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ABSTRACT Ordinal classification (OC) is an important niche of supervised pattern recognition, in which
the classes constitute an ordinal structure. In general, the ordinal structure can be identified, either according
to the natural occurrence of the current task (e.g. healthy - mild condition - moderate condition - severe
condition), or by extracting expert knowledge. However, we assume that many multi-class classification
tasks might have a hidden ordinal structure, which, once identified, can facilitate and hence leverage the
classification process. Therefore, we propose a working definition for OC tasks, which is based on the
decision boundaries of standard binary Support Vector Machines. Moreover, resulting from our proposed
definition, we introduce a simple algorithm for the detection of ordinal structures. Our proposed definition
is easy to interpret and reflects an intuitive understanding of ordinal structures. Another main advantage is
that our proposed definition is easy to apply. Therefore, there is nomore dependence on expert knowledge for
the identification of (non-intuitive) ordinal class structures. In the current study, we include ten benchmark
data sets from the field of OC to experimentally evaluate and hence to confirm the validity of our proposed
definition. Additionally, we analyse our proposed definition based on a small set of traditionally non-ordinal
multi-class classification tasks. Furthermore, we provide an analysis of the computational cost of our
proposed detection algorithm, and discuss the limitations of our proposed working definition.

INDEX TERMS Detection of ordinal class structures, ordinal classification, support vector machines.

I. INTRODUCTION
Ordinal classification (OC), sometimes also referred to as
ordinal regression, represents a special category of supervised
pattern recognition. In OC tasks, it is assumed that the classes
are arranged according to a natural order, e.g. short≺ normal
≺ long. Moreover, it is assumed that the natural order is
reflected in the feature space of the data. Thus, the presence
of expert knowledge about the ordinal structure of a given
data set constitutes an important additional information,
which can be used to improve the classification accuracy.
Different studies, such as the one proposed by Hühn and
Hüllermeier [19] confirm that ordinal structures are indeed
useful in classifier learning.

Ordinal regression and classification (ORC) are two very
interesting research fields, which have been analysed by
many researches for decades, e.g. [25], and which can easily
fill books, e.g. [2]. ORC tasks still constitute up-to-date
topics. This can be easily observed by the fact that, a few years
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ago, different researchers started to adapt deep neural models
to ordinal data, e.g. [8], [24], [26]. For one of the most recent
surveys on ORC, we refer the reader to a study proposed by
Gutiérrez et al. [18].

Over the years, existing classification approaches have
been modified for a better adaptation to the specific
ORC tasks. Especially, Support Vector Machines (SVMs)
seem to be popular tools for such modification purposes,
e.g. [9], [10]. As an example, Cardoso et al. [6] used Support
Vector Machines in an ordinal setting for an objective
aesthetic evaluation of breast cancer conservative treatment.

In fact, health or psychological applications, such as breast
cancer and pain recognition analyses, make ORC tasks so
important. Thereby, the ordinal classes usually represent
different stages of diseases or levels of pain, e.g. no pain ≺
low pain ≺ intermediate pain ≺ strong pain, e.g. [4], [28].
Even different classification performance metrics have been
proposed to appropriately fit to the specific ORC tasks,
e.g. [7], [11]. The need for ORC-specific classification
performance measures is justified by the different fields of
application, such as the aforementioned example of pain
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intensity recognition. Intuitively, it is safe to assume that there
is a substantial difference between misclassifying the no-pain
level as the high-pain level, and misclassifying the no-pain
level as the low-pain level.

In general, the information about a data set’s ordinal
structure is provided intuitively by the natural characteristics
of the corresponding classification task. As mentioned above,
this is especially the case for medical applications. But what
if the ordinal structure is hidden, i.e. what if the task is
not obviously ordinal, in a natural way? Then, we need an
expert who provides us with the information about the ordinal
structure.

It is to expect that we all understand how to interpret the
fact that a given data set constitutes an OC task. However,
we believe, currently there is still a need for task-specific
experts, because there is still a lack of a common definition
for OC tasks, which is not based on the natural occurrence
of the corresponding classes. Therefore, in the current study,
we introduce a working definition for OC tasks, which we
denote as SVM based ordinal (SVM-ordinal), and which
fulfils the following two properties. First, our proposed
working definition is easy to interpret. Second, our working
definition can be applied easily. Especially, this means that,
based on our proposed definition, one is able to identify OC
tasks, without any kind of additional expert knowledge.

The remainder of this work is organised as follows.
In Section II, we provide some related work and the
motivation for our proposedworking definition.We introduce
our proposed working definition in Section III, including
an interpretation and discussion, as well as an additional
theory-based consequence for 3-class classification tasks.
In Section IV, we introduce a simple method for the detection
of ordinal structures. The ordinal classification benchmark
data sets, which are evaluated to confirm the validity of
our proposed working definition, are shortly described in
Section V, followed by the presentation and discussion of our
results. Moreover, in Section VI, we include a short analysis
based on common multi-class tasks, which are non-ordinal in
the traditional sense. We discuss the operational complexity
of our presented detection algorithm, as well as the limi-
tations of our proposed definition, in Section VII. Finally,
in Section VIII, we conclude this study.

II. PRELIMINARIES, RELATED WORK AND MOTIVATION
In the current section, we shortly describe the functionality
of binary Support Vector Machines. Subsequently, we briefly
summarise the concept of cascaded classification systems,
which are popular tools in OC tasks. Finally, we introduce a
couple of studies on the detection of ordinal class structures,
which provided the inspiration for our current work.

A. SUPPORT VECTOR MACHINES FOR BINARY AND
MULTI-CLASS TASKS
Abe introduced the Support Vector Machine (SVM) [1].
An SVM is a binary classifier that combines two objectives.
First, an SVM finds a hyperplane, which separates the two

classes from each other. Second, in addition, the SVM
maximises the margin. The margin is defined as the space
surrounding the hyperplane, which does not include any
observations. For the case of inseparable classes, the two
objectives remain the same. However, an additional cost term
is included, which penalises the width of the margin, for
every data sample, which is located on the wrong side of the
hyperplane. Initially implemented for binary classification
tasks, the SVM algorithm can be easily extended to solve
multi-class classification tasks by applying one of the existing
divide-and-conquer approaches (DCAs), such as the error
correcting output codes (ECOC) [12]. Popular ECOCmodels
include the one-versus-one approach, as well as the one-
versus-all approach. For a current data sample, the outputs
of the corresponding binary classifiers are combined by an
intelligent aggregation rule, which leads to the final decision.
Many different types of binary subtaskmodels can be defined,
such as the so-called ternary ECOC classifiers proposed by
Escalera et al. [14], [15]. For further DCAs, we refer the
reader to the two studies proposed by Allwein et al. [3], and
Tax and Duin [27].

B. CASCADED CLASSIFICATION ARCHITECTURES
The above mentioned ECOC methods work in parallel
manner. Each classifier’s output is used and combined by
a corresponding combination function to obtain the final
decision. In the cascaded classification approach, e.g. [17],
the labelling of a data sample is proceeded sequentially.
Thereby, the classification models are arranged as a kind of
classification chain. Each of the chain members can choose
between two options. Either the current classifier decides
the label of the corresponding input sample, or the current
classifier decides to move the current sample to the next
classifier. Thus, cascaded classification architectures (CCAs)
constitute ensemble selection techniques [21], in which the
output specific to solely one ensemble member is defined as
the final ensemble decision. Let c ∈ N, c > 2, be the number
of classes, with the class labels ω1 ≺ . . . ≺ ωc. In general,
CCAs consist of a chain of c − 1 specific classification
models. The classification models define the type of the
CCA. For example, in the lower-versus-higher (higher-
versus-lower) approach, the classification model on position
i is trained to separate the classes {ω1, . . . , ωi} ({ωc, . . . , ωi})
from the classes {ωi+1, . . . , ωc} ({ωi−1, . . . , ω1}).Whereas in
the pairwise approach, the classification model on position
i is trained to separate the class ωi from the class ωi+1.
For all CCA approaches it holds, if the output of classifier
i corresponds to class ωi, then this output is taken as the
architecture’s final decision. Otherwise, the input sample is
moved to the classifier on position i+ 1.

C. RECENT STUDIES ON THE DETECTION OF ORDINAL
STRUCTURES
Lattke et al. [22] introduced a method for detecting ordinal
structures based on the evaluations of different CCAs. The
main idea of their approach can be summarised as follows.
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The accuracy performance of a CCA is sensitive to the
order, and hence to the binary classification subtasks, of its
chain members. The authors propose to consider all possible
order permutations of the classes. For each permutation,
one has to apply a k-fold cross validation, k ∈ N, k > 1,
in combination with the corresponding CCA. Assume that
we have a labelled data set with the inherent order ω1 ≺

ω2 ≺ ω3. Then it is assumed that the CCA, which was trained
according to the label set {ω1, ω2, ω3} leads to significantly
better classification results than, for example, the CCAs
that were trained according to the label sets {ω2, ω1, ω3} or
{ω3, ω1, ω2}. The outcomes presented by Lattke et al. [22]
indicate that one can detect ordinal class structures by
applying CCAs, in combination with linear SVM models.

Lausser et al. [23] showed that this specific approach can
be used to assess phenotype order in molecular data. Such
kind of data represents one of the many interesting tasks,
in which we usually do not have any a priori information
about the corresponding structure.

D. MOTIVATION
Lattke et al. [22] and Lausser et al. [23] proposed to
implement pairwise cascaded SVM models to detect ordinal
structures. Based on the outcomes of those studies, we believe
that one can also approach the whole idea the other way
around. Therefore, if one can identify ordinal structures in
combination with SVM classifiers, then one can also provide
a common definition for ordinal classification tasks, which
is based on SVMs. Thus, in the following section, we will
introduce a working definition for ordinal classification
tasks, which is based on the corresponding binary decision
boundaries, i.e. hyperplanes, which are provided by standard
SVMs.

III. WORKING DEFINITION FOR ORDINAL
CLASSIFICATION TASKS
In the current section, we first provide all necessary notations,
followed by the formulation of our SVM-based definition
for ordinal classification tasks. Subsequently, we provide a
brief interpretation and discussion on our proposed definition.
We complete this section by presenting a theorem on the
ordinal structure of common 3-class classification tasks.

Note that throughout this whole study, each SVM will
denote a linear SVM, i.e. a Support Vector Machine with
linear kernel (For the choice of the linear kernel, see
Sec. II-C).

A. FORMALISATION
Let X ⊂ Rd , d ∈ N, be a d-dimensional labelled data set.
By � = {ω1, . . . , ωc}, c ≥ 3, we denote the set of class
labels. Moreover, by l(x), we denote the true label of x ∈ X .
For all i, j = 1, . . . , c, with i 6= j, we define the subset of X ,
which includes all samples from the two classes ωi and ωj,
as Xi,j, i.e.

Xi,j := {x ∈ X : l(x) = ωi ∨ l(x) = ωj}.

By SVMi,j, we denote a support vector machine, which is
trained to learn the binary classification task specific to Xi,j,
i.e. SVMi,j : Rd

→ �i,j := {ωi, ωj} ⊂ �, ∀i, j = 1, . . . , c,
i 6= j. Moreover, by acci,j, we denote the resubstitution
accuracy of classifier SVMi,j, i.e.

acci,j :=
|{x ∈ Xi,j : SVMi,j(x) = l(x)}|

|Xi,j|
, (1)

whereby | · | denotes the number of instances in a set.
Note that in our illustrations, we will use the corresponding

percentage values, i.e. acci,j × 100, for better readability.

B. WORKING DEFINITION
Let T c be the set of all permutations of the set {1, . . . , c},
i.e. T c

3 τ : {1, . . . , c} → {1, . . . , c}, and τ is a bijective
function. Further, let A� ∈ Rc×c be the pairwise accuracy
matrix (PAM), with elements A� = (ai,j)ci,j=1, which we
define as follows,

ai,j :=

{
acci,j, if i 6= j,
0, if i = j.

(2)

Note that, by definition, the matrix A� is symmetric. The
entry ofmatrixA�, which is located in row i and column j, i.e.
ai,j, denotes the resubstitution accuracy of the support vector
machine SVMi,j, which is trained on Xi,j.

By A(τ )
� , we denote the PAM, whose elements are defined

as a(τ )i,j := accτ (i),τ (j), for all i 6= j, and a(τ )i,i := 0, for all

i = 1, . . . , c. Note that, by definition, the matrix A(τ )
� is

symmetric as well. Therefore, with id denoting the identity
permutation of the set T c, i.e. id : {1, . . . , c} 7→ {1, . . . , c},
it holds,A� = A(id)

� . Moreover, once the elements ai,j ofA�

are known, one can determineA(τ )
� , for any τ ∈ T c, by simply

applying τ to A�, i.e. a
(τ )
i,j = aτ (i),τ (j). In addition, for each

τ ∈ T c, we define the reverse permutation of τ by−τ ∈ T c,
e.g. −id : {1, . . . , c} 7→ {c, c− 1, . . . , 1}.
Let us assume, that the labelled data setX ⊂ Rd constitutes

an ordinal c-class classification task, with respect to the initial
order of the label set �. Then, by our proposed definition,
the structure of the corresponding PAM, A� = A(id)

� , has to
fulfil the below defined properties, which can be depicted as
follows,

A� =


0 ≤ a1,2 ≤ · · · ≤ a1,c
a2,1 ≥ 0 ≤ · · · ≤ a2,c
...

. . .
. . .

. . .
...

ac−1,1 ≥ · · · ≥ 0 ≤ ac−1,c
ac,1 ≥ ac,2 ≥ · · · ≥ 0

 . (3)

Definition 1 (Working Definition for Ordinal Classifica-
tion): Let X ⊂ Rd , d ∈ N, be a d-dimensional labelled data
set with the set of class labels,� = {ω1, . . . , ωc}, with c ≥ 3.
Permutation τ ∈ T c represents an ordinal class structure if

and only if ∀i, j, k ∈ {1, . . . , c}, the corresponding PAMA(τ )
�

164382 VOLUME 8, 2020



P. Bellmann, F. Schwenker: OC: Working Definition and Detection of Ordinal Structures

fulfils the following properties,

a(τ )i,j ≥ a
(τ )
i,k ∀j < k ≤ i,

∧ a(τ )i,j ≤ a
(τ )
i,k ∀i ≤ j < k.

}
(4)

We define X as SVM based ordinal (SVM-ordinal), with
respect to ν,−ν ∈ T c, if and only if

PAM A(τ )
� fulfils Eq. (4) for τ ∈ {ν,−ν}, and

PAM A(τ )
� violates Eq. (4) ∀τ ∈ T c

\{ν,−ν}.

Therefore, we shortly say that the labelled data set X
constitutes an SVM-ordinal classification task, if there exist
exactly two permutations τ,−τ ∈ T c, such that Equation (4)
becomes true, for the corresponding PAMs A(τ )

� and A(−τ )
� .

Note that by definition, it directly follows, if τ ∈ T c fulfils
the properties of Eq. (4), then −τ ∈ T c fulfils the properties
of Eq. (4) as well.

The statementω1 ≺ . . . ≺ ωc is equivalent to the statement
ωc ≺ . . . ≺ ω1. Each ordinal arrangement of the classes has
two edges. Each of the two edges can be seen as the starting
point of the corresponding order. Therefore, the uniqueness
of an ordinal class structure is provided by two class order
arrangements.

Applying τ to � leads to the corresponding ordered label
set τ (�) := {ωτ (1), . . . , ωτ (c)}. Moreover, we define the
classes ωτ (1) and ωτ (c), in an (SVM-)ordered label set τ (�),
as edge classes, or simply edges, if the context is clear.

C. INTERPRETATION
Let us assume, that according to Definition 1, the labelled
data set X ⊂ Rd constitutes an SVM-ordinal c-class
classification task, with respect to the initial order of the
label set �. Then, the structure of the corresponding PAM,
A� = A(id)

� , fulfils the properties of Equation (4), and can be
hence depicted as in Equation (3).

The elements of the first row are monotonously increasing,
whereas the elements of the last row are monotonously
decreasing. For each other row vector of the matrix
A�, the following properties hold. The elements are
monotonously decreasing, from the first element to the diago-
nal element. The elements aremonotonously increasing, from
the diagonal element to the last element. Since each PAMA(τ )

�

is symmetric, for any τ ∈ T c, the same properties hold for
the corresponding column vectors. Therefore, Equation (4) is
equivalent to

a(τ )j,i ≥ a(τ )k,i ∀j < k ≤ i,

∧ a(τ )j,i ≤ a(τ )k,i ∀i ≤ j < k.

The matrix element ai,j can be interpreted as a kind of an
answer to the question, ‘‘How good can the class ωi be
separated from the class ωj?’’ In general, it is to assume
that, the edge classes can be best separated from each other,
compared to any other possible combination of class pairs.
Let us assume that the classes ω1 and ωc are identified as the
edges in an (SVM-)ordinal classification task. Then, it is to
expect that it holds, a1,c ≥ ai,j ∀i, j = 1, . . . , c. That means

that the maximum value of the matrix A� is identified as the
element that is located in the upper right corner, and hence,
due to the symmetry of the matrix, in the lower left corner.

Note that equivalently, it is possible to use pairwise error
matrices (PEMs). In the case of using PEMs, one simply has
to define the diagonal elements as∞, and replace the desired
relations ‘‘≥’’ by ‘‘≤’’, and vice versa.

D. DISCUSSION - WHY USING SVMs?
Our proposed working definition for SVM-ordinal classifi-
cation tasks is based on the resubstitution accuracies, and
therefore decision boundaries, which are provided by the
corresponding binary SVMs. It is a well-known fact that
resubstitution accuracies tend to be too optimistic. Therefore,
we would like to clarify the following question. Why did we
choose to define SVM-ordinal classification tasks based on
resubstitution accuracies, in the first place?

First, the detection of (SVM-)ordinal structures is not part
of the training phase of a classification task. It is part of the
data analysis. Note that in the current setting, we do not apply
the SVMs as classification models, in the classical sense.
We use the functionality of the SVMs to check for specific
properties of the given data. In a real-world application,
there is no knowledge about the labels of the test data.
Only the training data is used to analyse possible ordinal
class structures. Therefore, in the current setting, we do
not need to build an architecture with a high generalisation
ability. In contrast, we must explore the whole training data
to be able to make reliable statements about its properties
in regard to (SVM-)ordinal structures. For the detection of
(SVM-)ordinal structures, it is essential to get an accurate
localisation of the given classes, which is described by
the hyperplanes that are provided by the SVMs. Once an
(SVM-)ordinal structure is found, one can implement strong
ordinal classification models, during the actual training
process.

Second, while classification models, such as unpruned
decision trees [5], can easily overfit to the training data, and
hence achieve a resubstitution accuracy of 100%, we chose
SVMswith linear kernels. Note that each SVMmaximises the
margin, during the training process (see Sec. II-A). Therefore,
if the given binary subtasks are not linearly separable, then
the corresponding resubstitution accuracies will differ from
100%. In fact, depending on the location in the feature space,
of the corresponding binary subtasks, each SVM can lead to
any accuracy value, significantly different from 100%.

Third, the fact that the PAM values might be over-
optimistic, is not an issue for the following reason. The
absolute values of the PAMs are not important. SVM-ordinal
structures are identified based on the relations (≤,≥)
between the PAMs elements.

Moreover, SVMs are deterministic models, i.e. identical
data sets lead to equal hyperplanes. This observation is
an important feature of our proposed working definition.
It ensures the reproducibility of our definition. Therefore,
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it does not make sense to provide a definition based on some
kind of hold-out or cross-validation evaluations.

Note that it is possible to generalise our proposed definition
by changing the classification model, i.e. by denoting our
provided definition as CM-ordinal, whereby CM denotes
the chosen classification model. However, based on the
discussion above, we propose to focus on linear SVMs, since
they are non-overfitting and deterministic models, in general.

E. DISCUSSION - THE MEANING OF CLASS LABELS
In the traditional sense, a classification task is defined as
ordinal, based on the meaning of class labels, in general.
Note that in our proposed definition, we discard/ignore the
meaning of class labels completely. This fact might sound
questionable and unconventional, at first sight. However,
Lattke et al. [22] and Lausser et al. [23] showed that an
expected class structure, which is based on the meaning
of classes, is not always reflected in the chosen feature
space. In such classification tasks, OC-based classification
models (CMs) are not able to exploit the given feature space,
with respect to the assumed class order, in general. On the
other hand, OC-based CMs might improve the classification
performance by exploiting an SVM-ordinal class structure in
the given feature space, even for data sets whose class labels
do not seem to present an intuitive class order.

As an example assume that we have a set of three classes,
i.e. � = {Human, Hamster, Galápagos Tortoise}. If we
chose the feature hight, we would order the set of class
labels according toHamster≺Galápagos Tortoise≺Human.
Based on the feature life expectancy, we would order the set
of class labels according to Hamster ≺ Human ≺ Galápagos
Tortoise.

F. THEOREM FOR 3-CLASS CLASSIFICATION TASKS
From our proposed working definition for SVM-ordinal
classification tasks, we can draw the following conclusion,
for 3-class classification tasks.

Theorem 1 (3-Class Classification Tasks): Let X ⊂ Rd ,
d ∈ N, be a d-dimensional labelled data set, which constitutes
a 3-class classification task, i.e. c = 3.
Moreover, let the PAM for the set� be defined as follows,

A(id)
� =

0 e f
e 0 g
f g 0

 , e, f , g ∈ (0, 1].

If e, f , g are pairwise distinct, i.e. e 6= f , e 6= g, f 6= g, then
X constitutes an SVM-ordinal classification task.

The proof of Theorem 1 is provided in the Appendix.
By Theorem 1, 3-class classification tasks constitute
SVM-ordinal classification tasks, in general. Therefore, for
many 3-class classification tasks, one can apply any of the
existing tools, from the field of ordinal classification.

As we discussed above, it makes sense to define
(SVM-)ordinal class structures based solely on the provided
feature space, by disregarding the meaning of the current

class labels. Let us think of a two-dimensional 3-class
data set. Based on the location of the data points in a
two-dimensional feature space, in most cases, it is easy to
identify two of the class groups as the edges. Moreover, as we
discussed above, even a traditionally non-ordinal class label
set, such as� = {Human, Hamster, Galápagos Tortoise}, can
be ordered in different ways, in combination with the chosen
feature space.

In the following section, we introduce an algorithm, which
provides an easy and effective way to detect SVM-ordinal
structures, based on our proposed definition.

IV. DETECTION OF SVM-ORDINAL STRUCTURES
In the current section, we first provide a simple method
for the detection of SVM-ordinal structures. Subsequently,
we illustrate our proposed detection algorithm based on a
simple example.

FIGURE 1. Detection of SVM-ordinal structures. If the given task (X , �)
constitutes an SVM-ordinal classification task, then the output includes
exactly two permutations, which represent the ordinal structure of the
current task.

A. DETECTION - ALGORITHM
The pseudo code of our proposed algorithm is depicted
in Figure 1. In the first step, i.e. in the first FOR-loop,
we simply compute the PAM A�, according to Eq. (2), with
respect to an initial/arbitrary order of the class labels � =
{ω1, . . . , ωc}. The second step consists of solely one single
FOR-loop, which iterates from 1 to the number of classes
c. In each iteration, k ∈ {1, . . . , c}, we take the k-th row
of the initial PAM A(id)

� , and define a permutation τk which
sorts the corresponding vector, denoted by ak , in ascending
order. Subsequently, we apply permutation τk to the initial
PAM A(id)

� , and check whether the corresponding matrix
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A(τk )
� fulfils the properties of Eq. (4). Note that each sorted

vector a(τk )k represents the first row of the symbolic matrix
defined in Eq. (3). Therefore, in each step, k ∈ {1, . . . , c},
by checking Eq. (4), we analyse whether the class ωk can be
identified as one of the edges. Additionally, in the occurrence
of ties, we have to check all corresponding permutations.
Moreover, we can stop the detection algorithm if more than
two SVM-ordinal permutations were found, since this would
indicate that no clear order can be identified.

Therefore, the detection algorithm for SVM-ordinal struc-
tures, which is depicted in Figure 1, provides exactly two
permutations, for SVM-ordinal classification tasks. This is
due to the following fact, which we already discussed in the
previous section. The statement ω1 ≺ . . . ≺ ωc is equivalent
to the statement ωc ≺ . . . ≺ ω1. Each ordinal arrangement of
the classes has two edges. Each of the two edges can be seen
as the starting or end point of the corresponding order.

The second FOR-loop of our proposed algorithm consti-
tutes the main difference to the detection methods from [22]
and [23]. In both of the related works, one has to consider
all possible permutations of the class labels, in general.
In contrast, by applying our proposed definition, for each
of the classes one has to analyse only one permutation,
in general (i.e. if no ties occur). Moreover, in [22] and [23],
each permutation is associated with the (re-)evaluation of
the corresponding cascaded classificationmodel. By contrast,
in our detection algorithm, we evaluate each of the c(c−1)/2
binary SVMmodels exactly one time (in the first FOR-loop).

B. DETECTION - EXAMPLE
We conclude the current section with an illustration of our
provided detection algorithm for SVM-ordinal structures. Let
us assume that the data set X ⊂ Rd constitutes a 4-class
classification task, with the corresponding set of labels,
� = {ω1, ω2, ω3, ω4}. Moreover, let us assume that the
computation of the PAM leads to the following matrix, with
respect to the initial order of the label set �,

A(id)
� × 100 =


ω1 ω2 ω3 ω4

0 83 91 77
83 0 95 94
91 95 0 75
77 94 75 0

.
k = 1 a1 := (0, 83, 91, 77)

It holds, 0 ≤ 77 ≤ 83 ≤ 91, i.e. a1,1 ≤ a1,4 ≤
a1,2 ≤ a1,3. Therefore, we define permutation τ1 by τ1 :
{1, 2, 3, 4} 7→ {1,4,2,3},

 A(τ1)
� × 100 =


ω1 ω4 ω2 ω3

0 77 83 91
77 0 94 75
83 94 0 95
91 75 95 0

.  

MatrixA(τ1)
� does not fulfil the properties of Equation (4). For

example, we can observe that, the last row vector of A(τ1)
� is

not monotonously decreasing.

k = 2 a2 := (83, 0, 95, 94)

It holds, 0 ≤ 83 ≤ 94 ≤ 95, i.e. a2,2 ≤ a2,1 ≤
a2,4 ≤ a2,3. Therefore, we define permutation τ2 by τ2 :
{1, 2, 3, 4} 7→ {2,1,4,3},

 A(τ2)
� × 100 =


ω2 ω1 ω4 ω3

0 83 94 95
83 0 77 91
94 77 0 75
95 91 75 0

. X
The pairwise accuracy matrix A(τ2)

� fulfils the properties of
Equation (4). Therefore, the output set of permutations is
extended by τ2, i.e. T = ∅ ∪ τ2 = {τ2}.

k = 3 a3 := (91, 95, 0, 75)

It holds, 0 ≤ 75 ≤ 91 ≤ 95, i.e. a3,3 ≤ a3,4 ≤
a3,1 ≤ a3,2. Therefore, we define permutation τ3 by τ3 :
{1, 2, 3, 4} 7→ {3,4,1,2},

 A(τ3)
� × 100 =


ω3 ω4 ω1 ω2

0 75 91 95
75 0 77 94
91 77 0 83
95 94 83 0

. X
The pairwise accuracy matrix A(τ3)

� fulfils the properties of
Equation (4). Therefore, the output set of permutations is
extended by τ3, i.e. T = {τ2} ∪ τ3 = {τ2, τ3}.

k = 4 a4 := (77, 94, 75, 0)

It holds, 0 ≤ 75 ≤ 77 ≤ 94, i.e. a4,4 ≤ a4,3 ≤
a4,1 ≤ a4,2. Therefore, we define permutation τ4 by τ4 :
{1, 2, 3, 4} 7→ {4,3,1,2},

 A(τ4)
� × 100 =


ω4 ω3 ω1 ω2

0 75 77 94
75 0 91 95
77 91 0 83
94 95 83 0

.  

MatrixA(τ4)
� does not fulfil the properties of Equation (4). For

example, we can observe that, the last row vector of A(τ1)
� is

not monotonously decreasing.
Since it holds |T | = 2, it follows that data set X

constitutes an SVM-ordinal classification task. Moreover,
note that permutation τ3 represents the reversed order of
permutation τ2, i.e. ±τ3 = ∓τ2. Therefore, in the current
example, the edge classes are clearly identified as ω2 and ω3.

V. EVALUATION OF ORDINAL DATA SETS
In the current section, we evaluate a set of benchmark data
sets from the field of ordinal classification. All of the data sets
are publicly available. We include the data sets that have been
also analysed in [19, Table 4]. Note that by Theorem 1, 3-class
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TABLE 1. Properties of the traditionally ordinal data sets. #F: Number of total features (number of categorical features). #C: Number of classes. #S:
Number of Samples. ωi : Number of samples in class i .

classification tasks constitute SVM-ordinal classification
tasks, in general. Therefore, we focusmainly on the taskswith
at least four classes.

A. DATA SETS - AVAILABILITY
From the UCI machine learning repository [13], we included
the ContraceptiveMethod Choice data set, the Car Evaluation
data set, as well as the Nursery data set. The remaining data
sets are all available on theWekawebsite.1 TheGrubDamage
data set is included in the file denoted by agridatasets.jar.
The data sets ERA, ESL, LEV and SWD, which were
provided by A.B. David, are all included in the file named
datasets-arie_ben_david.tar.gz.

B. DATA SETS - DESCRIPTION
Table 1 summarises the properties of all of the following ten
data sets including the corresponding class distributions.

1) CONTRACEPTIVE METHOD CHOICE (CMC)
This data set is part of the National Indonesia Contraceptive
Prevalence Survey from 1987. The task is to predict a
married woman’s contraceptive method, labelled as no
use (ω1), short-term method (ω2), and long-term method
(ω3). The features describe the women’s demographic and
socio-economic characteristics, such as the age, education
level, and media exposure.

2) CAR EVALUATION (CARS)
This data set constitutes a car evaluation task, which is based
on features such as price, comfort, and safety. The samples
are labelled according to the following classes, unacceptable
(ω1), acceptable (ω2), good (ω3) and very good (ω4).

3) NURSERY
This data set contains nursery applications, which were
evaluated by features such as family structure and financial
standing, and social and health picture of the family. The
class labels of the Nursery data set correspond to the final
evaluation of the current application, representing one of
the following recommendations for the acceptance of the
applicant, not recommended (ω1), recommended, very much
recommended (ω2), priority acceptance (ω3) and special

1https://waikato.github.io/weka-wiki/datasets/

priority acceptance (ω4). Since the class corresponding to
recommended includes only two samples, we discarded this
class completely, leading to a four-class classification task.

4) GRUB DAMAGE
This data set consists of agriculture-specific features for the
task of pasture damage estimation, which is related to the
number of grass grubs. The classes of the Grub Damage data
set are denoted by low (ω1), average (ω2), high (ω3) and very
high (ω4).

5) SOCIAL WORKERS DECISIONS (SWD)
This data set consists of the assessments of qualified social
workers evaluating the risk facing children, if they stayedwith
their families. The classes, i.e. risk levels, are simply denoted
by the numbers 1, 2, 3, 4.

6) LECTURERS EVALUATION (LEV)
The LEV data set consists of the evaluation of lecturers of
MBAcourses. The class labels, i.e. the final scores, are simply
denoted by 1, 2, 3, 4, 5. Initially, the LEV data set constitutes
a 5-class classification task. However, due to the skewness of
the class distribution, some authors, e.g. in [22], summarise
the two classes, corresponding to the scores 4 and 5, to one
resulting class.Wewill evaluate both variants of the LEV data
set, denoting the 4-class LEV data set by LEV-4.

7) EMPLOYEE SELECTION (ESL)
The ESL data set contains the profile applicants for certain
industrial jobs. The classes represent a degree of fitness of
the applicant to the corresponding type of job. The labels
are simply denoted by 1, . . . , 9. Initially, the ESL data set
constitutes a 9-class classification task. For the same reason
as we mentioned above for the LEV data set, some authors
summarise this data set to a 5-class classification task.
Thereby, the classes specific to the first three scores are fused
to one single class, and the classes specific to the last three
scores are fused to one single class. We denote the resulting
data set by ESL-5.

8) EMPLOYEE REJECTION\ACCEPTANCE (ERA)
The ERA data set is similar to the ESL data set. It also covers
an application evaluation task. However, the class labels were
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not defined by expert recruiters, but were acquired during an
academic MBA course. The labels are again simply denoted
by 1, . . . , 9, representing the scores for the tendency to reject
or accept the applicant.

C. RESULTS
We implemented linear SVMs in combination with the
Sequential Minimal Optimization (SMO) solver [16], [20].
For each of the ten data sets from Table 1, we applied our
proposed detection algorithm, which is presented in Figure 1.
Seven out of the ten data sets are identified as SVM-ordinal
by Definition 1, i.e. only the corresponding matrices A(id)

� ,
A(−id)
� fulfil the properties of Equation (4), with respect to

the natural order of the classes. The following data sets were
not identified as SVM-ordinal by our proposed definition,
Nursery, ESL, and ERA.

Note that in Section IV, we presented our SVM-ordinal
structure detection algorithm. Moreover, in the example,
in Sec. IV-B, we permuted the initial order of the LEV-4 data
set to illustrate our proposed detection algorithm. The PAMs
of the aforementioned example, which fulfil the properties of
Equation (4), represent the natural order of the LEV-4 data
set.

D. DISCUSSION
In our validation experiments, seven out of ten benchmark
data sets were identified as SVM-ordinal, by our proposed
working definition, with respect to the natural order of the
classes. What does that mean in regard to our proposed
definition? According to our interpretation, the results
confirm the validity of our proposed working definition for
SVM-ordinal classification tasks. Although the data sets
Nursery, ESL, and ERA were not identified as SVM-ordinal,
that does not violate the validity of our proposed definition,
for the following reasons. All of the data sets from Table 1 are
assumed to be ordinal by convention. So far, there exists no
fundamental theory, which leads to a proof or contradiction
of that assumption. Therefore, the fact that some of the data
sets were not identified as SVM-ordinal, does not necessarily
indicate a weakness or shortcoming of our proposed working
definition. In contrast, this is an accepted outcome of our
study.

A natural consequence of our proposed definition is
that a data set, whose class labels exhibit a clear natural
order (i.e. an OC task in the traditional sense) may not
exhibit the considered structure in the provided feature
space, and hence are not defined as SVM-ordinal by our
proposed definition. This observation is also supported by
Lattke et al. in [23], where the authors conclude that the
ordinal characteristics might not be reflected in the chosen
feature space. As discussed in Section III, defining a
multi-class task as ordinal, based solely on the meaning of
its class labels, is not useful if the ordered class structure is
not reflected in the feature space. Since each classification
model is trained in combination with the chosen feature

space, an OC-based classifier can only benefit from a present
feature space ordinal class structure.

VI. EVALUATION OF NON-ORDINAL DATA SETS
In the current section, we evaluate five additional, tradition-
ally non-ordinal, data sets from the UCI machine learning
repository.

A. DATA SETS DESCRIPTION
The properties of the data sets, which are briefly described
below, are summarised in Table 2.

TABLE 2. Properties of the traditionally non-ordinal data sets. #F:
Number of features. #C: Number of classes. #S: Number of Samples.

1) SEEDS
This data set consists of images of the internal kernels
specific to three types (classes) of wheat, i.e. Kama, Rosa,
and Canadian. The feature space consists of seven numerical
parameters, including the length and the width of the kernel,
amongst others.

2) FOREST TYPE MAPPING (FORESTS)
The Forests data set consists of four different forest types,
which are described by their spectral characteristics at
visible-to-near infrared wavelengths. Thus, all of the 27
provided features are numerical. The classes are denoted as
Sugi, Hinoki, Mixed Deciduous, and Non-Forest, including
195, 86, 159 and 83 samples, respectively.

3) STATLOG VEHICLE SILHOUETTES (VEHICLES)
This data set consists of continuous features, extracted from
two-dimensional silhouettes and from different angles, spe-
cific to four different vehicles (classes). The experimenters
included a double decker bus, a Chevrolet van, a Saab 9000,
as well as anOpelManta 400. The resulting classes are simply
denoted by Opel, Saab, Bus, and Van.

4) STATLOG IMAGE SEGMENTATION (SEGMENT)
The Segment data set consists of hand-segmented outdoor
images from seven different categories (classes). The pro-
vided classes are denoted by Brickface, Sky, Foliage,Cement,
Window, Path, and Grass.

5) MULTIPLE FEATURES (MFEAT)
The Mfeat data set consists of handwritten digits. The
features were extracted specific to six different approaches,
namely Fourier coefficients of the character shapes, profile
correlations, Karhunen-Loeve coefficients, pixel averages in
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2 × 3 windows, Zernike moments, as well as morphological
features. This data set constitutes a naturally occurring
10-class classification task (digits 0, . . . , 9).

B. RESULTS & DISCUSSION
In the current section, we included another data set that
constitutes a 3-class classification task, i.e. Seeds. The
Seeds data set constitutes an SVM-ordinal classification
by our proposed definition, according to the class label
order Rosa ≺ Kama ≺ Canadian. This outcome is a further
example for Theorem 1. From Table 2, also the data set
Forests was identified as SVM-ordinal, according to the class
label orderHinoki≺ Sugi≺Mixed Deciduous≺ Non-Forest.
The results from Section V, as well as from the current

section, support our initial thoughts which we discussed with
respect to our proposed definition (see Sec. III). There exist
traditionally defined ordinal classification tasks (based on the
meaning of class labels) that constitute a natural order of the
class structure which is not reflected in the feature space.
However, by contrast, there also exist multi-class data sets,
whose class structures can be ordered, independently from the
meaning of the current class labels. As we discussed above,
this also implies that the detection of SVM-ordinal class
structures, which is based on our proposed definition, is also
independent from any kind of task-related expert knowledge.

VII. DETECTION COMPLEXITY & LIMITATIONS
In the current section, wewill first discuss the operational cost
for the detection of SVM-ordinal structures. Subsequently,
we will provide a brief discussion on the limitations of our
proposed working definition.

A. OPERATIONAL COST
In the current study, all presented experiments were
conducted using an Intel Core i7-6700K @4GHz with
Windows7, 64 bit, in combination with the Matlab2 software.
For each data set, we repeated the evaluation of the provided
detection algorithm of SVM-ordinal structures (see Fig. 1)
ten times. Table 3 states the averaged time values in seconds.
The duration for the search of SVM-ordinal class structures
depends on the number of samples, classes and features.
It is safe to assume that the duration also depends on the
complexity of the current classification task, i.e. on the
resulting number of support vectors of the corresponding
c(c − 1)/2 binary SVM models. However, from Table 3,
we can conclude that, in general, the time needed for the
identification of SVM-ordinal classification tasks, which we
defined in Definition 1, is negligible.

As discussed in the current section, as well as in Section IV,
the complexity associated to the design and evaluation of the
classification models is reduced by our proposed detection
algorithm. In contrast to O(c!) (exhaustive search), our
method leads to a complexity of O(c2). The complexity of
the additional sorting of each row of the initial PAM can

2https://www.mathworks.com/products/matlab.html

TABLE 3. Computational Time in Seconds for the Detection of
SVM-ordinal Structures. #F: Number of features. #C: Number of classes.
#S: Number of Samples. For each data set, we repeated the evaluation of
the detection algorithm 10 times, and stated the resulting averaged value.

be estimated as O(c2 log(c)), since it is the average case for
many existing sorting algorithms. Note that, the classification
complexityO(c2) also depends on the number of features and
the number of samples. In contrast, the sorting complexity
O(c2 log(c)), specific to the rows of the initial PAM, can be
neglected, since (SVM-)ordinal classification tasks consists
of a small number of classes, in general not more than ten
classes.

Moreover, note that, in accordance to our discussion in
Section III, each of the ten evaluations of the detection
algorithm led to exactly the same PAMs, specific to each of
the data sets from Table 3 (due to the fact that SVMs are
deterministic models).

FIGURE 2. Artificially Constructed Ordinal Toy Data Set.

B. LIMITATIONS
One shortcoming of our proposed definition is that it is
not possible to detect SVM-ordinal structures of data sets
whose classes are linearly separable. Figure 2 depicts a
two-dimensional 3-class data set whose classes are lin-
early separable. According to Figure 2, the (SVM-)ordinal
structure of the provided data set is clear, i.e. Class 1 ≺
Class 2 ≺ Class 3. However, for all τ ∈ T 3, the computation
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of the corresponding PAMs A(τ )
� leads to

A(τ )
� =

0 1 1
1 0 1
1 1 0

 .

Therefore, each possible permutation of the classes represents
an ordinal class structure. Hence, the data set is not
SVM-ordinal by our proposed definition, since no clear class
structure can be identified, i.e. the uniqueness property of
Definition 1 is violated. However, the currently discussed
shortcoming does not constitute a serious issue, for the
following reasons. First, classification tasks which include
linearly separable classes are well-posed, i.e. in general, such
tasks are easy to solve by any kind of classification models.
Hence there is no need to implement OC-based classifiers.
Second, it might be more useful to evaluate such kind of data
sets in combination with different cluster analysis techniques,
instead of different classification approaches.

A second shortcoming of our proposed definition is
that it is not applicable for classification tasks, for which
the accuracy/error rate is not an appropriate performance
measure. However, in general, it should be possible to
adapt our proposed definition to the currently desired
application-dependent measure.

VIII. CONCLUSION
In the current study, we proposed a working definition for
ordinal classification (OC) tasks. We use the term ‘‘working
definition’’, because our proposed definition is based on
the provided hyperplanes of standard SVM models. As a
consequence, in contrast to the traditional interpretation of
OC tasks, in our proposed definition, we completely discard
the meaning of class labels and focus solely on the current
feature space. Therefore, we introduced the term SVM-
ordinal class structures, to differentiate between traditionally
ordinal OC tasks and SVM-ordinal OC tasks, with respect to
our proposed definition.

The advantages of our proposed definition can be sum-
marised as follows. First, our proposed definition can be
interpreted easily, since it originates from the following
intuitive idea. It is easier to differentiate between two distant
classes than between two near classes. Therefore, if a data set
constitutes an SVM-ordinal classification task, the following
property must hold. If we select and fix one class, and try
to separate it from a second class, then the corresponding
binary classification task becomes easier to solve, each time
the second class is chosen nearer to one of the edges.
The second advantage of our proposed definition is that the
definition is easy to apply since it is based on the decision
boundaries of standard SVMs, which are part of the most
commonly used software tools, such asMatlab, GNUOctave,
Python, Weka, Ruby and R, amongst others.

Based on our proposed definition, we introduced a
simple method for the detection of SVM-ordinal structures.
Therefore, SVM-ordinal structures can be found without any
additional expert knowledge, and even without any additional

meta information about the corresponding classification
task. Moreover, we showed that according to our proposed
definition, 3-class classification tasks can be identified as
SVM-ordinal classification tasks, in general. Therefore, for
many 3-class classification tasks, one can apply one of the
existing ordinal classification specific techniques.

In the current study, we included ten multi-class data sets,
which are used as benchmark data sets, in the field of ordinal
classification, as well as five data sets, which are non-ordinal
in the traditional sense. We analysed all of the classification
tasks, in combination with our proposed definition. The
evaluations of the included data sets were discussed in detail
and support the validity of our proposed definition.

Finally, we believe that we provided a simple and
interpretable definition, which constitutes a supporting tool
that can be useful for researches, from the field of ordinal
classification, or multi-class classification in general.

APPENDIX - PROOF OF THEOREM 1
Let X ⊂ Rd , d ∈ N, be a d-dimensional labelled data set,
with the corresponding set of class labels � = {ω1, ω2, ω3}.
Let the PAM for the set � be defined as follows,

A(id)
� =


ω1 ω2 ω3

0 e f
e 0 g
f g 0

, with e, f , g ∈ (0, 1].

Moreover, let e, f , g be pairwise distinct, i.e. e 6= f , e 6= g,
and f 6= g.
Existence. Claim: There exist permutations τ ∈ T 3, such

that A(τ )
� fulfils the properties of Eq. (4).
Proof: IfA(id)

� fulfils the properties of Equation (4), then
there is nothing to show. Therefore, we now assume thatA(id)

�

does not fulfil the properties of Equation (4). Then, we obtain
the following cases.

Case 1: e > f , with either (f < g) or (f > g).
We define permutation τ1 by τ1 : {1, 2, 3} 7→ {1, 3, 2}.

Thus, we obtain the following matrix, with respect to τ1,

A(τ1)
� =


ω1 ω3 ω2

0 f e
f 0 g
e g 0

.
Case 1.1: e > g.
Note that we already assumed that it holds, e > f .

Therefore, from the relation e > g, it directly follows that
matrix A(τ1)

� fulfils the properties of Equation (4).
Case 1.2: e < g.
We define permutation τ2 by τ2 : {1, 2, 3} 7→ {2, 1, 3}.

Thus, we obtain the following matrix, with respect to τ2,

A(τ2)
� =


ω2 ω1 ω3

0 e g
e 0 f
g f 0

. (5)
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In total, in this case it holds, f < e < g. Thus, matrix A(τ2)
�

fulfils the properties of Equation (4).
Case 2: f < g, with either (e < f ) or (e > f ).
Again, we apply τ2 : {1, 2, 3} 7→ {2, 1, 3}, and obtain the

matrix, with respect to τ2 which is defined in Equation (5).
Case 2.1: e < g.
Note that we already assumed that it holds, f < g.

Therefore, from the relation e < g, it directly follows that
matrix A(τ2) fulfils the properties of Equation (4).

Case 2.2: e > g.
We define permutation τ3 by τ3 : {1, 2, 3} 7→ {2, 3, 1}.

Thus, we obtain the following matrix, with respect to τ3,

A(τ3)
� =


ω2 ω3 ω1

0 f e
f 0 g
e g 0

,
In total, in this case it holds f < g < e. Thus, matrix A(τ3)

�

fulfils the properties of Equation (4).
Note that the Cases 1 and 2, including the corresponding

sub-cases, also cover the case (e > f ) ∧ (f < g).
Therefore, we covered all possible cases for the initial PAM
A(id)
� . Hence, there always exist a permutation τ ∈ T 3, such

that τ (�) represents an ordinal class structure.
Uniqueness. Claim: There exist exactly two permutations

τ ∈ T 3, such that A(τ )
� fulfils the properties of Equation (4).

Proof: Without loss of generality, we assume that the
PAM

A(id)
� =


ω1 ω2 ω3

0 e f
e 0 g
f g 0

,
fulfils the properties of Equation (4). By definition, it follows
that permutation −id : {1, 2, 3} 7→ {3, 2, 1} also fulfils
the properties of Equation (4). Moreover, since A(id)

� fulfils
the properties of Equation (4), and since e, f , g are pairwise
distinct, it must hold

e < f , and f > g. (6)

Therefore, we now have to show that the remaining
permutations violate the properties of Equation (4).

Permutations τ1 : {1, 2, 3} 7→ {1, 3, 2}, and −τ1.
We obtain the following matrix, with respect to τ1,

A(τ1)
� =


ω1 ω3 ω2

0 f e
f 0 g
e g 0

.  

PAM A(τ1)
� violates the properties of Eq. (4), since it holds

e < f by Eq. (6). Hence, also −τ1 : {1, 2, 3} 7→ {2, 3, 1}
violates the properties of Eq. (4), by definition.

Permutations τ2 : {1, 2, 3} 7→ {2, 1, 3}, and −τ2.

We obtain the following matrix, with respect to τ2,

A(τ1)
� =


ω2 ω1 ω3

0 e g
e 0 f
g f 0

.  

PAM A(τ1)
� violates the properties of Eq. (4), since it holds

f > g by Eq. (6). Hence, also −τ2 : {1, 2, 3} 7→ {3, 1, 2}
violates the properties of Eq. (4), by definition. �
In the first part of the proof, we showed that, if the elements

of the upper/lower triangular PAM are pairwise distinct,
then there exist (at least) two permutations τ ∈ T 3, such
that the corresponding PAM A(τ )

� fulfils the properties of
Equation (4). In the second part of the proof, we showed
that there exist exactly two permutations τ ∈ T 3, such
that the corresponding PAM A(τ )

� fulfils the properties of
Equation (4). Note that |T 3

| = 6, i.e. there exist six distinct
permutations of the set � = {ω1, ω2, ω3}. Moreover the six
permutations can be grouped into three pairs, which represent
one of the possible unique class orders each.
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