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ABSTRACT This article introduces a generalized version of the multiple dependent state sampling plan
based on the measurement data, that is, when the quality characteristic is measured in a numerical scale.
The conditions of application and the operating procedures of the proposed plan are discussed sequentially.
A few important performance measures, such as operating characteristic curve, average total inspection and
average sample number, are developed. The advantage of the proposed plan over the multiple dependent
state sampling and single sampling plan is demonstrated through numerical example. Finally, one real-life
data set is analyzed to illustrate the application of the proposed sampling plan.

INDEX TERMS Consumer’s risk, hybrid censoring, life-testing, producer’s risk, quality control, reliability
sampling plan.

I. INTRODUCTION
Testing and inspection of the finished products are done to
see either the manufactured product meets the given speci-
fications or not. In addition, this type of activity alerts the
producer to enhance the quality of the product. At the stage
of inspection or testing, it is costly to check all the items in
the lot. Therefore, only a proportion of a product is selected
at random from the lot of products as sample and inspected.
A lot of the products is accepted if the experimenter found the
items in the sample are according to given specifications, oth-
erwise, the lot of the products will be rejected. The acceptance
sampling scheme provides a guideline for accepting or reject-
ing a lot of the products. According to [16], the acceptance
sampling plan protects both the producer and the customer by
minimizing the risk of rejecting good lots and by minimizing
the risk of accepting bad lots, respectively. The choice of
sampling plan depends on the nature of the data. The vari-
able sampling plan is applied when the quality characteristic
under consideration is measured in a numerical scale. This
situation is occurred when the quality characteristic follows
a probability distribution. Variable sampling plan has more
information than the attribute sampling plan. Variable sam-
pling plan has an advantage over attribute sampling plan in the
sense that same operating characteristic curve can be obtained
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by using less number of samples (see [24, p.671]). A rich
literature is available on both types of sampling plans, see for
examples, [4], [8], [11], [14], [17]–[20], [25], [28] and [34].

The single sampling plan (SSP) is common to use for
testing and inspection of the product due to its easy oper-
ational procedure. But, it is indicated by [8] that a single
sampling plan needs large sample size for the inspection of
the product. Therefore, the use of a single sampling plan for
testing and inception will be costly. Reference [9] showed
that the multiple dependent state (MDS) sampling plan is an
efficient sampling plan and is operated on small sample size
as compared to the single sampling plan. In MDS sampling,
a set of samples from a lot is selected and tested for accepting
or rejecting the lot. The final decision about lot acceptance is
made by taking into account the lot acceptance information
from all samples. More applications of the MDS sampling
plans can be seen in [1], [2], [5], [6], [8], [29], [32], [33]
and [36].

Recently, [27] proposed the generalization of the MDS
plan which is called GMDS and found that it is efficient
in minimizing sample size as compared to the MDS plan.
In GMDS plan, for in-decision state, the lot of the product
is accepted if at least k out of m lots are accepted, where
m is previously accepted lots. Reference [3] used the similar
approach and discussed the economic aspect of designing
GMDS plan. However, both the articles used the framework
of attribute sampling plan. By exploring the literature and
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best of the authors’ knowledge, there is no work on GMDS
in presence of measurement data. This article introduces
a variables GMDS sampling plan. Recently, [10] proposed
a SSP by considering lifetime-performance index as the
quality characteristic. In this article, lifetime-performance
index is considered as the quality characteristic to construct
the proposed GMDS sampling plan when it is assumed that
the lifetime follows an exponential model. The advantage
of the proposed plan over the SSP and MDS plan is estab-
lished by analyzing the operating characteristic (OC) curves.
In order to implement the proposed plan, the experimenter
needs to conduct a life-testing experiment. Due to time and
budget constraints, life-testing experiments are usually con-
ducted under censoring setup. Hybrid censoring, proposed by
[15], is widely used in reliability sampling plans (see [23]).
The censoring scheme is defined as follows. The experimen-
tation starts with n testing units. The experiment continues
until when a pre-defined number of failures r or a pre-defined
time bound X0, whichever is observed earlier. This scheme
is a generalized version of Type-I and Type-II censoring
schemes. By setting X0 = ∞ or r = n, hybrid censoring
reduces to Type-I or Type-II censoring, respectively. More-
over, by setting together X0 = ∞ and r = n, hybrid
censoring becomes a complete data case, that is, no censoring.
In the present article, GMDS sampling plan is developed in
presence of hybrid censoring along with Type-I censoring,
Type-II censoring and no censoring are being its special
cases. The aim of the article is two-fold. First, the GMDS
sampling plan is developed under a generalized censoring
scheme (that is, hybrid censoring) so that it can be easily
extended to its sub-cases (that is, Type-I censoring, Type-II
censoring and no censoring). Secondly, the exact distribution
of the estimator of the unknown exponential distribution
is used to construct the sampling plan. As a consequence,
the computed sampling plans are exact.

The rest of the article is organized as follows. The
lifetime-performance index is defined and the associated sta-
tistical results under hybrid censoring scheme is presented
in Section II. Section III is devoted for the development of
proposed GMDS sapling plan. The conditions of applicabil-
ity of the proposed plan, its operating procedures and three
measures of performance are also discussed here. Section IV
is devoted for numerical illustrations. A comparative study
between the proposed plan and SSP and MDS sampling
plans is carried out in Section V. Finally, a real-life data
analysis based on the proposed sampling plan is presented in
Section VI and, at the end, few concluding remarks are made
in Section VII.

II. ASSOCIATED STATISTICAL RESULTS
This section describes few statistical tools those will be used
to construct the sampling plan in the subsequent sections.

A. LIFETIME-PERFORMANCE INDEX
SupposeX be a random variable which represents the lifetime
of a product. In practice, the realizations onX always need not

to be clock-time or chronological. For instance, in automobile
industries, often the lifetime of an automobile component is
measured in the scale of distance unit (see [21]). However,
it is easy to notice that the lifetime can be classified as a
larger-the-better type quality characteristic. This means that
the products having a longer lifetime are quantified as the bet-
ter quality products. As a consequence, a lower specification
limit, denoted by L, is generally associated with lifetime. The
lifetime-performance index, a dimensionless quantity, is a
process capability index which measures the larger-the-better
type quality characteristic (see [30]). It is defined as

CL =
µX − L
σX

, (1)

where µX and σX represent the mean and variance of the
quality characteristic. In this article, lifetime is considered as
the product quality characteristic.

Assume that X follows an exponential distribution with
probability distribution function is defined as

FX (x; θ ) = 1− e−
x
θ , x ≥ 0, θ > 0. (2)

The choice of exponential lifetime model is due to two pri-
mary reasons. Firstly, exponential distribution has a wide
range of applications in reliability study (see [7]). Secondly,
the explicit expression of maximum likelihood estimator of
the exponential parameter is available in the literature and the
exact sampling distribution of this estimator can be derived.
Under the exponential lifetime model in (2), µX = σX = θ .
Therefore, the lifetime-performance index CL in (1) can be
expressed as

CL = 1−
L
θ
, (3)

where −∞ < CL < 1. Let us define a quantity p as

p = Pr(X < L)

= 1− e−
L
θ . (4)

In literature, p is called the lifetime non-conforming rate
which quantifies if the lifetime of the product X achieves
its pre-specified lower quality specification L. Using the
equations (3) and (4), the relationship between CL and p can
be seen as

CL = 1+ ln(1− p). (5)

B. ESTIMATION PROCEDURES OF CL
In this section, we discuss the results on the estimation pro-
cedures of the quantity CL . Note that the estimation of the
quantityCL depends on the estimation of the quantity θ based
on the observed data. In this article, hybrid censored data are
considered.

Let us assume that X1:n ≤ · · · ≤ Xn:n be the ordered obser-
vations on failure time of n testing units. In the framework of
hybrid censoring, let us define two random variables D and ξ
which represent the number of failed items and the duration
of testing, respectively. Therefore, ξ = min(Xr :n,X0) and
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the possible values of D are 0, 1, · · · , r . Therefore, based
on the hybrid censored data, the likelihood function can be
formulated as

L(θ) ∝
d∏
i=1

fX (xi:n; θ )(1− FX (ξ0; θ ))n−d , (6)

where xi:n, d and ξ0 denote the observed value of Xi:n, D and
ξ . Here fX (·; θ ) is the probability density function of X . Upon
maximizing the function (6) with respect to θ , the maximum
likelihood estimate (MLE) of θ can be computed as

θ̂ =

∑d
i=1 xi:n + (n− d)ξ0

d
. (7)

From the equations (3) and (7), the estimates of CL can be
obtained as

ĈL = 1−
Ld∑d

i=1 xi:n + (n− d)ξ0
. (8)

Note that the MLE ĈL in (8) is the biased estimate of CL
because theMLE θ̂ in (7) is the biased estimate of θ (see [13]).
Now, one result on the distribution of θ̂ is presented which
will be required to develop the sampling plan in Section 3.2.
The distribution of θ̂ follows from the results due to [13].
Result 1 (Theorem 2.2 of [13]): Conditional on D ≥ 1,

the pdf of θ̂ under hybrid censoring scheme is given by

f
θ̂
(x)

= (1−qn)−1
[ r−1∑
i=1

i∑
k=0

Ck,iG
(
x − T ∗k,i;

i
θ
, i
)
+G

(
x;
r
θ
, r
)

+ r
(
n
r

) r∑
k=1

(−1)kqn−r+k

n− r + k

(
r−1
k−1

)
G
(
x − T ∗k,r ;

r
θ
, r
) ]
,

0 < x < nX0, (9)

where q = e−X0/θ , T ∗k,i = (n − i + k)X0/i, Ck,i =
(−1)k

(n
i

)( i
k

)
qn−i+k , and

G(x; γ ; δ) =
γ δ

0(δ)
xδ−1e−γ x , x > 0.

where γ and δ are the rate and shape parameters of a gamma
distribution, respectively.

III. DEVELOPMENT OF GENERALIZED MULTIPLE
DEPENDENT STATE SAMPLING PLAN
In this section, the development of generalized multiple
dependent state (GMDS) sampling plan is discussed. First
we provide the necessary conditions on the applicability of
the proposed GMDS sampling plan. Then, in subsequent sec-
tions, we introduce the operating procedures of the sampling
plan. Few performance measures and numerical illustrations
are also furnished to validate the proposed sampling plan.

A. ASSUMPTIONS FOR IMPLEMENTING GMDS
SAMPLING PLAN
While implementing the proposed GMDS sampling plan in
practice, the following assumptions are required to be valid
in the production process (see [9]).
(i) The inspection strategy consists of taking successive

lots produced from a continuing production process.
That means the lots are submitted for inspection serially
in the order in which they had been produced in the
production process.

(ii) All the submitted lots for inspection has essentially
the same quality level. This means that the production
process has a constant proportion nonconforming.

(iii) The consumer has confidence in the integrity of pro-
ducer’s production process. This means that there
should not be any reason to believe that any particular
lot quality is poorer than the preceding lots.

(iv) The quality characteristic under consideration follows
an exponential distribution.

B. OPERATING PROCEDURE OF THE SAMPLING PLAN
Suppose that the quality characteristic of interest has a lower
specification limit L and it follows an exponential distribution
as in (2). The parameters r andX0 of hybrid censoring scheme
are also specified. Often, r is expressed in terms of degree of
censoring q = (n−r)/n. Then, the operating procedures of
the proposed GMDS sampling plan are

Step 1: Choose a random sample of size n from the
submitted lot. Place the selected products on a
life-test under hybrid censoring with the specified
parameters. Based on the observed data from the
life-test, estimate ĈL , lifetime performance index,
using (8).

Step 2: Accept the lot if

ĈL ≥ ka,

otherwise reject the lot if

ĈL < kb.

If kb ≤ ĈL ≤ ka, then accept the present lot
under the condition that k out of preceding m lots
have been accepted with the condition ĈL ≥ ka,
otherwise reject the lot.

Therefore, GMDS sampling plan is characterized by the five
parameters n, k,m, ka and kb. When k = m, it is multiple
dependent state sampling plan proposed by [31].

C. MEASURE OF PERFORMANCE
In this section, two measures of performance of the proposed
GMDS sampling plan are derived. They are the probability of
lot acceptance and average total inspection.

1) THE PROBABILITY OF LOT ACCEPTANCE
The probability of lot acceptance is an important measure to
access the performance of a sampling plan. It quantifies the
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proportion of lots that are expected to be accepted for a given
product quality level p. In the context of statistical quality
control, it is also called operating characteristic (OC) curve
(see [24]). The OC curve under GMDS sampling plan can be
derived as

Pa(p) = Pr(ĈL ≥ ka|p)

+ Pr(kb ≤ ĈL ≤ ka|p)

×

m∑
j=k

(
m
j

)[
Pr(ĈL≥ka|p)

]j [
1−Pr(ĈL≥ka|p)

]m−j
.

(10)

The derivation of the above formula is straight forward.
It consists of two parts. The first part is the probability of
lot acceptance when the estimate of the lifetime performance
index exceeds unconditional lot acceptance value. The second
part is the probability of lot acceptance when the estimate of
the lifetime performance index lies between conditional and
unconditional lot acceptance values. The probabilities in (10)
can be simplified as

Pr(ĈL ≥ ka|p) = Pr
(
1−

L

θ̂
≥ ka | p

)
= Pr

(
θ̂ ≥

L
1− ka

| p
)
. (11)

Using equations (3) and (5) in (11), Pr(ĈL ≥ ka|p) can be
written as

Pr(ĈL ≥ ka|p) = Pr
(
θ̂ ≥

θ ln(1− p)
ka − 1

)
. (12)

Similarly, Pr(kb ≤ ĈL ≤ ka|p) can be computed as

Pr(kb≤ ĈL≤ka|p)=Pr
(
θ ln(1− p)
kb − 1

≤ θ̂≤
θ ln(1−p)
ka−1

)
. (13)

The probabilities in (12) and (13) can be computed by using
Result 1 and, therefore, Pa(p) in (10) can also be computed
by substituting the former probabilities.

2) AVERAGE TOTAL INSPECTION
The average total inspection is defined as the average number
of products inspected per lot based on the sample size for the
accepted lot and all inspected products in non-accepted lots.
It is computed as

ATI(p) = n+ {1− Pa(p)}(N − n),

where Pa(p) is the probability of lot acceptance under GMDS
sampling plan and N is the lot size.
In addition to the above mentioned two measures, average

sample number (ASN), another common performance mea-
sure, is introduced. It is defined as the average number of
sampled units per lot used for lot sentencing. Therefore,

ASN(p) = n.

It is worth tomention that all the performancemeasures under
GMDS sampling plan can be reduced to performance mea-
sures underMDS sampling planwhen k = m. Also, by setting

ka = kb, k = m andm→∞, all these performance measures
reduce to performance measures for single sampling plan.

D. DESIGN METHODOLOGY OF GMDS SAMPLING PLAN
In order to design a sampling plan by variable, first one needs
to choose two points on theOC curve.Mathematically, a well-
designed sampling planmust pass through two points, namely
(pα, 1 − α) and (pβ , β) on the OC curve. The quantity pα
is termed as acceptable quality level (AQL) at which the
sampling plan has the high probability of acceptance 1 − α.
On the other hand, the quantity pβ is termed as limiting qual-
ity level (LQL) at which the sampling plan has the low prob-
ability of acceptance. The quantities α and β are termed as
producer’s risk and consumer’s risk, respectively. In general,
a sampling plan with less ASN(p) is most desirable. In order
to achieve this goal, a non-linear optimization problem is
formulated as follows.

Minimize
n,k,m,ka,kb

ASN(p) = n

Subject to

Pa(pα) ≥ 1− α

Pa(pβ ) ≤ β

kb ≤ ka < 1. (14)

Note that Pa(pα) and Pa(pβ ) are the probabilities of lot
acceptance under GMDS sampling plan at AQL and LQL,
respectively. The constraints in the above optimization prob-
lem are formulated based on the interpretation of the quanti-
ties AQL and LQL.

IV. NUMERICAL ILLUSTRATION
In this section, we compute few sampling plans in order
to illustrate the propose methodology. Note that the opti-
mization problem in (14) is a mixed integer programming
problem where n, k,m are discrete variables and ka, kb are
continuous variables. To reduce the complexity of the opti-
mization problem, we assume the values of k and m are
known and we need to solve the optimization problem in (14)
only for n, ka, kb. To solve the optimization problem, a routine
“NlcOptim” in the R software was used, which is based
on sequential quadratic programming algorithm due to [26].
The algorithm do not always provide integer solution for n,
in which case the nearest integer satisfying the constraints
was taken as the solution.

In practice, the values of pα and pβ are chosen by
the mutual agreement between the consumer and the
producer. However, for the illustrative purpose, sampling
plans are computed with (pα, pβ ) = (0.00284, 0.03110),
(0.00654, 0.04260), (0.01090, 0.05350), (0.02090, 0.07420)
and (0.03190, 0.09420). These values are chosen to match
the specifications in MIL-STD-105D ( [22]). This MIL-
STD-105D is a United States defense standard which is
widely referred by the quality engineering professionals.
Table 1 reports the computed sampling plans, namely
(n, ka, kb) for the known values of (m, k) = (3, 2)
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TABLE 1. Summary of computed sampling plans under hybrid censoring scheme with m = 3 and k = 2.

with (α, β) = (0.05, 0.1) and (0.05, 0.05). We consid-
ered various levels of censoring q = 0.1, 0.2, 0.5, 0.6,
0.8, 0.9 and three values of X0 given by X0 = 0.5,
1 and 3. From Table 1, the following observations are
noticed.
(a) The computed sample size increases with increasing

X0 for fixed q. Intuitively this is because of increas-
ing X0 for fixed q allows more duration in life-test
and, hence, observing more failures. Note that expected
duration of life-test is increasing with X0 for fixed q
(see [11, Result 2]).

(b) The computed sample size increases with increasing
degree of censoring q for fixed X0. Intuitively, higher
degree of censoring indicates lesser number of failures
are observed and, as a consequence, a larger sample size
is required for lot sentencing.

In order to investigate the effect of m and k on the sam-
pling plans, we present Table 2. The sampling plans are
computed for various combinations of (m, k) with (pα, α) =
(0.03190, 0.05), (pβ , β) = (0.0942, 0.05). The table shows
that the computed sample size increases with k for the fixed
value of m, as expected.

V. PERFORMANCES AND COMPARISONS OF
SAMPLING PLANS
In order to measure the performance of the GMDS sampling
plan, the OC curves of SSP, MDS sampling plan and GMDS
sampling plan are shown in Figure 1. The parameters con-
sidered are: n = 41 and ka = 0.946 for SSP; n = 41,
m = 3, ka = 0.946 and kb = 0.099 for MDS sampling
plan; n = 41, k = 2, m = 3, ka = 0.946 and kb =
0.099 for the proposed GMDS sampling plan. These plans
are selected to satisfy (pα, 1 − α) = (0.03190, 0.95) and
(pβ , β) = (0.09420, 0.05). The figure clearly shows that
the proposed GMDS sampling plan has higher probability
of acceptance when the lot fraction defective is less and it
converges with the OC curves of others when the lot fraction
defective increases. This indicates that the proposed GMDS
sampling plan has more protection in comparison with the
SSP and MDS sampling plan for identical parameters.

Next, we compare the ATI(p) performance of the proposed
GMDS sampling plan with SSP and MDS sampling plan.
To satisfy (pα, 1 − α) = (0.03190, 0.95) and (pβ , β) =
(0.09420, 0.05), the following parameters were considered
for comparison
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TABLE 2. Summary of computed sampling plans for various values of m and k with (pα, α) = (0.03190,0.05), (pβ , β) = (0.0942,0.05) and X0 = 3.

TABLE 3. Summary of sampling plans under Type-I censoring.

(i) n = 41, k = 2, m = 3, ka = 0.946 and kb = 0.099 for
the proposed GMDS sampling plan

(ii) n = 45, m = 3, ka = 0.649 and kb = 0.185 for the
MDS sampling plan

(iii) n = 56 and ka = 0.742 for SSP (see [10])
In Figure 2, it can be clearly seen that the GMDS sampling
plan has the minimum ATI in comparison with others indi-
cating the better performance.

So far we have presented all the numerical illustrations
in presence of hybrid censoring. As the Type-I and Type-II
censoring schemes are the special cases of hybrid censoring,
the proposed GMDS sampling plan methodology can be
easily extended to those censoring schemes. To illustrate this,
we carry out the following further investigation.

(a) Type I censoring: In Table 3, we reported the com-
puted GMDS sampling plans by setting q = 0, that
is, r = n. From Table 3, it is observed that the com-
puted sampling plan decreases with X0 indicating the
fact that the duration of the experiment tends to decrease
with X0.

(b) Type-II censoring: In Table 4, we reported the computed
GMDS sampling plans by settingX0 = ∞. FromTable 4,
it is observed that the computed sampling plan increases
with degree of censoring. This is probably because, intu-
itively, when the degree of censoring is high, expected
number of failures tends to increase in order to increase
the precision of the estimate to render reasonably good
lot-sentencing.
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TABLE 4. Summary of sampling plans under Type-II censoring.

TABLE 5. Summary of sampling plans without censoring.

TABLE 6. Breaking strength of jute fiber of gauge length 10 mm from [35].

(c) No censoring: In Table 5, we reported the computed
GMDS sampling plans by setting q = 0 and X0 = ∞.

VI. REAL-LIFE DATA EXAMPLE
This section describes an analysis of real-life data in order to
demonstrate the application of the proposed sampling plan.
The data for the analysis are taken from [35] which consists
of the breaking strengths of jute fiber of gauge length 10mm.
The data are presented in Table 6. By using a goodness-of-
fit test, the data were found to be fitted with an exponential
distribution reasonably well. The Kolmogorov-Smirnov (KS)
distance statistic value between the empirical distribution
functions and the fitted distribution functions was found to be
0.174 and the associated p-value was 0.283. For the analytical
expressions of p-value and KS distance statistic, the readers
are referred to the book [12]. On the basis of p-value, there is
not enough evidence that one can reject the hypothesis ‘‘The
data follow an exponential distribution’’. The MLE of the
exponential parameter θ̂ is computed as 365.729. Moreover,
the P-P plot of the data in Figure 3 advocates that the expo-
nential model fits the data well.

To demonstrate the application of the GMDS sampling
plan, we first compute the sampling plan as described in
Sections 3.4 and 3.5 with the following specifications:m = 3,
k = 2, q = 0.9, X0 = 1000, θ = 365.729, ((pα, 1 − α) =
(0.00, 0.95)) and (pβ , β) = (0.03110, 0.05). The computed
GMDS sampling plan is (n, ka, kb) = (30, 0.945, 0.349).
Now the data in Table 6 are used in accordance with the com-
puted sampling plan to lot-sentencing. The working principle
of lot-sentencing by the GMDS sampling plan is described
step wise as follows.

Step 1: The required quality standards (pα, pβ ) =

(0.0319, 0.09420) and the associated risks
(α, β) = (0.05, 0.05) are set for the lifetime
characteristic X with a specified lower lifetime
limit L = 38.533. For the illustrative purpose,
L is set at 0.1th quantile of the exponential lifetime
distribution with θ = 365.729.

Step 2: Suppose that the GMDS sampling plan is car-
ried out under hybrid censoring with pre-specified
values of q = 0.9 and X0 = 1000. Therefore,
the required sample size n = 30 along with the
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FIGURE 1. OC curves under different sampling plans.

FIGURE 2. ATI curves under different sampling plans.

critical values ka = 0.945 and kb = 0.349 are
found for the acceptance/rejection decision.

Step 3: Using these sampling plan specifications
(n, r,X0) = (30, 3, 1000) and data set, the
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FIGURE 3. Probability plot of 30 breaking strengths of jute fiber of gauge length 10mm from [35].

following hybrid censored observations are gen-
erated: 43.93, 50.16 and 101.15.

Step 3: Calculate the estimated value of CL using (8) as

ĈL=1−
38.533 ∗ 3

(43.93+50.16+101.15)+(30−3)101.15

= 1−
115.599
2926.29

= 0.960

Step 4: In this case, the lot will be accepted since ĈL =
0.960 > ka = 0.945.

It may be noted that, in the above example, the lot is accepted
based on the first sample. It would require more samples
(in this case m = 3) if the estimate ĈL would lie between
kb and ka.

VII. CONCLUDING REMARKS
In this article, a new sampling plan, generalized multiple
dependent state sampling, is developed in which the quality
characteristic follows an exponential distribution. Multiple
dependent state sampling and the single sampling plans are
the two special cases of the proposed sampling plan. It has
been shown that the proposed plan has more protection than
the other two. Also, the proposed plan has higher probability
of acceptance when the lot quality is good. While construct-
ing the sampling plan, we assumed that the data come from a
hybrid censored life-test. A further research could be to apply
such proposed sampling plan in presence of more general
censoring schemes such as progressive and progressively
hybrid censoring.
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