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ABSTRACT Reliable quantification of cellular treatment effects in many bioassays depends on the accuracy
of cell colony counting. However, colony counting processes tend to be tedious, slow, and error-prone.
Thus, pursuing an effective colony counting technique is ongoing, and varies from manual approaches to
partly automated and fully automated techniques. Most fully automated techniques were developed using
deep learning (DL). A significant problem in applying DL to this task is the lack of sizeable collections of
annotated plate images. For this reason, here we propose an application of Transfer Learning to cell colony
counting that can overcome this problem by exploiting models trained for other tasks. To demonstrate this
idea’s feasibility, we show how a small dataset can be used to transform a DL model designed for counting
objects in congested scenes into a specialized cell colony counting model and achieve better performance

than existing, more widely-used models.

INDEX TERMS Artificial intelligence, colony count, machine learning, transfer learning.

I. INTRODUCTION

Quantitative analysis of bacterial populations traditionally
requires the counting of colony-forming units (CFUs). Today,
such analyses can also be done by more recently developed
high-throughput (HT) methods that use fluorescent label-
ing [1], [2] genome probing microarrays [3], or quantita-
tive PCR [4], [5]. However, these methods have significant
drawbacks. For example, they may require special equipment
and extensive protocol development; they may not be able
to handle environmental samples; and they may not exclude
non-viable cells, which is a fundamental feature to assess
when cells respond to treatment. For these reasons, manual
counting of CFUs from plate scans is still widely used.
However, manual counting is time-consuming and may not
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be practical in an HT context involving a large number of
experiments. Moreover, manual counting is prone to errors
and biases [6]. Thus, accurate automated counting of CFUs
would benefit experimental biologists.

Counting CFUs based on their features is a highly non-
trivial task; nonetheless, different approaches have been pro-
posed to tackle this problem using a typical image analysis
pipeline, i.e., noise removal, image segmentation, feature
extraction, feature selection, object classification, and the
actual CFU counting [7]. A key issue is that the feature selec-
tion parameters should be flexible, and users are assumed to
have prior knowledge of colony characteristics. Other hin-
drances of proper CFU analysis are low image resolution,
high CFU density, background noise, artifacts on the con-
tainer’s boundary, and CFUs located close to the container
boundaries. When only the total quantification of colonies is
required, estimating the density map help to avoid the difficult
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task of detecting and segmenting each colony [8]. Estimating
the density map is particularly useful when dealing with
ambiguous counts (such as in the case presented in this study).

Automated colony counting is usually formulated as a
segmentation problem. In this regard, several plugins for
the image processing software Image] have been pro-
posed [9], [10] that partially automate the counting process
based on manually chosen parameters. Similar solutions
have also been proposed as integrated software/hardware
equipment [11], [12].

Two of the most popular colony counting software are
OpenCFU [13] and AutoCellSeg [14]. OpenCFU [13],
a stand-alone application, demonstrated improved perfor-
mance compared to similar older applications; a significant
drawback of OpenCFU lies in the circularity criteria imposed
on the detected objects [14]. In fact, OpenCFU is designed to
explicitly detect circular CFUs according to a fixed threshold
on both the isoperimetric quotient and the aspect ratio of each
detected object [13]. AutoCellSeg [14] is another publicly
available tool that takes segmentation plausibility criteria into
account to overcome the limitations of OpenCFU [13]. How-
ever, it enables the end-user to select the object features inter-
actively and correct the obtained result through the graphical
interface. These interactions imply that AutoCellSeg is not
fully automated.

Deep Learning based techniques have also been pro-
posed. For example, Ferrari et al. [15], [16] proposed a
Convolutional Neural Network (CNN) for counting the num-
ber of colonies forming on a blood agar plate. They for-
mulated the problem as a classification task for segments
obtained through external segmentation software. The model
learns to classify each segment based on its estimated car-
dinality. After outlier rejection, the sum over the assigned
cardinalities provides the count for the entire plate. Seg-
ments containing seven or more colonies were discarded.
This method is adequate for cases with limited bacterial
load [16], but not cases with high confluencies, such as
the one presented in this study, where numerous areas of
confluent cells are present. Recently, several other DL mod-
els focus on the identification of individual cells have been
proposed [17]-[20]. However, these models are based on
segmentation methods tailored explicitly for objects showing
microscopic cell features, such as nuclei, making it unsuitable
for most colony counting tasks. For example, U-Net [17]
performed poorly when applied to images used in this study
(data not shown).

The bottleneck associated with using machine learning
(ML) and DL to solve this problem is the large number of
labeled data needed to generate a model satisfactory predic-
tion accuracy. Thus, we here develop a method that incorpo-
rates transfer learning (TL) [21], which effectively mitigates
this limitation. That is, TL allows a Neural Network model
already trained for one task to be applied to a different, but
related task (Fig. 1 depicts the idea of TL). In particular,
a model trained using a large dataset from one task can be
partially re-trained using a smaller data set from another task.
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FIGURE 1. An illustration of the general idea of deep transfer learning.

A large dataset is used to train a Deep Learning model, and then the
trained model is specialized to a different task by fine-tuning it through a
smaller dataset. The application of this general framework to the present
study is shown in Fig. 2.

In the context of colony counting, the possibility to rely on a
relatively small training set avoids the need for an extensive
systematic collection of plate images with manually curated
colony counts, which are usually not readily available.

Il. MATERIALS AND METHODS

A. DATASET

In this study, we used high-resolution scans of human-
induced pluripotent stem cell colonies forming in 14 12-well
plates for a total of 164 used wells. The plate scans are
provided along with colony counts, which we collected as our
ground-truth data. To obtain a dataset of 164 well images, we
used the provided software [22] to extract individual images
of each well from the plate scans. Subsequently, we split
the resulting dataset into 115 (~70%) images to be used
for the model development (training and validation) and 49
(~30%) for testing the model. The random split was repeated
ten times, yielding ten different training and test sets. Here,
we produced the first labeled data set used in this type of
ML context.

As a preprocessing step, images were converted to
black and white with OpenCV [23] using a simple binary
thresholding operation. The threshold value was set to
127 (middle between O and 255). Then, each pixel was
mapped to 0 (black) if less than the threshold and 255 (white)
otherwise. Black and white filter commonly used in CFU
counting frameworks [6], [10], [24], reduces the complexity
of the images, possibly improving performances also when
training ML models with limited data. We verified that unpro-
cessed images tend to show higher RMSE for the tested
models (data not shown).

B. TRANSFER MODEL

As the basis of our TL model, we used the CSRNet
DL model [25], which was originally developed to count
the number of people in congested scenes. The model
consists of 10 convolutional layers with fixed filter size
(3 x 3) as the front-end and six dilated convolutional lay-
ers as the backend. Employing this innovative structure,
CSRNet was shown to outperform state-of-the-art counting
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FIGURE 2. Overview of Transfer Learning between counting tasks. The CSRNet model, which was trained to
count people in crowds, is adapted to count cell colonies on plates by re-training the last network layers with

a reduced dataset.

solutions. CSRNet learns to extract the density map from its
input images; while integrating over the map gives the esti-
mated count. The CSRNet model was trained on the Shang-
haiTech dataset [26], consisting of 1,198 annotated images of
highly congested scenes. We thus sought to apply the trained
CSRNet model to the related task of colony counting by
specializing it to the analysis of cell plate scans (see Fig. 2 for
an overview of the TL strategy).

In such a setting, the ShanghaiTech dataset [25] corre-
sponds to the “Large Data Set” of Fig. 1, while our data set
of cell plate images corresponds to the “Small Data Set”.

The initial layers in the trained CSRNet model focus on
extracting the most basic features, such as curves and edges,
and subsequent layers focus on extracting the more specific
training data features. Thus, to develop our TL-based method,
we froze the first ten layers so that it could be reused in
the colony counting task, and fine-tuned the last six layers
of the CSRNet based on the plate scans data. In particular,
we trained the model using Python with Keras library [27].
We used the root mean square error (RMSE) as the loss func-
tion and the Stochastic Gradient Descent (SGD) algorithm
as an optimizer. Before training the data, we optimized the
maximum number of epochs, batch size, and learning rate
hyperparameters by grid search (see Table 1).

The best hyperparameters (highlighted in bold in Table 1)
were used to train the model on the ten training/testing splits
of the data (see Section II). For each split, 10-fold cross-
validation technique was applied. The final loss was com-
puted as the average of all scores across the 10-folds.

We used early stopping [28] to avoid overfitting. In par-
ticular, training was terminated after three epochs with-
out improvements on the validation set, which resulted in
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TABLE 1. Hyperparameters grid search for backend tuning. The bold
values indicate the best performance.

Hyperparameters | Values

Epoch [10,25,50].

Batch size [2,4,16,32,64]

Optimizer SGD with learning rate [102, 1073, 10]

about 19 to 25 training epochs. We also applied on-the-
fly data augmentation techniques to expand the training
dataset [29]. The augmentation techniques included color jit-
ter to randomly alter brightness, contrast, saturation, and hue
of each image, horizontal/vertical flip, and random rotation.

Ill. RESULTS

As mentioned, our Transfer Model, based on CSRNet,
extracts a density map from the input image, which is used to
estimate the count. Fig. 3 shows an example of how the algo-
rithm performed on three different wells with varying colony
counts. The averaged RMSE across the ten folds for each of
the ten random splits is reported in Table 2, which demon-
strates the stability of the method with respect to the data
subsets. The averaged RMSE across the ten folds for each of
the ten random splits of the “Small Data Set” (164 images)
is reported in Table 2, which demonstrates the stability of
the method with respect to the data subsets. As mentioned
in Section II, we applied 10-fold cross-validation technique
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FIGURE 3. Examples of the density maps generated by the Transfer Model showing the true and predicted counts.

TABLE 2. Mean (+ standard deviation) RMSE of the transfer model
across 10 random splits for the training and validation sets.

Transfer | Training Validation | Testing
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on each split. The average loss of all scores across the
10-folds were reported for training/validation splits. Also,
the loss of the separated test set is reported for the 10 splits
(see Section II). We then assessed the TL model’s relative
performance in two steps: first, we assessed the improve-
ments due to TL alone, and second, we compared the Transfer
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Model to other counting methods. The two steps are described
in detail in subsequent sections.

A. COMPARISON WITH CSRNet TRAINED FROM SCRATCH
First, we made sure that TL improved the counting accuracy
obtained with the same CSRNet architecture trained from
scratch. Towards this aim, we trained all the layers of the
CSRNet model using the same splits defined for the Transfer
Model. The averaged RMSE values for the training, valida-
tion, and test sets across the ten splits are reported in Table 3
and show significantly lower performance than that achieved
with TL (compare with Table 2). Fig. 4 provides an illustra-
tion of the results. This analysis confirms the usefulness of
TL for our application.

Average RMSE

= With transfer learning Without transfer learning

FIGURE 4. Average RMSE for the CSRNet model with and without using
transfer learning. Error bars report the standard deviation.

B. COMPARISON WITH AutoCellSeg AND OpenCFU
Concerning the second point, we compared our model’s
performance with two popular and publicly available tools:
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TABLE 3. Mean (+ standard deviation) RMSE for the CSRNet network
model trained from scratch.

Without | Training Validation Testing
transfer
learning
Split 1 41.56 58.36

#4.16) | (£5.50) 69.53
Split 2 44.61 57.41

(#3.17) (+4.25) 3695
Split 3 40.08 57.81

475 | (599 5313
Split 4 39.07 61.19

559 | (4.89) 5387
Split 5 39.92 58.93

(+4.29) (+6.27) 44.54
Split 6 42.61 61.74

(+5.52) (+6.44) 6351
Split 7 39.18 60.19

#6.02) | (#5.72) 4842
Split 8 39.67 62.16

@255 | (4.53) 44.25
Split 9 43.76 58.01

(445 | (x534) >6.89
Split 10 39.00 57.55 582

(+4.75) (+4.53) )

1) AutoCellSeg, which is based on fuzzy a priori information,
and 2) OpenCFU, which is based on direct thresholding (see
Section I). We applied both tools to our dataset using default
parameters. OpenCFU did not require manual intervention.
However, AutoCellSeg required a selection of two colony
examples: a small one and a large one. We did not observe
significant variations in the counts after choosing different
examples among the smallest and largest clearly identifi-
able colonies. RMSE values for both methods are reported
in Table 4, along with the average RMSE obtained with the
transfer model on the test sets across the ten random splits.
As shown in Table 4, the transfer model exhibits the smallest
RMSE compared to the other methods.

TABLE 4. Comparison of the different methods based on RMSE.
We reported the average (+ standard deviation) across the
ten random splits for the transfer model.

Method RMSE
OpenCFU 38.56
AutoCellSeg 27.64
Transfer Model 22.38 (£1.72)

We also sought to assess the tendency of each method
to under- or over-estimate the ground-truth count. Towards
this aim, for each image, we computed the sum of nor-
malized positive/negative differences between predicted and
ground-truth counts. We considered the integer rounded aver-
age colony count across all the 10 random splits for the
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transfer model. The normalized difference is calculated based
on the following formula:

dzz‘&

max(p, g)

where p is the predicted count, and g is the ground-truth
count. Fig. 5 depicts the values of d for each of the three
methods detailed for over-estimation (p > g) and under-
estimation (p < g). We observe that the transfer model fares
better than the other two as it exhibits more accurate counting
based on the ground-truth counts.

B Overestimated Counts Underestimated Counts

35
30
25

20

Transfer Model

OpenCFU AutoCellSeg

FIGURE 5. Counting errors made by the three tested methods. The chart
shows the absolute sum of normalized positive/negative differences
between predicted and ground-truth counts.

IV. DISCUSSION AND CONCLUSION

Colony counting is a tedious, slow, and error-prone process.
However, experimental biologists make ubiquitous use of
manual or partly automated counting techniques to quantify
cellular treatments’ effects. Thus, work that provides fully
automated colony counting or labeled data sets for training
ML models is needed. Although DL techniques are revolu-
tionizing many image analysis fields, there is currently no
standardized technology to solve colony counting. This may
be partly due to the lack of large enough annotated image
collections necessary to train a deep neural network for this
task. We think that TL techniques could help overcome this
problem by exploiting models already trained on related tasks
and tuning them for this specific task.

Nonetheless, the use of TL models still implies that at
least a small training set is available. In biological stud-
ies involving many colony formations, such as the one we
considered in this paper, it is possible to tune a model on
a small subset and then use it to perform the counting on
the remaining images. While this could help speed up the
counting process, we believe that the most significant con-
tribution would be making the process systematic and more
reproducible. Alternatively, pre-trained models like the one
we developed can be used directly to perform CFU counting
on new images without additional tuning as long as compa-
rable features are involved. We demonstrated the feasibility
of this approach by using, for the first time, a novel data set
that we recently made publicly available. However, further
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validations will be required to assess the extent to which the
model can generalize across different experiments. For this
reason, we aim to collect more data and test the model’s
ability to perform counting in different contexts, possibly
including higher resolution images where cell organelles are
visible. This will also require further investigation of the
network architecture features, and possibly the training of
additional layers, which would be feasible with more input
data. Exploring such possibilities constitutes the main focus
of our future work.

AVAILABILITY

The data can be found at https://github.com/Somayah
Albaradei/tlcc. We also developed a simple web interface that
is available at http://www.cbrc.kaust.edu.sa/tlcc/, which takes
a colony image and returns the count of colonies.

AUTHOR CONTRIBUTIONS

V.B.B., X.G., EN,, and S.A. conceived and designed the
study; S.A., M.U., M.T,, S.N., and M.E. conducted the main
technical development; S.N. helped to provide ground-truth
data. All authors contributed to writing the manuscript.

CONFLICT OF INTEREST
All authors declare no conflict of interest.

ACKNOWLEDGMENT
(Somayah A. Albaradei and Francesco Napolitano con-
tributed equally to this work.)

REFERENCES

[1] L. Blasco, S. Ferrer, and 1. Pardo, “Development of specific fluorescent
oligonucleotide probes for in situ identification of wine lactic acid bacte-
ria,” FEMS Microbiol. Lett., vol. 225, no. 1, pp. 115-123, Aug. 2003.

[2] S.Haba and A. Nisonoff, “IgE-secreting cells in the thymus: Correlation
with induction of tolerance to IgE,” Proc. Nat. Acad. Sci. USA, vol. 89,
no. 11, pp. 5185-5187, Jun. 1992.

[3] J.-W. Bae, S.-K. Rhee, J. R. Park, W.-H. Chung, Y.-D. Nam, I. Lee,
H. Kim, and Y.-H. Park, “Development and evaluation of genome-probing
microarrays for monitoring lactic acid bacteria,” Appl. Environ. Microbiol.,
vol. 71, no. 12, pp. 8825-8835, Dec. 2005.

[4] M. Haarman and J. Knol, “Quantitative real-time PCR analysis of fecal
Lactobacillus species in infants receiving a prebiotic infant formula,” Appl.
Environ. Microbiol., vol. 72, no. 4, pp. 2359-2365, Apr. 2006.

[5] E.T. Neeley, T. G. Phister, and D. A. Mills, “Differential real-time PCR
assay for enumeration of lactic acid bacteria in wine,” Appl. Environ.
Microbiol., vol. 71, no. 12, pp. 8954-8957, Dec. 2005.

[6] S. D. Brugger, C. Baumberger, M. Jost, W. Jenni, U. Brugger, and
K. Miihlemann, “Automated counting of bacterial colony forming units
on agar plates,” PLoS ONE, vol. 7, no. 3, Mar. 2012, Art. no. e33695.

[71 M. L. Clarke, R. L. Burton, A. N. Hill, M. Litorja, M. H. Nahm, and
J. Hwang, “Low-cost, high-throughput, automated counting of bacterial
colonies,” Cytometry A, vol. 7TA, no. 8, pp. 790-797, Feb. 2010.

[8] V.Lempitsky and A. Zisserman, ‘‘Learning to count objects in images,” in
Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1324-1332.

[9] Z. Cai, N. Chattopadhyay, W. J. Liu, C. Chan, J.-P. Pignol, and
R. M. Reilly, “Optimized digital counting colonies of clonogenic assays
using ImageJ software and customized macros: Comparison with manual
counting,” Int. J. Radiat. Biol., vol. 87, no. 11, pp. 1135-1146, Nov. 2011.

[10] P. Choudhry, ““High-throughput method for automated colony and cell
counting by digital image analysis based on edge detection,” PLoS ONE,
vol. 11, no. 2, Feb. 2016, Art. no. e0148469.

VOLUME 8, 2020

[11] M. Siragusa, S. Dall’Olio, P. M. Fredericia, M. Jensen, and T. Groesser,
“Cell colony counter called CoCoNut,” PLoS ONE, vol. 13, no. 11,
Nov. 2018, Art. no. e0205823.

[12] O. Chunhachart and B. Suksawat, “Construction and validation of eco-
nomic vision system for bacterial colony count,” in Proc. Int. Comput. Sci.
Eng. Conf. (ICSEC), Dec. 2016, pp. 1-5.

[13] Q. Geissmann, “OpenCFU, a new free and open-source software to
count cell colonies and other circular objects,” PLoS ONE, vol. 8, no. 2,
Feb. 2013, Art. no. e54072.

[14] A. U. M. Khan, A. Torelli, I. Wolf, and N. Gretz, “AutoCellSeg: Robust
automatic colony forming unit (CFU)/cell analysis using adaptive image
segmentation and easy-to-use post-editing techniques,” Sci. Rep., vol. 8,
no. 1, pp. 1-10, Dec. 2018.

[15] A.Ferrari, S. Lombardi, and A. Signoroni, “Bacterial colony counting by
convolutional neural networks,” in Proc. 37th Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. (EMBC), Aug. 2015, pp. 7458-7461.

[16] A.Ferrari, S. Lombardi, and A. Signoroni, “Bacterial colony counting with
convolutional neural networks in digital microbiology imaging,” Pattern
Recognit., vol. 61, pp. 629-640, Jan. 2017.

[17] T. Falk et al., “U-net: Deep learning for cell counting, detection, and
morphometry,” Nature Methods, vol. 16, no. 1, pp. 67-70, Jan. 2019.

[18] W. Wang, D. A. Taft, Y.-J. Chen, J. Zhang, C. T. Wallace, M. Xu,
S. C. Watkins, and J. Xing, “Learn to segment single cells with deep
distance estimator and deep cell detector,” Comput. Biol. Med., vol. 108,
pp. 133-141, May 2019.

[19] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++:
Redesigning skip connections to exploit multiscale features in image
segmentation,” IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 1856-1867,
Jun. 2020.

[20] Q. Liu, A. Junker, K. Murakami, and P. Hu, “A novel convolutional
regression network for cell counting,” in Proc. IEEE 7th Int. Conf. Bioinf.
Comput. Biol. (ICBCB), Mar. 2019, pp. 44—49.

[21] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques. Hershey, PA, USA: IGI Global, 2010, pp. 242-264.

[22] F. Napolitano et al., “Automatic identification of small molecules
that promote cell conversion and reprogramming,” BioRxiv, 2020, doi:
10.1101/2020.04.01.021089.

[23] G. Bradski, A. Kaehler, and V. Pisarevsky, ‘“Learning-based computer
vision with Intel’s open source computer vision library,” Intel Technol. J.,
vol. 9, no. 2, pp. 119-130, 2005.

[24] J. Austerjost, D. Marquard, L. Raddatz, D. Geier, T. Becker, T. Scheper,
P. Lindner, and S. Beutel, “A smart device application for the automated
determination of E. Colicolonies on agar plates,” Eng. Life Sci., vol. 17,
no. 8, pp. 959-966, Aug. 2017.

[25] Y. Li, X. Zhang, and D. Chen, “CSRNet: Dilated convolutional neural
networks for understanding the highly congested scenes,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1091-1100.

[26] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image crowd
counting via multi-column convolutional neural network,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 589-597.

[27] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io/

[28] L. Prechelt, “Early stopping—But when?” in Neural Networks: Tricks of
the Trade. Berlin, Germany: Springer, 1998, pp. 55-69.

[29] F. Chollet. (2016). Building Powerful Image Classification Models
Using Very Little Data. [Online]. Available: https://blog.keras.io/building-
powerful-image-classification-models-using-very-little-data.html

[sssssss============__ SOMAYAH A. ALBARADEI was born in Makkah,
— weee Saudi Arabia, in 1986. She received the B.S.
A . .
i degree in computer science from Umm Al-Qura
:’: ﬁ. .. University, Saudi Arabia, in 2008, and the M.S.
\ degree in computer science from the University of
‘%\ | Manitoba, Canada, in 2014. She is currently pur-
*_.‘ = suing the Ph.D. degree in bioinformatics with the
4 | #8  King Abdullah University of Science and Technol-
.—' . ogy (KAUST), Saudi Arabia. She works in inter-
- section areas of computer science and biology. Her
current research interests include Al and health informatics, machine/deep
learning modeling, drug repositioning, and diagnostic and information
integration.

164345


http://dx.doi.org/10.1101/2020.04.01.021089

IEEE Access

S. A. Albaradei et al.: Automated Counting of CFUs Using Deep TL

FRANCESCO NAPOLITANO received the M.Sc.
and Ph.D. degrees in computer science from
the University of Salerno, Italy, in 2006 and
2010, respectively. He has authored scientific soft-
ware tools in bioinformatics and reproducible
research. He is the author of more than 50 sci-
entific publications in bioinformatics and com-
putational biology. His main research interests
include data analysis, machine learning techniques
to study and integrate multiple omics data layers
with applications to drug discovery, and disease modeling.

MAHMUT ULUDAG is currently a Senior
Software Developer with the Computational
Bioscience Research Center, King Abdullah Uni-
versity of Science and Technology. His research
interests include improving accessibility and inter-
pretation of research results using open source
software technologies, such as Solr search plat-
form and Weka machine learning library and R.

MAHA THAFAR (Graduate Student Member, IEEE) received the B.S.
degree in computer science from King Abdulaziz University, Jeddah, Saudi
Arabia, and the M.S. degree in computer science from Kent State Uni-
versity, Kent, OH, USA, in December 2015. She is currently pursuing the
Ph.D. degree in computer science (bioinformatics) with the King Abdul-
lah University of Science and Technology (KAUST), Saudi Arabia. Her
current research interests include developing computational methods from
artificial intelligence, machine/deep learning, and data and graph mining
and using them in biomedical and healthcare domains, specifically in drug
repositioning.

SARA NAPOLITANO received the B.S. and M.S.
degrees in biomedical engineering from the Uni-
versity of Naples Federico II, Italy, in 2014 and
2017, respectively. She is currently pursuing the
Ph.D. degree in industrial product and process
engineering with the University of Naples Fed-
erico Il in collaboration with the Telethon Institute
of Genetics and Medicine. She works in cyber-
genetics, growing interdisciplinary field blending
synthetic biology with control engineering, and
attempting to apply engineering principles to biological processes.

164346

MAGBUBAH ESSACK has been a Research
Scientist with the Computational Bioscience
Research Center, King Abdullah University of
Science and Technology, since 2011. She is the
author of over 70 research publications. She holds
two patents. Her primary research interests include
developing screening methods that facilitate the
discovery of compounds with industrial applica-
tions and drug repurposing.

VLADIMIR B. BAJIC is the author of over
400 research publications and more than
100 bioinformatics and machine learning software
products. He holds nine patents. Emphasis is on
inference of new information not explicitly present
in biomedical data and development of systems
with such capabilities and their industrial applica-
tions. His primary research interests include facili-
tating biomedical discoveries using computational
systems combined with data modeling, artificial
intelligence (AI), Al and health informatics, biomedical knowledge-, text-,
and data-mining, Al/machine learning modeling, drug repositioning, diag-
nostic, screening and prognostic biomarkers, and information integration.

XIN GAO (Associate Member, IEEE) received the
B.S. degree from Tsinghua University, in 2004,
and the Ph.D. degree from the University of Water-
loo, Canada, in 2009.

He is currently an Associate Professor of com-
puter science and an Acting Associate Direc-
tor with the Computational Bioscience Research
Center, King Abdullah University of Science and
Technology, Saudi Arabia. He has published more
than 200 articles. His research interests include
intersection between computer science and biology, such as developing the-
ory and methodology in machine learning and algorithms, solving key open
problems in biological and medical fields through building computational
models, developing machine-learning techniques, and designing effective
and efficient algorithms. He serves as an Associate Editor for Genomics, Pro-
teomics, Bioinformatics, BMC Bioinformatics, Quantitative Biology, and the
TEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS.

VOLUME 8, 2020



