
Received July 20, 2020, accepted August 22, 2020, date of publication September 2, 2020, date of current version September 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021044

Container Image Access Control
Architecture to Protect Applications
SUNG-HWA HAN 1, (Member, IEEE), HOO-KI LEE2, (Member, IEEE),
SUNG-TAEK LEE3, (Member, IEEE), SUNG-JIN KIM 4, (Member, IEEE),
AND WON-JUNG JANG5, (Member, IEEE)
1Department of ITPM, Soongsil University, Seoul 06978, South Korea
2Department of Cyber Security Engineering, Konyang University, Nonsan, South Korea
3Department of Computer Science, Yongin University, Kyeonggi, South Korea
4Department of Intelligent Systems Engineering, Cheju Halla University, Cheju 63092, South Korea
5Department of Intellectual Property for Startups, Catholic Kwandong University, Gangneung, South Korea

Corresponding author: Won-Jung Jang (wjjang@cku.ac.kr)

ABSTRACT A container platform allows various applications to be deployed or run after installation.
A user can download or execute a container image with the required application. To apply the configuration
management system, a container image uses a union filesystem composed of multiple layers. To provide
stability, important application files must be protected from unauthorized access. However, the container
image used for distributing an application does not have its own protection function, and it is not protected
by the container platform. The access control function provided by the operating system cannot protect
the applications because the container environment is not considered. In this study, a container image
access control architecture is proposed that can ensure a safe application operating environment by denying
unauthorized direct access to container images. The proposed architecture enforces the access control
function after the container image is downloaded, denying unauthorized access to the container image layer
directory. Because the access control function is provided at the kernel level, there is a security advantage that
users cannot bypass. To verify this approach, the functions and performance were determined empirically
according to the proposed architecture. Functional verification confirmed that the proposed architecture
denies unauthorized access to the container base image and allows access only to authorized users. It was
also confirmed that the proposed architecture ensures the performance of the container platform in the same
way as before, and that the proposed container image access control architecture is sufficiently effective.

INDEX TERMS Access control, container, image protection, layered image, container image.

I. INTRODUCTION
A container platform provides various functions necessary
for information service building and operation, and its usage
rate is increasing because it can reduce system costs. If an
application required for the provisioning of an information
service is created and deployed as a container image, the user
of the container can execute the application simply by run-
ning the container image without a complicated installation
process [1]. Containers share the kernel of the host system,
and thus an application running on a container shares the
resources of the host system [2]. In this way, the information
service based on a container platform increases the resource
efficiency of the system [3].

A container platform provides an extremely limited
interface. Users can download, create, upload, execute, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Jia .

monitor container images through this container platform
interface [4]. A container platform used for application dis-
tribution and execution is responsible for the security of
the container image that contains the application. However,
the current container platform provides protection against
application execution [5], but does not provide protection
against container images stored in the host system. Many
operating systems (OSs) provide SecureOS, allowing a denial
of unauthorized access to protect important files or direc-
tories. However because the current version of SecureOS
does not consider the container platform, it cannot protect
dynamically executed applications in a container image.

When the container operation environment is summarized,
the downloaded container image is stored in the container
image repository, but the platform provides no protection
function for the container image stored therein. Therefore,
it can be said that the security of the container image
within the container platform, which primarily/mainly serves

162012 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5518-4746
https://orcid.org/0000-0002-9372-2568
https://orcid.org/0000-0003-3551-8654


S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

FIGURE 1. Container image distribution structure.

the purposes of simple distribution and execution of the
application, is weak. If a container is executed in such a
secure environment, the mount and source directories for the
container can be accessed by all users with access to the con-
tainer platform. Moreover, the source directory constituting
the container image can be accessed even while the container
is running.

For example, if a web service is provided as a container,
an unauthorized person can access the source directory and
upload malware. Furthermore, when repeatedly executed,
the web server acts as a malware distribution system; con-
sequently, all users who access this web service are attacked
by the malware. To overcome this security limitation, in this
study, a container image access control architecture is pro-
posed that can deny unauthorized access from the time the
container image is downloaded. To verify the effectiveness of
the proposed architecture, we compare the functionality and
performance test results with those of legacy access control
functions.

Improving the container platform according to the
container image access control architecture proposed in this
study provides the following benefits:

1) While maintaining the functionality of the container
platform, direct access by unauthorized persons to the source
directory of the container image can be denied. Therefore,
maintaining the integrity of the container image while the
container is running becomes possible.

2) If the container image is unmounted, the source
directory can be accessed to change, extend, or upgrade the
application in the container image.

3) Because the security function is applied only to the
container platform, it consumes minimal necessary resources
and its interference with other applications is minimized.

The remainder of this paper is organized as follows.
Section 1 describes the background and objectives of this
study. Section 2 describes the container image distribution
environment, application security requirements, and cur-
rent file/directory access control technology. In Section 3,
the security environment of the container platform after the
threats to the container image are identified is analyzed.
In Section 4, a container-based image access control archi-
tecture is proposed for container image protection, and a
method for providing its functions is described. In Section 5,
the effectiveness of the proposed architecture is analyzed
based on functional and performance verification. Finally,
in Section 6, some concluding remarks are provided.

II. RELATED STUDIES
A. CONTAINER IMAGE DISTRIBUTION & EXECUTION
A container image uses a union filesystem to apply the appli-
cation configuration management [6]. The types of union file
systems supported by the current container platform include
an advancedmulti-layered unification filesystem (AUFS) and
overlay and overlay2 file systems. AUFS and overlay file
systems were previously used, whereas stable overlay and
overlay2 filesystems are currently applied [7].

Fig. 1 shows a structure in which a user searches for,
downloads, stores, and executes container images in Docker,
a typical container platform using the overlay2 filesystem.

When a user downloads a container image, container
image metadata and container image layer data constituting
the container image are downloaded [8].

The container registry consists of a container image
catalog, container image manifests, container image repos-
itory, and container image binary large object (BLOB) [9].
The container image repository is registered with a container

VOLUME 8, 2020 162013



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

image layer ID that can identify container image layer data
constituting the container image [10].

The container user searches the container image in the
container image catalog of the container registry. When the
container user requests a container image download, the con-
tainer registry identifies the container image layer IDs for the
container image layer data constituting the container image
by checking the container image manifests for the container
image requested by the user. Thereafter, the container registry
delivers the container image layer data identified using the
identified container image layer ID to the user along with
container image manifests [11].
The container platform interface generates a container

image layer cache-ID for a container image layer for a union
filesystemmount when storing the container image layer, and
registers it in ImageDB. Thereafter, the container platform
interface stores the container image layer, which uncom-
presses the container image layer data in the LayerDB of the
host system. Because of this process, even if the same con-
tainer image is downloaded, the storage path of the container
image layer is different for each host system. The container
platform interface extracts only the necessary information
regarding the container image from the received container
image manifests and stores it in the container image metadata
with the generated container image layer cache-ID [12].

To mount the overlay2 filesystem, a typical filesystem
supported by the container platform and the mount structures
of Upperdir, MergedDir, Lowerdir, and Workdir, must be
satisfied. For this, the container platform interface uses the
container image layer cache-ID directory of ImageDB as the
mount directory of the overlay2 filesystem. All downloaded
container image layer cache-IDs were assigned a LowerDir.
WorkDir is a directory used to merge image layers into
MergedDir.MergedDir is a directory that shows the result of
merging the container image layer identified by the container
image layer cache-ID, and provides an integrated view to
users. UpperDir is responsible for user I/O processing by
adding a write-able layer at the time of the mounting [13].

The container image layer cache-ID directory required for
the container image execution is registered in the container
image metadata [14]. When the container user executes the
container image, the container platform interfacemounts the
container image layer cache-ID directory of the container
image metadata as a union filesystem [15].

B. APPLICATION SECURITY REQUIREMENT
Basically, an application used to provide information services
must be provided in a secure environment and protected
from threats such as external attacks or service abuse even
during operation [16]. To this end, security requirements for
information services have been proposed by many national
public and international standard organizations. Among the
typical security requirements, items related to this study are
shown in Table 1 [17].
According to these security requirements, the informa-

tion service must also be secure based on the container

TABLE 1. General security requirements.

platform [18]. It should be possible to deny unauthorized
access by identifying a subject wanting to access the infor-
mation service. The change in the configuration of the infor-
mation service must be made in an authorized state, and all
unauthorized changes must be denied.

C. CURRENT FILE ACCESS CONTROL TECHNOLOGIES
To satisfy the requirements of Table 1, the legacy system
uses SecureOS to protect the application and important
information. SecureOS typically includes security-enhanced
Linux (SELinux) and Application Armor (AppArmor) of
Linux/Unix-type operating systems as well as a group pol-
icy object (GPO) in Windows operating systems. All three
provide policy-based file/directory access control [19].

SELinux accepts the mandatory access control model and
operates by enforcing an object-oriented security policy [20].
The security policy of SELinux consists of a security ID (SID)
and permission, which are identifiers for an access control
policy. The file/directory list, which is the actual protected
object for the SID, is mapped to the SELinux of each sys-
tem [21]. When the user sets the security policy, SELinux
enforces the access control policy for the file/directory for
the SID [22], [23].

AppArmor accepts a role-based access control security
model. The access control policy is defined as a resource
group, and it denies unauthorized access to the file/directory
belonging to this group [24].

GPO applies the discretionary access control (DAC)
model. Although there is a disadvantage in that the policy
must be registered for all access control targets, it is easy
to check the policy-enforced status and the DAC is easy to
use [25].

All three SecureOS types are kernel-based access control
technologies, which deny user bypass access. However
because it is a policy-based access control technology,
the access control policy can be enforced only if the file or
directory to be protected is known in advance.

III. SECURITY ENVIRONMENT ANALYSIS OF CONTAINER
PLATFORM
A. SECURITY THREAT TO CONTAINER IMAGE
As is well known, the container engine protects the execution
environment of the container. A container engine uses

162014 VOLUME 8, 2020



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

FIGURE 2. Unauthorized modification through direct access to
container image layer: (a) Apache web server’s default web
page in container, (b) direct access to container image layer and
unauthorized modification default page, (c) after default
unauthorized modification.

namespaces and cgroups to individually apply environmental
variables, resources, and process management for applica-
tion during a container operation to ensure an independent
operating environment [26].

However, the container engine does not protect the
container image. Fig. 2 shows an example of an unautho-
rized person directly accessing the container image layer and
modifying an important file while the container is running.
Fig. 2(a) shows that the user accessed the default page of the
Apache Web Server in the container, which represents a state
of stability. Fig. 2(b) shows the process of an unauthorized
user-modifying index.html through direct access to the con-
tainer image layer. Consequently, the title of the default page
was changed, as shown in Fig. 2(c).
As described above, the container engine only protects

the application included in the container image but does not
protect the container image required to run the application.
In this environment, unauthorized users can directly access
the container image layer to change files or leak important
information.

In particular, in a container platform environment where
multiple container images can be executed, the unauthorized

modification effect of the container image layer is reflected
in all container applications.

B. SECURITY ANALYSIS OF CONTAINER PLATFORM
Applications that run on the container platform must run in a
secure environment according to the security requirements.
Applications running through a container image execution
ensure process isolation using a namespace. Independence is
also guaranteed in the resource allocation for the application
in a container using cgroups [27].

The unauthorized modification in Fig. 2 is an example
of using the security vulnerability of the union file system
supported by the container platform. Container images com-
posed of multiple layers are treated as read-only for file
systems [28] but are write-able for users. In this environment,
unauthorized persons can directly access the container image
layer to modify files or leak important information.

In the Legacy system, SecureOS was used to improve
security vulnerabilities. However because the current ver-
sion of SecureOS does not consider the container platform,
it cannot improve the security vulnerability of the container
platform.

To be provided with an access control function for
important information by SecureOS, the object to be pro-
tected must be identified. To protect the container image, it is
necessary to identify the container image layer directory to be
protected. However, the container image layer directory is a
container image layer cache-ID directory that is dynamically
created when downloading a container image [29], and it
is actually impossible for the user to identify the container
image layer directly because it is a sha-256 digest type.

Because a container image is composed of multiple layers,
it can be stated that it is a safe environment only when the
container is executed while each container image layer is
protected. However, the current container platform does not
provide protection for container images. In addition, there is
no separate external security function to protect the container
image.

Therefore, the current container platform is not a safe
environment for protecting container images.

IV. CONTAINER-BASED IMAGE PROTECTION
ARCHITECTURE
The container platform, the main goal of which is to
distribute, execute, and operate applications required to
provide information services, is responsible for protecting
container images according to the security principles
[30], [31].

For this security environment, in this study, a container
image access control architecture is proposed that blocks
unauthorized access to container images.

A. ARCHITECTURE ELEMENT
The container image access control architecture proposed
in this study was isolated from the container engine to
ensure the provisioning of the container platform function.
The DAC model is accepted, and after the container image

VOLUME 8, 2020 162015



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

FIGURE 3. Container-based image protection architecture.

layer directory to be protected is dynamically identified, only
an authorized container user using the container platform
interface can access the container image layer directory.

The proposed architecture is composed of four modules,
as shown in Fig. 3. The policy identifier manages the access
control policies required when users download the container
images. The policy identifier collects user information that
can access the container image from the user group infor-
mation of the host system. Thereafter, the container image
layer directory (container image layer cache-ID in Fig. 2) is
collected from the container image metadata of the container
image downloaded to the host system, and the access con-
trol policy is generated and transmitted to the kernel policy
manager.

The kernel policy manager adds or deletes the access
control policy delivered by the policy identifier to the
kernel-level policy table.

A policy table is a database in which access control policies
delivered to the kernel are registered. For the convenience
of access control policy management and high-speed policy
application, the access control policy consists of a container
ID, user ID, and container image layer directory.

The user access control handler denies unauthorized
access to the container image layer directly by monitoring the
user’s file I/O. If the container user is an event accessing the
container image layer using the container platform interface,
this is allowed, and other access is denied.

B. SEQUENCE OF SECURITY FUNCTIONS
The sequence diagram of the entire process of denying unau-
thorized access to container images and allowing authorized
access is shown in Fig. 4.

1) MANAGING AN ACCESS CONTROL POLICY
The container image access control architecture proposed in
this study should allow only container user access to the

container image layer. To this end, for the container image
layer, the policy to deny all users is enforced by default,
and the container user access allowance policy is added and
deleted to protect the container image.

The management of the access control permission policy
operates as a post action immediately after the user interface
execution of the container platform. The commands of the
container platform interface used to add access control policy
are download, build, and commit, and the delete command is
used to remove it.

When a user downloads, builds, or commits a container
image, the policy identifier checks and collects the user group
account information. Next, the policy identifier accesses the
container image metadata to obtain the container image layer
directory for access control. After generating the 2D table by
combining the identified user ID and container image layer
directory, the system call is used and delivered to the kernel
policy manager along with the container ID.

The kernel policy manager adds or deletes the access
control policy delivered by the policy identifier. When adding
an access control policy, an access control policy consisting of
the container ID, user ID, and container image layer directory
is registered in the policy table.

2) ENFORCEMENT ACCESS CONTROL POLICY
The user access control handler monitors the file I/O of the
operating system and enforces the access control policy for
events accessing the container image layer directory.

All file I/Os occurring in the operating system are
registered and processed as events of the interrupt vector
table [32]. The Linux Security Module (LSM) is a
trigger interface of the event handle function for han-
dling user-defined file I/O access control when a file I/O
occurs [33], and a user access control handler is applied
whenever the file I/O executes a handle function to apply

162016 VOLUME 8, 2020



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

FIGURE 4. Sequence diagram for container image protect.

an access control function. When executing the event handle
function in the LSM, the event context is delivered [34].
The user access control handler extracts the user ID,

process name, and access object container image layer direc-
tory, which are the access subjects, from this event context
and compares it with the access control policy to determine
whether access is allowed. If an event for a file I/O is accessed
by a container user applying the container platform interface,
the container image layer directory is allowed, and container
users who do not use the container platform interface or
unauthorized users who attempt to use the container platform
interface are denied access to the file I/O event.

V. IMPLEMENTATION
For the architecture proposed in this study to be effective,
the access control function to be provided should operate
normally, and the function and performance of the container
platform should not be affected. Therefore, a functional test
for the access control function, a regression test for the
container platform function, and a performance test are con-
ducted to verify the effectiveness of the proposed container
image access control architecture.

A. FUNCTION TEST
1) FUNCTION TEST SCENARIO
The access control function proposed in this study only
provides an access container using a container platform inter-
face, with the default access denial policy applied to the
container image layer directory. Therefore, the access control
policy uses a container user (Uid) and a container platform
interface (CPi) as the parameters. To describe the access con-
trol mechanism for the container image, we use the following
definitions.

U = {x|x is all access control mechanism }

P = {x ∈ U |Access control policy enforced to

container platform}

AR = {x|x is set of all access request}

Under the above conditions, the access control policy
enforced result (PER) by the access control function (ACD)
for r of the access request (AR) is defined as follows:

PER = ACD(r), but r ∈ AR

Here,

CPip = {x|x is access request r,

a member of CPi in policy P}

Uidp = {x|x is access request r,

a member of Uid in policy P}

When all values of CPiP and UidP are true, access to
the container image layer directory is allowed by the access
control policy P. In this case, PERA is expressed as

PERA = ACD(rCPIP · UidP ), but r ∈ AR. (1)

When the access control policy is enforced for an event, but
is blocked by PERD, the De Morgan law is applied to (1) and
is defined as (2)

PERD = ACD(rCPIP + rUidP ), but r ∈ AR. (2)

Equation (1) indicates that the user’s container image
access event is allowed (all CPi and Uid are matched), and
(2) indicates that it is denied (one or more CPi and Uid are
unmatched). Therefore, if the functions of (1) and (2) are
verified, the access control suggested in this study can be said
to be valid.

2) FUNCTION TEST ITEMS
For the functional test items of the container base imageless
control architecture suggested in this study, the functional
verification items in Table 2 were calculated according to (1)
and (2).

3) FUNCTION TEST RESULTS
As a result of testing Func_P1, when the container user
accesses the container image using the container platform

VOLUME 8, 2020 162017



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

TABLE 2. Functional test items.

FIGURE 5. Verification results of allowed user access.

FIGURE 6. Verification result of denied user access using unpermitted
interface.

FIGURE 7. Verification result of denied unauthorized user access.

interface to the container image, it is confirmed that the
container user’s access is allowed, as shown in Fig. 5.

As a result of testing Fun_N1, when the container platform
user accesses the container image without using the container
platform interface, it is confirmed that the user’s access is
denied, as shown in Fig. 6.

As a result of testing Func_N2, it was confirmed that unau-
thorized access to the container image using the container
platform interface is denied, as shown in Fig. 7.

B. REGRESSION TEST
Even if the access control function by the architecture sug-
gested in this study operates normally, the original function

TABLE 3. Regression test items.

FIGURE 8. Regression test result of container image execution.

FIGURE 9. Regression test result of file copy to container: (a) file copy
from host to container and (b) check file copy result.

of the container platform cannot be compromised. To verify
that the access control function proposed in this study does
not affect the container platform, a regression test, as shown
in Table 3, was applied.

As a result of the Reg_T1 test, it was confirmed that the
container is normally executed and the application of the
container image is normally executed, as shown in Fig. 8.
As a result of the Reg_T2 test, it was confirmed that file

copying to the container can be normally applied, as shown
in (a) in Fig. 9, and is normally applied as shown in (b).

As a result of the Reg_T3 test, it was confirmed that the
changed container, as shown in Fig. 10, was successfully
committed and a new container image was generated.

162018 VOLUME 8, 2020



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

FIGURE 10. Regression test result of container commit.

TABLE 4. CPU rate measurement result.

C. PERFORMANCE VERIFICATION
The container platform is intended to download multiple
container images and run multiple containers. Therefore,
the delay of a container operation by the access control
function suggested in this study should be minimized.

To this end, we measured the CPU rate (%) required for
a policy registration and the enforcement time of the access
control policy on an Intel i7-8700 CPU, 32 GB of RAM, and
a 10 TB HDD, and compared the results using SELinux.

1) CPU RATE MEASUREMENTS
After measuring the CPU share required to register the access
control policy, we checked the effect. To this end, the CPU
occupancy is measured when 5000 policies are registered
using a shell script for access control policy registration,
and the same method is applied to SELinux to compare the
measurement results and verify the performance.

Table 4 shows the results of ten measurements of the CPU
share when registering 5000 access control policies in the
container image access control architecture in both this study
and SELinux.

As a result of checking the average value of the
performance measurement, it was confirmed that the CPU
share of the proposed architecture is mostly the same as that
of SELinux.

2) MEASUREMENT OF POLICY ENFORCEMENT TIME
The downloading of multiple container images means that
more container image layers are downloaded, in which case,
many access control policies can be registered, although the
enforcement time of the access control policy for the user
should be minimized.

To measure the access control policy enforcement time for
users, 500, 1000, 2000, 3000, 4000, 5000, and 6000 dummy

FIGURE 11. Regression test result of file copy to container.

policies are registered in the policy table using a shell script,
and the last policy enforcement time is then measured.
To check the validity of the proposed architecture, the mea-
surement results were compared with the SELinux policy
enforcement time.

Tomeasure the last policy enforcement time, ‘‘time (ms) =
the matching access control policy application timeminus the
policy search start time’’ is applied.

Fig. 11 shows the average time taken to apply the last
access control policy 10 times when multiple dummy access
control policies are registered. When the number of dummy
policies was less than 3,000, the policy application time of
the proposed architecture was longer than that of SELinux.
However, starting from the 4,000 dummy policies, the pro-
posed architecture and the SELinux policy application time
were the same at 1 ms.

D. ANALYSIS RESULTS
As a result of the functional verification, it was confirmed that
the container image access control architecture allows only
container image access by container users using the container
platform interface and denies access to the container image or
container users accessing the container image layer directly.

During the regression test, it was confirmed that the access
control function of this study did not affect the original
function provided by the container platform.

The performance when providing the access control
function was also confirmed to be almost the same as that
of the existing SELinux.

Therefore, it can be determined that the container
image access control architecture proposed in this study is
sufficiently effective in terms of function and performance.

VI. CONCLUSION
The usage rate of container platforms is increasing owing
to both their features and a reduction in the information
service construction cost. In particular, with the support of
the Kubernetes orchestration tool, the rate has significantly
increased.

In this study, the threat of unauthorized modification
attacks of container images was confirmed by directly access-
ing the container image layer downloaded to the host system.

VOLUME 8, 2020 162019



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

To improve the security vulnerability of the container
platform, in this study, a container image access control archi-
tecture was proposed. The proposed architecture provides a
dynamic access control function for the container image layer
directory, and it is enforced at a single point at the kernel level;
thus, the user cannot bypass the access control function.

In particular because the container user operates as a post
action when using the container platform interface, there is
an advantage in that the container image can be protected
without additional user manipulation. In addition because
the access control function operates independently of the
container engine and consumes very few resources, there is
an advantage of not impairing the original function provided
by the container platform.

As a result, it was confirmed that the container image
access control architecture proposed in this study can increase
the container platform security by protecting the container
image of the information service based on the container
platform.

However, during the regression test coverage applied in
this study, the application execution through the container
image is run, the file is copied to the container, and the
committed changes to the container are executed. Because
an unidentified side effect may occur when using the access
control function proposed in this study, it is necessary to
expand and verify the regression test coverage. In addition,
only the overlay2 file system, which is the container platform
with the most verification environments, was selected. If the
same performance measurement is performed in AUFS or an
overlay file system, the reliability of the performance result
is expected to be higher.

Monitoring and tracking functions for the access control
function proposed in this study are also needed according to
the general security requirements, and thus further research
is necessary.

REFERENCES
[1] C. Kaewkasi and K. Chuenmuneewong, ‘‘Improvement of container

scheduling for docker using ant colony optimization,’’ in Proc. 9th Int.
Conf. Knowl. Smart Technol. (KST), Feb. 2017, pp. 254–259.

[2] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, ‘‘Container-based cloud platform
for mobile computation offloading,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2017, pp. 123–132.

[3] C. C. Spoiala, A. Calinciuc, C. O. Turcu, and C. Filote, ‘‘Perfor-
mance comparison of a WebRTC server on docker versus virtual
machine,’’ in Proc. Int. Conf. Develop. Appl. Syst. (DAS), May 2016,
pp. 295–298.

[4] D. Lucia and J. Michael, ‘‘A survey on security isolation of virtualization,
containers, and unikernels,’’ USArmyRes. Lab. Aberdeen ProvingGround
United States, Ground, MD, USA, Tech. Rep. ARL-TR-8029, May 2017.

[5] S. H. Han, H. K. Lee, G. Y. Gim, and S. J. Kim, ‘‘Empirical study
on anti-virus architecture for container platforms,’’ IEEE Access, vol. 8,
pp. 134940–134949, 2020.

[6] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, ‘‘Cntr: Lightweight
OS Containers,’’ in Proc. USENIX Annu. Tech. Conf., Jul. 2018,
pp. 199–212.

[7] A. Dewald, M. Luft, and J. Suleder, ‘‘Incident Analysis and Forensics in
Docker Environments,’’ ERNWWhite Paper, ERNW, Feb. 2018.

[8] A. Ahmed and G. Pierre, ‘‘Docker container deployment in fog com-
puting infrastructures,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE),
Jul. 2018, pp. 1–8.

[9] B. Noel, D. Michelino, M. Velten, R. Rocha, and S. Trigazis, ‘‘Integrating
containers in the CERN private cloud,’’ J. Phys., Conf. Ser., vol. 898,
Oct. 2017, Art. no. 092045.

[10] T. Xu and D. Marinov, ‘‘Mining container image repositories for software
configuration and beyond,’’ in Proc. 40th Int. Conf. Softw. Eng. New Ideas
Emerg. Results, 2018, pp. 49–52.

[11] J. Blomer, P. Buncic, G. Ganis, N. Hardi, R. Meusel, and R. Popescu,
‘‘New directions in the CernVMfile system,’’ J. Phys., Conf. Ser., vol. 898,
Oct. 2017, Art. no. 062031.

[12] L. Ma, S. Yi, and Q. Li, ‘‘Efficient service handoff across edge servers
via docker container migration,’’ in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, pp. 1–13.

[13] Z. Lu, J. Xu, Y. Wu, T. Wang, and T. Huang, ‘‘An empirical case
study on the temporary file smell in dockerfiles,’’ IEEE Access, vol. 7,
pp. 63650–63659, 2019.

[14] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof,
M. D’Souza, S. Devoid, D. Murphy-Olson, N. Desai, and F. Meyer,
‘‘Skyport-container-based execution environment management for multi-
cloud scientific workflows,’’ in Proc. 5th Int. Workshop Data-Intensive
Comput. Clouds, Nov. 2014, pp. 25–32.

[15] L. Ma, S. Yi, N. Carter, and Q. Li, ‘‘Efficient live migration of edge ser-
vices leveraging container layered storage,’’ IEEE Trans. Mobile Comput.,
vol. 18, no. 9, pp. 2020–2033, Sep. 2019.

[16] F. A. Aloul, ‘‘The need for effective information security awareness,’’
J. Adv. Inf. Technol., vol. 3, no. 3, pp. 176–183, Aug. 2012.

[17] R. S. Ross, S. W. Katzke, and L. A. Johnson, ‘‘Minimum security require-
ments for federal information and information systems,’’ in Proc. NIST,
2006, p. 200.

[18] R. Chandramouli and R. Chandramouli, ‘‘Security assurance requirements
for linux application container deployments,’’ US Dept. Commerce, Nat.
Inst. Standards Technol., Gaithersburg, MS, USA, Tech. Rep. NISTIR
8176, Oct. 2017.

[19] K. Salah, J. M. Alcaraz Calero, J. B. Bernabé, J. M. Marín Perez, and
S. Zeadally, ‘‘Analyzing the security of windows 7 and linux for cloud
computing,’’ Comput. Secur., vol. 34, pp. 113–122, May 2013.

[20] S. Smalley, C. Vance, andW. Salamon, ‘‘Implementing SELinux as a Linux
security module,’’ NAI Labs Rep., vol. 1, no. 43, p. 139, 2001.

[21] D. Kilpatrick,W. Salamon, and C. Vance, ‘‘Securing the XWindow system
with SELinux,’’ Tech. Rep., vol. 3, no. 6, pp. 1–33, 2003.

[22] Hanson, C., ‘‘SELinux andMLS: Putting the pieces together,’’ in Proc. 2nd
Annu. SELinux Symp., Feb. 2006, pp. 1–8.

[23] L. Papachristodoulou and S. Antakis, ‘‘Security-enhanced Linux in a health
information system,’’ Eindhoven Univ. Technol., Dec. 2008.

[24] H. Chen, N. Li, and M. Z. , ‘‘Analyzing and comparing the protection
quality of security enhanced operating systems,’’ inProc. NDSS, Feb. 2009,
pp. 11–16.

[25] K. Arya, Windows Group Policy Troubleshooting: A Best Practice Guide
for Managing Users and PCs Through Group Policy. NewYork, NY, USA:
Apress, 2016.

[26] S. Kehrer, F. Riebandt, and W. Blochinger, ‘‘Container-based module
isolation for cloud services,’’ in Proc. IEEE Int. Conf. Service-Oriented
Syst. Eng. (SOSE), Apr. 2019, pp. 17704–17709.

[27] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, ‘‘KVM, xen and docker:
A performance analysis for ARM based NFV and cloud computing,’’
in Proc. IEEE 3rd Workshop Adv. Inf., Electron. Electr. Eng. (AIEEE),
Nov. 2015, pp. 1–8.

[28] Z. Anwar, S. Potter, C. Narayanaswami, W. Yurcik, C. A. Gunter, and
R. H. Campbell, ‘‘Detecting and mitigating denial-of-service attacks on
voice over IP networks,’’ IBM Watson Res., Columbia Univ., Sep. 2008.

[29] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht, Y. Cheng,
N. Zhao, A. Skourtis, H. Ludwig, and D. Hildebrand, ‘‘Improving docker
registry design based on production workload analysis,’’ in Proc. 16th
USENIX Conf. File Storage Technol., 2018, pp. 265–278.

[30] A. Krull, ‘‘GASSP generally-accepted system security principles: A trip to
abilene,’’ Comput. Secur., vol. 5, no. 15, p. 417, 1996.

[31] A. Conklin, G. White, C. Cothren, D. Williams, and R. L. Davis, Princi-
ples of Computer Security: Security+ and Beyond. New York, NY, USA:
McGraw-Hill, 2004.

[32] P. Krzyzanowski, ‘‘Operating system concepts what is an operating system,
what does it do, and how do you talk to it?’’ Rutgers Univ., Jan. 2014.

[33] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman,
‘‘Linux security module framework,’’ in Proc. Ottawa Linux Symp.,
vol. 8032, Jun. 2002, pp. 6–16.

162020 VOLUME 8, 2020



S.-H. Han et al.: Container Image Access Control Architecture to Protect Applications

[34] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman,
‘‘Linux security modules: General security support for the linux kernel,’’
in Proc. Found. Intrusion Tolerant Syst., 2002, pp. 17–31.

SUNG-HWA HAN (Member, IEEE) received the
Ph.D. degree from Soongsil University, South
Korea. He works as the Senior Manager of SGA
Solutions Company Ltd., South Korea. He has
published many articles in journals. He is a consul-
tant of security management and has a certificate
in that. His work is mainly in the areas of develop-
ment, quality assurance, and common criteria for
security solutions. His research interests include
information security, security management, and IT
security conversions.

HOO-KI LEE (Member, IEEE) is a Faculty Mem-
ber of the Department of Cyber Security Engi-
neering, Konyang University. He worked at the
Ministry of Culture, Sports, and Tourism Cyber
Security Center, from 2009 to 2019. He has
been interested in research fields such as security
engineering for high-assurance systems, security
threat analysis and security evaluation, and digital
forensics.

SUNG-TAEK LEE (Member, IEEE) is an Assis-
tant Professor with the Department of Computer
Science, Yongin University, South Korea. He has
published various articles in journals such as the
International Journal of Technology Management,
the Journal of Management Information Systems,
and the Journal of Business Models. He is inter-
ested in research fields such as the fourth industrial
revolution, IT service business, startup support,
and intellectual property rights.

SUNG-JIN KIM (Member, IEEE) received the
B.S. degree in computer science from The Ohio
State University, Columbus, USA, theM.S. degree
in computer science from Sogang University,
Seoul, South Korea, and the Ph.D. degree from
the KAIST, Daejeon, South Korea, in 2019. He is
currently an Assistant Professor with Cheju Halla
University. He is interested in various security
issues related to personal computers, social net-
works, deep Web, and IP networks. His current

research interests include machine learning-based malware detection, big
data analytics, social network analysis, risk analysis, Web security, network
security, and cyber kill chain detection.

WON-JUNG JANG (Member, IEEE) received the
Ph.D. degree. He works as a Professor with the
Department of Intellectual Property for Startups,
Catholic Kwandong University. He has published
a number of articles in journals such as Applied
Sciences. His books include fourth industrial revo-
lution, how to start and start industrial revolution,
and the era of new manufacturing. He is interested
in research such as big data, machine learning,
artificial intelligence, software engineering, and
the fourth industry revolution.

VOLUME 8, 2020 162021


