matrix or a Mueller matrix is used
to describe the spatially averaged polarimetric responses of
distributed targets in multi-looked imaging [5], [6]. Due to
the complexity of local polarimetric scattering mechanism,
it is challenging to interpret the complex scattering matrix
or other formats of scattering matrices intuitively. Polari-
metric target decomposition methods, first formalized by
Huynen [7], aim at extracting physical target parameters from
the polarimetric scattering matrices [8]. Common polari-
metric target decomposition methods include model-based
decomposition, such as Freeman-Durden three-component
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decomposition [9], and eigendecomposition analysis, such as
Cloude decomposition [10]. With the advent of these target
decomposition methods, microwave polarimetry, e.g., polari-
metric synthetic aperture radar (PolSAR), has demonstrated
a plethora of applications in remote sensing, agriculture
and geoscience, including terrain and land-use classification
[11]–[13], soil moisture assessment [14], [15], and ocean
surface observation [16], [17]. Despite plenty of applications,
polarimetry imaging is restricted to characterizing the scene
with only the cross-range components in the far-field of
the antenna. This limitation drives the research interest of
implementing three-dimensional(3D) full vector polarime-
try imaging, where a nontrivial target response along with
the range direction, can be retrieved. This 3D polarimetry
requires new description for the polarization states of waves
and the corresponding polarimetric scattering response of
the target other than the established methodology for con-
ventional far-field polarimetry. In the optical range, some
theoretical analyses and experimental demonstrations, e.g.
in a reverberating chamber, have been made to extend the
polarization description to non-planar waves [18]–[21]. Here,
we use 3D Jones vector description of the sensing fields
along with a 3 × 3 susceptibility tensor of the target for the
microwave polarimetric imaging. 3D polarimetry depends on
the sensing fields with all three vector components of the
field. In our preliminary study [22], we exploit the non-planar
nature of radiative near field of a cavity-backed antenna
along with the computational imaging concept to achieve
3D polarimetric imaging with significant simplification of
the hardware. Computational imaging leverages optimization
algorithms for inverse problems and advancing computa-
tion resources to transform the imaging system configura-
tion and the process of interrogating the scene [23]–[27].
This technique aims to circumvent some limitations faced
by conventional imaging methods, for example, large spatial-
bandwidth-product(SBP) imaging [28], [29] which achieves
high resolution and wide field simultaneously, or to notice-
ably simplify the system hardware requirement with dras-
tically reduced cost, e.g., single-pixel imaging [30]–[32].
Computational imaging paradigm typically encodes the sig-
nal of interest into a series of indirect measurements, often
in compressive sensing fashion, and reconstructs the scene
by solving an optimization problem. In our system, we use
an ensemble of random sensing fields with frequency, spa-
tial and polarization diversity to multiplex 3D polarimetric
responses of an imaging domain into one single complex
measurement at each frequency point over some bandwidth.

To generate the random probing field set for the 3D
computational polarimetric imaging purpose, we utilize a
cavity-backed metasurface aperture antenna. Metasurface
antenna possesses large degrees of freedom in engineering
its scattering property and has recently shown great fulfill-
ment of demands for novel computational imaging systems
[33]–[36]. Specifically, the cavity-backed metasurface aper-
ture in our study has been demonstrated to radiate a series
of pseudo-orthogonal electromagnetic field patterns indexed

by the driving frequency and these patterns have sufficient
spatial and frequency diversity to probe the target scene [37].
This characteristic of the metasurface aperture has further
been exploited to reconstruct the reflectivity contrast and
phase of the target space phase using intensity-only mea-
surements in the microwave range [38], [39]. For the aim of
polarimetric imaging, we show that the field patterns radiated
by this metasurface aperture possess polarization diversity
which paves the way for the compressive 3D polarimetric
imaging application.

In this paper, we first revisit the architecture of com-
putational microwave polarimetric imaging proposed in
our preliminary work [22], [40]. It is demonstrated that
our system has the ability to retrieve spatially-resolved
three-dimensional polarimetric scattering matrices with huge
simplification on the hardware. In our system, the active
components necessary to reconfigure the fields interrogating
the domain to be imaged are eliminated. Another simplifi-
cation is that a single transmit-receive chain is used for this
demonstration. It should also be noted that analogous work
oriented towards the detection of non-cooperative thermal
sources has allowed the reconstruction of different 2D polar-
ization states with a cavity-backed metasurface [41]. Built
on our previous work [22], [40], this paper enunciates the
further physical interpretation of this 3D scattering matrix by
proposing different eigendecomposition analysis compared
with [22] and deriving multiple parameters which are directly
related to local geometric and scattering features of the target.
We characterize the 3D polarization state using the 3D Jones
vector and corresponding polarization ellipses to demonstrate
the underlying polarization diversity of the sensing fields.
Characteristic target parameters for 3D polarimetry are devel-
oped to extract local orientation of the target in 3D space
and its polarimetric scattering properties in the near-field.
This target parameterization process enables the physical
interpretation of the 3 × 3 complex scattering matrix with
a series of quantitative scalar parameters in an analogy to
the Huynen’s decomposition in far-field polarimetry. These
parameters describe the target’s responses to not only differ-
ent polarization states as in 2D polarimetry but also various
local propagation directions of the wave. This 3D polarimetry
technique and 3D target parameterization yield rich polari-
metric information that can be used to enhance the contrast in
the scene or obtain target features along the range direction.
These pieces of information are useful in short-range imaging
application scenarios, for example, concealed threat detection
and classification [42]. This framework can be further trans-
lated to other application scenarios at different electromag-
netic wave frequency ranges, for instance, near-field scanning
optical microscopy where the electric field is in nature three-
dimensional [18].

II. THREE-DIMENSIONAL POLARIZATION STATE
DESCRIPTION OF RANDOM FIELDS
In this section, our computational 3D polarimetric imag-
ing system initially introduced in [22] is first revisited for
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the completion of this paper. We then elucidate the theory
of the three-dimensional Jones vector and the polarization
ellipse in 3D space which effectively characterizes the
fully-polarized random fields. Based on these concepts,
we demonstrate with 3D polarization ellipses the polarization
diversity of the spatially-varying but fully-polarized random
fields generated by a cavity-backed metasurface aperture
antenna.

The cavity-backedmetasurface aperture antenna employed
is illustrated in Fig.1(a). It consists of a 28.5cm(W ) ×
28.5cm(L) × 15.2cm(H ) high quality-factor (Q = 12000)
air-filled metallic cavity which supports several thousands
of diverse modes switched by the feeding frequency [35].
Randomized holes on the front surface of the cavity over an
area of 15cm × 15cm couple out cavity modes to an ensem-
ble of radiation patterns indexed by the feeding frequency.
Two coaxial cables connect the rear surface with a vector
network analyzer (VNA) which takes coherent measurements
g(f ) at 4001 evenly-spaced discrete frequency points f in
K band (17.5−26.5GHz). This metasurface antenna radiates
effectively as a collection of in-plane magnetic polarizable
dipoles my,mz [22]. These magnetic dipoles are character-
ized in the experiment by equivalently measuring the fields
over the antenna aperture in its near field with an open-end
waveguide antenna using a planar near-field scanner
(NSI 200V). The measurements of Ey,Ez at two subsequent
frequency points are shown in Fig.1(c). With a small fre-
quency shift of 2MHz, the field patterns show a substan-
tial difference. The three-dimensional incident fields and
the receiving fields,which by reciprocity is identical to the
radiated fields from the excitation of the port 2, in any
domain of interest are known by computationally propagating
the equivalent in-plane dipoles to the target space using
dyadic Green’s function [43]–[45]. With ŷ, ẑ components of
magnetic dipoles, the radiation fields are of three dimensions
in the radiative near field. [22].

This 3D polarimetry imaging system, depicted in Fig.1,
provides non-planar sensing fields radiated from the ran-
domized cavity surface. Since the radiation field of this
aperture antenna has nontrivial components of Ex ,Ey,Ez
due to near-field operation, we have proposed, in the pre-
liminary study, to use the electric susceptibility tensor χ
to characterize the local scattering process in the radiative
near field. Assuming first Born approximation [43], [46],
the computational polarimetric imaging forward model with
the full-vector random fields and the susceptibility tensor
description of the target is expressed as, at each frequency f ,

g(f ) =
∫
V
ETr (r)χ (r)Et (r)dr (1)

where Er = [Ex,r ,Ey,r ,Ez,r ]T and Et = [Ex,t ,Ey,t ,Ez,t ]T

are the vector electric fields generated from exciting the
receiving port or the transmitting port respectively, χ denotes
the target electric susceptibility tensor and r is the location
in the scene. The susceptibility tensor χ (r), in the Cartesian

FIGURE 1. (a) Front and rear image of the cavity-backed metasurface
aperture antenna.(b) Cavity-backed metasurface aperture and
computational polarimetric imaging setup. Red and blue ellipses
demonstrate different polarization states for the transmitting and
receiving ends. (c) Near field scan results with port 1 for dual-
polarization at two neighboring frequency points.

coordinates, can be expressed in the matrix format as,

χ (r) =

χxx χxy χxz
χyx χyy χyz
χzx χzy χzz

 . (2)

If the propagation medium is reciprocal (not valid for
ferro-magnetic object), the reciprocity theorem ensures the
symmetry of the matrix χ , or χxy = χyx , χxz = χzx and
χyz = χzy. The 3D polarimetric response of the whole target
scene is multiplexed by the vector field patterns (Et ,Er ) into
one single complex measurement at single frequency. With
a simple frequency sweep of m points, we can obtain the
compressive measurements in the format of m complex num-
bers g(fi), i = 1, 2, . . . ,m. To recover the spatially resolved
polarimetric response χ (r) requires the knowledge of the spa-
tially varying illumination and sensing fields Er (r),Et (r) for
all the frequency points. In our system, these fields are numer-
ically calculated by propagating the experimentally measured
near fields (shown in Fig.1) to the domain of interest by
using dyadic Green’s function of free space. By forming a
measurement vector g = [g1, . . . , gm]T and discretizing the
target space into voxels r = [r1, . . . , rn]T , the integral in
Eq.(1) can be replaced by matrix multiplication as

g =
∑
i=x,y,z

∑
j=x,y,z

H ijχ ij = Hχ (3)

where H ij is the m × n sub-block of sensing matrix
formed by the product of i component of the transmitting
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field component and j component of the receiving field,
i.e. H ij = [Ei,t (ν, r) ◦ Ej,r (ν, r)], for i, j = x, y, z. Rows
and columns of H ij correspond to frequency points (mea-
surements) and discrete voxels receptively. H is the m ×
(n×9) complete sensing matrix formed by concatenating the
sub-block sensing matrices as [Hxx ,Hxy, . . . ,Hzz]. And χ ij
is the n×1 vectorized χij of all voxels in the scene and χ is the
combined (9×N )×1 vector of χij with [χTxx ,χ

T
xy, . . . ,χ

T
zz]

T .
From Eq.(3), the nine sub-block sensing matrices H ij inter-
rogate the corresponding polarimetric scattering terms χ ij
and coherently sum to the complex measurement. The polari-
metric responses are reconstructed by solving a least-squares
problem posed as

χ̂ (r) = argmin
χ
‖g−Hχ‖2 (4)

As examined in [22], the radiation fields from this meta-
surface antenna has low spatial correlation and pseudo-
orthogonality over the nine sub-block sensing matrices. The
correlation matrix is defined as

X(m, n, p, q) = H†
mnHpq = [

〈
E∗m,tE

∗
n,rEp,tEq,r

〉
ν
],

for m, n, p, q = x, y, z (5)

where
〈
·
〉
f denotes the ensemble average over the frequency

points,i.e. different coherent measurements. For (m, n) =
(p, q) cases, the diagonal X represents the spatial diver-
sity of fields of different frequency at different voxels. For
(m, n) 6= (p, q) cases, the randomness and low magnitude of
X represents the polarization diversity of different frequency
which ascertain low cross-talk among different polarimetric
channels.

In our previouswork [22], [40], the vector field is described
in one Cartesian reference frame with Ex ,Ey,Ez components.
Since the wave in the near field is locally propagating in
different directions, using Cartesian coordinates can not intu-
itively indicate the local polarization state. To better exam-
ine polarization states of the sensing fields in the radiative
near field, we utilize 3D Jones vector and 3D polarization
ellipse [47]. Jones vectors describe fully polarized state of
paraxial fields where the local electric field vectors lie in a
common transverse plane perpendicular to the propagation
direction [5]. A Jones vector which can describe any fully
polarized state consists of two in-plane complex amplitudes
[Exejδx ,Eyejδy ]T along two orthogonal axes. It corresponds to
a polarization ellipse on the transverse plane given by points
of (Re{Exejδx e−jωt },Re{Eyejδye−jωt }) with t as the time. This
ellipse illustrates the trajectory of the end-point on the electric
vector rotating with time. While Jones vectors, or Stokes
parameters, are originally limited to polarization states of 2D
fields, many literature have derived the generalization for
3D non-paraxial case with the purpose of characterizing
near field [47]–[51]. Without common propagation direction,
the polarization state of random near field can be properly
described by a 3 × 3 polarization coherence matrix. This
matrix is generated by the second-order cross-spectral density

of random fields at any point r [48]. The nine elements in the
coherency matrixW3×3 are

Wij(r, ω) = 〈E∗i (r, ω)Ej(r, ω)〉 (6)

where i and j denotes the index for Cartesian coordinates and
〈·〉 is the ensemble average over all the realizations of the
random fields. This 3 × 3 matrix is positive semi-definite
Hermitian matrix which has three non-negative eigenvalues
λ1, λ2, λ3 and three corresponding orthogonal eigenvectors
u1,u2,u3. The unit-norm complex eigenvector ut can be
in general form expressed as [a1ejδ1 , a2ejδ2 , a3ejδ3 ]T . This
represents, in reality, a unit 3D Jones vector. The general 3D
Jones vector is expressed as

E = [Exejδx ,Eyejδy ,Ezejδz ]T (7)

which has five real parameters excluding a common phase.
It has been shown that this complex vector given by (7) with
e−jωt term corresponds to an ellipse lying on an arbitrary
plane in 3D space [48], as depicted in Fig.2(a). The local
propagation direction is perpendicular to the plane that the
polarization ellipse resides in. With the physical meaning of
the eigenvectors, the coherence matrix can be decomposed
into incoherent sum of three polarization states given by ut :

W3×3 =

3∑
t=1

λtut ⊗ u†t (8)

where ⊗ is the outer product and † is conjugate transpose.
The necessary and sufficient condition for the field to be fully
polarized is that λ2 = λ3 = 0, equivalently rank(W ) = 1.
Therefore, 3D Jones vectors alone are able to represent the
3D fully polarized state.

For the following study, the sensing field radiated by
the cavity-backed aperture antenna is considered as fully
polarized everywhere within the imaging domain. Therefore,
the 3D polarization state is represented by 3D Jones vector
and the polarization ellipse included above. Figure 2(b)(c)
illustrate the polarization ellipses of the transmitting(Tx) and
receiving(Rx) sensing fields over a 0.2m × 0.2m 2D plane
at x = 0.3m from the front surface of the antenna. The
polarization ellipses for four neighboring frequency points
are illustrated against the gray-scale as the magnitude of the
sensing fields. It demonstrates the diverse polarization states
(different orientation of the major axes and different local
propagation directions) over the target scene. Each voxel
in the scene experiences a series of different combinations
of polarization states on the Tx and Rx ends, as depicted
in Fig.2(a). The red and blue ellipses are the Tx and Rx
sensing field polarization at five subsequent frequency points.
This imaging system is retrieving the full 3D polarimetric
response by measuring and receiving with a large number
(frequency points) of different in-plane polarization states
and different local propagation directions. It should be noted
that these ellipses correspond to electric fields of differ-
ent temporal frequencies. We assume that the polarimetric
response χ of the target has low temporal dispersion in the
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FIGURE 2. (a) Polarization ellipses at five subsequent frequency points.
Red is the transmitting field and blue is receiving field. Polarization
ellipses in y − x and z − x views are depicted. (b)(c) The gray-scale 2D
figures are the sensing field magnitude at 4 subsequent frequency points.
The 3D ellipsoids denote the polarization states at different locations in
the scene.

K-band we use and is more related to the polarization state
described by the actual geometric feature of the polarization
ellipses. Moreover, the reconstructed polarimetric response
can be viewed as the averaged response over the bandwidth
in the frequency sweep for a more general target.

III. CHARACTERISTIC XPOL-NULL POLARIZATION
STATES IN 3D POLARIMETRY
In this section, we demonstrate the extraction of target char-
acteristics from the experimentally reconstructed 3D polari-
metric matrix χ of a letter ‘‘U’’ target. This 13× 8cm2 target

FIGURE 3. Reconstructed χ tensor for the Letter ‘‘U’’. (a) Imaging setup.
The photo of letter‘U’ is shown. (b) Nine polarimetric channels of the χ
matrix. The magnitude are normalized to global maximum among all nine
channels. The opacity of each voxel is coded with the magnitude level.
(c) The magnitude value of the three diagonal channels along the red
dashed line depicted in χxx. Red arrows denote the reconstructed but
small χxx value.

is made of a copper wire with a diameter of 5 mm, shown
in Fig.3(a). This conductive wire is placed at x̂ = 0.24 cm,
with the origin plane set at the near field scan location.
The near fields of the aperture are characterized at around
10cm from the antenna aperture. Since the reconstruction
uses the near fields directly, it is convenient to take the near
field scan plane as the origin plane. From the definition of
the field boundaries presented in [43], [52], we calculate
the boundary distance between the reactive and radiative
near-field region as d1 = 0.29m and the distance between
the radiative near-field and far-field regions as d2 = 3m. The
selected imaging distance is 0.24m from the near field scans,
making it at d = 0.34m offset from the antenna aperture.
It remains within this radiative near field range, d1 < d < d2.
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A vector network analyzer (VNA, Agilent N5245A) takes S12
measurements g(f ) at 4001 different frequency points evenly
spaced within the K band from 17.5 GHz to 26.5 GHz.

The domain of interest is a 0.04m(x̂)×0.2m(ŷ)×0.22m(ẑ)
cuboid and is discretized to 4×40×44 voxels in three dimen-
sions. Each voxel is of 10mm(x̂)× 5mm(ŷ)× 5mm(ẑ), deter-
mined by the range and cross-range resolution of this aperture
antenna. Each voxel has a 3×3 complex matrix χ to describe
the averaged 3D polarimetric scattering response. The whole
scene is reconstructed by solving Equation (4) with gener-
alized minimal residue method (GMRES) [53], [54]. The
symmetry of χ is asserted by averaging the off-diagonal
symmetric components, e.g., ‘xy’ and‘yx’. The reconstructed
polarimetric scattering matrix χ of the letter ‘‘U’’ is illus-
trated in Fig.3(b) as nine different polarimetric channels.

The magnitude figures of nine channels are shown respec-
tively in Fig.3(b). It demonstrates that our system is able to
resolve target signatures in all nine polarimetric channels,
as proved in [22]. Note that the resolution is not degraded
for the polarimetric reconstruction compared to scalar recon-
struction using the same measurements. However, the polari-
metric information in the sub-resolution volume is the main
usage of polarimetric imaging instead of the spatial resolu-
tion. The polarimetric responses are relatively small in the
range (x̂) related channels,e.g χxx , χxz, compared to the other
four cross-range components (χyy, χyz, χzy, χzz). In the mag-
nitude comparison of co-polarized components, illustrated
in Fig.3(c), the co-polarized range channel χxx tends to pick
out the edge of the wire. It should be noted that despite small
values, the two vertical parts of the letter ‘U’ have significant
values of χyx ,χxy and the bottom part of the letter ‘U’ has a
significant value of χxz,χ zx . The range-related channels are
inaccessible to the conventional 2D polarimetric imaging.

With the reconstructed 3D polarimetric matrix, in this
paper, we aim to extract target parameters with physical
meaning by extending the target decomposition methods
of 2D polarimetry to 3D cases. The directmethod for coherent
polarimetric matrix is eigendecomposition-based analysis.
We first formalize the 3D coherent power polarimetric matrix
G3×3 in an analogy to 2D Graves matrix G, as shown at
the bottom of the page, [5], where ∗ denotes complex con-
jugate. This matrix is positive-semidefinite which has three
real non-negative eigenvalues λ1 > λ2 > λ3 > 0 in
non-increasing order and three corresponding orthonormal
complex 3× 1 eigenvectors u1,u2,u3, i.e.

G[u1,u2,u3] = [u1,u2,u3]

 λ1 0 0
0 λ2 0
0 0 λ3

 . (9)

Each eigenvector ui represents a unit 3D Jones vector which
corresponds to some 3D polarization state. (u1,u2,u3) form
one complete set of 3D polarization bases under which the
coherent power matrix G is diagonal. The 3D polarimetric
matrix χ can be diagonalized by a unitary transform of
U = [u1,u2,u3] as

χD = U∗χU†
=

χ1 0 0
0 χ2 0
0 0 χ3

 . (10)

The transform format is different from ordinary unitary
transform in the conjugate operation ∗ on U due to the
choice of backscattering alignment coordinates. This diag-
onalization of χ indicates that measuring cross-polarized
scattering parameters of any combination within 3D polar-
ization states given by u1,u2,u3 leads to zero. Therefore,
eigenvectors (u1,u2,u3) represent the local characteris-
tic cross-polarization minimization (XPOL-Null) polariza-
tion states in the 3D polarimetry case. Compared to the
XPOL-Null states in 2D polarimetry [5], the characteristic
propagation direction is also recovered by these 3D Jones
vector in addition to the in-plane polarization states. The three
eigenvalues of G are proportional to the radar cross-section
for the co-polarized scattering of corresponding XPOL-Null
polarization states, similar to 2D polarimetry [5].
Following this process, three characteristic XPOL-Null

polarization states are retrieved for every voxel of the letter
‘‘U’’ target using the reconstructed χ matrices presented
in Fig.3(b). Figure 4 illustrates three characteristic
XPOL-Null polarization states ui, i = 1, 2, 3 by the corre-
sponding 3D polarization ellipses. These ellipses all situate
in different planes of 3D space. The plane of the first two
XPOL-Null polarization ellipses (u1,u2) is almost parallel to
the transverse plane of this planar target. These two charac-
teristic polarization states are similar to the two XPOL-Null
states in 2D far-field polarimetry. Nevertheless, it is worth
noting that these ellipses have projected areas along the
range direction, which can be seen in the top-down view
such that they do not fully reside in the transverse plane.
The plane of the third XPOL-Null polarization ellipses (u3)
is predominantly perpendicular to the target plane. This
range-related state is defined uniquely for the near-field
polarimetry, different from the 2D case. For the in-plane
orientation, the major axes of u1 ellipses (with the largest
eigenvalues) align with the orientation of the copper wire.
This is well demonstrated by the u1 ellipses on the two
vertical bars of ‘U’ and the horizontal bottom of ‘U’. The
u2 states are orthogonal (not necessarily geometrically but in

G = χ∗χ

=

 |χxx |2 + |χxy|2 + |χxz|2 χxxχ
∗
xy + χxyχ

∗
yy + χxzχ

∗
zy χxxχ

∗
xz + χxyχ

∗
yz + χxzχ

∗
zz

χyxχ
∗
xx + χyyχ

∗
yx + χyzχ

∗
zx |χxy|

2
+ |χyy|

2
+ |χzy|

2 χyxχ
∗
xz + χyyχ

∗
yz + χyzχ

∗
zz

χzxχ
∗
xx + χzyχ

∗
yx + χzzχ

∗
zx χzxχ

∗
xy + χzyχ

∗
yy + χzzχ

∗
zy |χzx |

2
+ |χzy|

2
+ |χzz|

2


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FIGURE 4. Eigenvectors of 3D coherent scattering power matrix of letter
‘‘U’’ target. The polarization ellipses represent u1,u2,u3 respectively.
Top-down view (xy plane) is given on the side.

the sense of polarization state) to first states u1 with primarily
transverse components. As depicted in Fig.4, the major axes
of u2 ellipses are, in reality, geometrically orthogonal to
the orientation of the thin wire. This geometric orientation
feature of u1,u2 polarization ellipses result from the local
flat-surface like structure of copper wire, which has two

orthogonal XPOL-Null polarization states parallel to the
plane as in 2D polarimetry [5]. Moreover, in the macro
view, fields polarized along the wire have a larger scattering
response. Consequently, between u1 and u2,the XPOL-Null
polarization states whose ellipses is along the wire have larger
eigenvalues. These ellipses noticeably have small elliptical
angles, and their shape is close to a line, which refers to a
linear polarization state of different orientation in 3D space.
This is valid for the metallic wire target since scattering from
it should be anisotropic.

Eigenvalues of all the voxels that contain the target are
compared in Fig.5. The eigenvalues are normalized by the
trace of the 3D coherent power polarimetric matrix G, i.e.
λ̂i = λi/tr(G), leaving the unit sum of all three eigenvalues
for every voxel. The two larger eigenvalues are comparable,
while the third eigenvalue for the primarily range XPOL-Null
state is 10−4 smaller than the other two dominant ones. This is
as expected since the eigenvalues of coherent power matrixG
denotes the cross-section levels for different co-polarized
XPOL-Null states. This planar thin wire target has a small
scattering response in the range direction compared to the
transverse dimensions.

FIGURE 5. Eigenvalues of 3D coherent scattering power matrix of letter
‘‘U’’ target. (a) Three normalized eigenvalues for target voxels. (b) First
two dominant eigenvalues in the reconstruction domain.

Figure 6 depicts the normal vector and the major-axis
vector of u1 ellipses on one constant-height slice (z = 0m)
crossing the two vertical bars of ‘U’. The color of the vectors
is given by the absolute value of three directional cosines
[cos(a), cos(b), cos(c)] such that the vector is red when close
to the x̂ axis, green when close to the ŷ axis and blue when
close to the ẑ axis. The top-down view of these vectors on
a constant-z slice in Fig.6 clearly illustrates that the normal
vector (red) rotates along the curved surface of the wire while
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FIGURE 6. (a) Top-down view of the direction vectors on the constant-z
plane (z = 0m) Black dashed circles denotes the location of the letter ‘U’.
(b) Front view of the aforementioned constant-z plane.

the major-axis vector not fully points along the wire direction
but with some angle to the wire and distributed symmetrically
with regard to the center-line of the wire. These detailed local
structure information offers more insights into the detailed
features of the target, which is not deliverable by conventional
2D polarimetry. The presented result is a testament to the
advantage of near-field operation in that range probing of the
target is achieved, extending the conventional 2× 2 polariza-
tion bases in far-field to 3 × 3 by also leveraging the range
component.

IV. TARGET PARAMETERIZATION OF 3D POLARIMETRY
In this section, we propose to parameterize the XPOL-Null
states and the diagonalized χ matrix to further quantitatively
characterize the target with 3D polarimetry data. Take the first
eigenvector u1. As shown above, each eigenvector refers to an
ellipse oriented arbitrarily in 3D space, as shown in Fig.7(a).
There exists a real rotation matrix o3×3 such that oTu1 is
the same ellipse rotated to coincide with the Y0Z0 plane and
the major axis of the rotated ellipse coincide with Y0 axis.
Let u1 = [axejφ1 , ayejφ2 , azejφ3 ]T , and the rotation process is
expressed as

oTu1 = [0, ay, aze±jπ/2]T , (11)

where o is a 3 × 3 orthonormal real matrix denotes a 3D
rotation. This rotation matrix can be determined by finding
the unit vectors of the intrinsic axes x̂1, ŷ1, ẑ1 affixed to the
ellipse, maintaining the right-handedness. Then the rotation
matrix is found to be o = [x̂1, ŷ1, ẑ1]. The rotation matrix can
be represented by three Euler angles α, β, γ [55]. Following
the extrinsic rotation sequence of ZYX , the three Euler angles
can be found by comparing the rotation matrix o with [56]

Z1Y2X3 =

 c1c2 c1s2s3 − c3s1 s1s3 + c1c3s2
c2s1 c1c3 + s1s2s3 c3s1s2 − c1s3
−s2 c2s3 c2c3

 (12)

where 1, 2, 3 are the three Euler angles α, β, γ and c, s denote
cosine and sine respectively. Since the rotation matrix o is
defined by the rotation from the in-plane ellipse oTu1 to
the 3D ellipse u1, the rotation process can be viewed as a
sequence of three elementary extrinsic rotations as such: 1) a

FIGURE 7. (a)Polarization ellipse in 3D space and the rotated ellipse to
lie in the YZ plane. (b)(c)(d)Three Euler angles (ZYX sequence) of the first
eigenvector u1.

rotation of γ around X0 axis; 2) a rotation of β around Y0 axis;
3) a rotation of α around Z0 axis. The three Euler rotation
angles of the first eigenvector u1 of the letter ‘U’ are depicted
in Fig.7(b-d). The Euler angles of the other two eigenvectors
u2,u3 can be found with the same process.

Similar to the helicity angle in 2D polarimetry, the ellip-
ticity angle τm of the 3D polarization ellipses also denotes
the anisotropy of the scattering with 0 as the anisotropic
scattering and π/4 as the isotropic scattering. For the 3D
case, the ellipticity angle can be easily found in the rotated
in-plane ellipse oTu1 by simply retrieving the inverse tangent
of az/ay. The in-plane ellipticity angle of the first XPOL-Null
polarization state of the letter ‘U’ is shown in Fig.8. The
angle τm is close to zero for points on the target, indicating
the anisotropic scattering of this metallic target.

Using the rotation matrix and the Euler angles, the geomet-
ric rotation parameters of α, β, γ and the anisotropy param-
eter τm can be found for the three XPOL-Null polarization
states. Under the polarization bases formed by XPOL-Null
polarization states, the 3D polarimetric matrix χ is diagonal,
and it can be parameterized in the similar way as Huynen
did for the 2D polarimetric coherent polarimetric matrix [7].
The diagonalized polarimetric matrix χD can be written in
the general form of

χD =

χ1 0 0
0 χ2 0
0 0 χ3


= mejδ

 1 0 0
0 tan2 γ1e−j4ν1 0
0 0 tan2 γ2e−j4ν2


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FIGURE 8. In-plane helicity angle (ellipticity angle of the ellipse).

in an analogy to 2D Euler parameter definition [5]. γ denotes
the common phase term. γ1 and γ2 denote the magnitude
ratio between the co-polarized scattering parameters of the
three XPOL-Null polarization states. It is related to the target
polarization sensibility to different states. It ranges from π/4
for a flat surface target which has no preference over the
two orthogonal XPOL-Null polarization states, to 0 for a
linear dipole-like target which has stronger response in one
XPOL-Null polarization state than the other. ν is the phase
difference between the co-polarized scattering responses
between two XPOL-Null states, which is related to scattering
bounce times. It also changes from phase difference of (π/4),
meaning double or multiple bounces to 0 difference means
single bounce. Figure 9 illustrates the distribution of these
four target parameters on the target. γ1,2 is close to π/4 at
most points on the target, suggesting that every local point
has no dominant preference over the first two XPOL-Null
states after leaving out the local surface orientation effect. It is
the situation that every point on the wire target would locally
have identical polarimetric scattering sensitivity. γ1,3 is close

FIGURE 9. Four generalized target parameters (γ12, γ13, ν12, ν13) for the
letter ‘‘U’’ target.

FIGURE 10. Two orthogonal XPOL-Null polarization ellipses (cyan and
magenta) of letter ‘‘D’’ with rotation angle of 0◦,3◦,6◦ and 12◦ with
respect to ẑ axis.

to zero due to the extremely small response in the range
direction. The in-plane skip angle ν12 is zero for most points
while the two corners of the letter ‘U’ have the double bounce
scattering. More points have large ν13 values due to stronger
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multiple scattering when the wave is traveling parallel to the
target plane.

V. IMAGING TARGET WITH ROTATION IN SPACE
In this section, we apply the computational polarimetric
imaging scheme to a letter ‘‘D’’ wire target with different
rotation in three dimensions and a planar target made of cop-
per tapes. These results serve to demonstrate the consistency
of the proposed target parameterization in describing the 3D
polarimetric scattering characteristics. The letter ‘‘D’’ target,
depicted in Fig.10 inset, is made of copper wire bent to form
the D shape, placed at around 0.20 m in front of the metasur-
face aperture. We studied how XPOL-Null polarization states
would change with the rotation of the target. When the target
is rotated, different sections of the spherical cylinder part of
the letter ‘‘D’’ are seen by the metasurface aperture. Figure 10
illustrates the two orthogonal XPOL-Null polarization states
of the letter ‘‘D’’ with four different rotation angles (0◦, 3◦, 6◦

and 12◦) with respect to ẑ axis. For the rotation angles where
the reflected signal is not captured by the metasurface aper-
ture, the corresponding parts of the object can not be visible
in the reconstructions. However, this is not a limitation of
the polarimetric imaging technique but rather a physical phe-
nomenon of reflection specularity that applies to monostatic
imaging systems in general. From the reconstructed part of
the target, the XPOL-Null polarization ellipses rotate along
with the change in the position of the letter ‘‘D’’ to the antenna
aperture. The polarization ellipses consistently demonstrate
the local geometric structure by examining the orientation of
the ellipse plane and the major-axis direction.

VI. CONCLUSION
A scheme of computational polarimetric imaging using
a cavity-backed metasurface aperture antenna has been
presented. The sensing fields from the cavity-backed meta-
surface aperture antenna has low spatial correlation and
diversity of polarization states to multiplex the 3D polari-
metric response over the image domain into a single complex
measurement. Built on our preliminary work, we have further
characterized the spatially varying but locally fully polarized
coherent random fields from the metasurface antenna using
generalized Jones vector and polarization ellipses in 3D
space. From the diagonalization process of the 3D polarimet-
ric matrix, three orthogonal XPOL-Null polarization states
have been retrieved. It has been shown that the orientation of
themajor axis and the ellipse plane offers insight into the local
geometric structure and scattering mechanism. Euler angles
denoting the rotation matrix can be retrieved from the ellipse
plane. After leaving out the effects of rotation, the in-plane
ellipticity angle of the polarization ellipse yields information
of the scattering anisotropy. Four generalized coherent target
parameters are retrieved from the diagonalized polarimetric
matrix, which serve for the polarization sensitivity and multi-
scattering. Imaging results of different targets consolidate our
3D polarimetry scheme modeling for consistently character-
izing the 3D polarimetric scattering response of the target.

Furthermore, the assumptions made here for establishing the
3D matrix model are still valid for different frequencies, and
therefore, this technique could readily be implemented at
higher frequencies, including millimeter-wave and terahertz
frequencies for more application scenarios.
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