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ABSTRACT In this paper, ultrasound imaging of benign and malignant thyroid nodules to predict the depth
of the learning algorithm, built on circulation volume product thyroid ultrasound image neural network
forecasting model. Introduced the convolutional neural network and the recurrent neural network, and
combined the advantages of the convolutional neural network and the recurrent neural network, improved the
predictionmodel, constructed the recurrent convolutional neural network predictionmodel and optimized the
prediction model. Soc max algorithm and L2 regularization are introduced to prevent the occurrence of over-
fitting. This study introduces the technology and tools required for the development of forecasting systems,
the feasibility analysis of the system, demand analysis and system design and other system development
preliminary work. Describes the function of the thyroid nodule prediction system and related work such as
system testing. Based on the above research, thyroid ultrasound images obtained by the cooperative hospital
are used as a data set, and the cyclic convolutional neural network prediction model is used to predict training
and testing to the development of a thyroid nodule prediction system. The experimental results show that the
prediction system has high prediction accuracy.

INDEX TERMS Deep learning, ultrasound imaging, thyroid nodules, benign and malignant prediction.

I. INTRODUCTION
Thyroid nodular diseases are common clinically. It is reported
in the literature that nearly 5% of nodules can be found
on palpation, and 10% to 67% can be found on ultrasound.
Although the incidence of thyroid nodules is high, only 5%
to 10% are malignant. Thyroid cancer is the most common
endocrine malignant tumor and the fastest growing cancer
among all cancers. Thyroid cancer accounts for 1% of all
cancers, of which papillary cancer accounts for the majority,
and well-differentiated papillary thyroid carcinoma (PTC)
accounts for 75% to 90% of thyroid cancer, and the prognosis
is relatively good, but the postoperative recurrence rate up
to 30% [1]. Because thyroid cancer progresses relatively
slowly, some research related to its diagnosis has been com-
pleted, and early thyroid cancer may be cured. Non-invasive
can provide necessary diagnostic information for potentially
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malignant thyroid nodules, and is regarded as a valuable
diagnostic method in clinical practice. It proposed that high-
resolution ultrasound is currently the preferred method to
assess the nature of thyroid nodules, and it can no longer
only distinguish the cystic and solid nodules, but also plays
an important role in distinguishing benign and malignant
nodules [2], [3]. Ultrasound has become the preferred exam-
ination method for evaluating the nature of thyroid nodules
due to its practicality, low cost, no discomfort for patients,
and no radiation. Ultrasound can also be found in addition
to a palpable nodule, nodule size is estimated, the volume of
goiter, and guide fine-needle aspiration biopsy (FNAB) [4].
Careful analysis of the main topographic features of thyroid
nodules can help clinicians select nodules for further FNAB
examination. FNAB has been shown to increase the positive
rate of diagnosis and is essential for biopsy of more and more
small nodules [5].

In the conventional CAD mainly rely on the computer to
emulate biological neural processes information. The method
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first needs to artificially extract themorphological and texture
characteristics of the lesion in the image, and then use a large
amount of data to train it [6]. It evaluated the diagnostic
potential of the six tumor markers involved in the design
of ANN in the auxiliary diagnosis of lung cancer. It per-
formed well in the differentiation of lung cancer from benign
lung diseases and the other three types of gastrointestinal
malignancy. We used in traditional ANN to classify liver
fibrosis non-invasively with an accuracy of 88.3%. Doctors
can refer to the results to diagnose and treat patients [7].
It reduced the pain and the risk of various complications
caused by invasive examinations. In the identification of
thyroid nodules, it used feature extraction methods to train
artificial neural networks for thyroid nodules, and the accu-
racy of their diagnosis was more than 80% [8]. At present,
the most widely promoted commercial CAD is AmCAD-
UTDetection, which has an AUC of 0.88 in the risk stratifi-
cation of thyroid nodules. However, this method has obvious
disadvantages. In terms of structure, the ANN structure is
relatively simple, with only 1 to 2 hidden layers [9]. In terms
of usagemethods, this method generally only has a diagnostic
function and cannot automatically locate the lesion. Before
detecting the nature of the lesion, it is necessary to manually
outline the lesion. In terms of feature extraction, all features
need to be extracted manually. This places high requirements
on diagnosis and detailed observation for disease diagnosis
doctors and software developers, and the process is expen-
sive [10], [11]. It is time-consuming and prone to feature
omissions and bias so that the features of the image can-
not be fully explored. Although this method improves the
accuracy, there is still a problem, that is, the phenomenon
of overfitting is serious [12]. It proposed a new computer-
aided detection system for lung nodules using a multi-view
convolutional network. Three people previously developed
candidate detectors for lung nodules are combined in a 3D
chest CT scan, and then 2D plaques centered on these features
are extracted in nine different directions. Finally, different
convolutional neural networks are used. Combined with pre-
diction, the accuracy rate reaches 85.4% [12]. The method
mentioned in this article provides new ideas for the prediction
of thyroid ultrasound images of deep convolutional neural
networks such as AlexNet, VGG, GoogLeNet, and ResNet.
In the ultrasound diagnosis of thyroid nodules, Ma et al.
Improved the CNN model and used a multi-view strategy to
segment the thyroid nodules with an accuracy rate of 91.5%.
It can accurately depict the boundaries of the nodules in
the ultrasound image [13]. A good replacement for time-
consuming and tedious manual segmentation methods. The
CNN model is based on discrete wavelet transform features
to predict thyroid nodules with TI-RADS, and its accuracy is
98.9%∼100%. Kewei improved the FasterR-CNN network
model so that the true positive rate of the model for the
diagnosis of papillary thyroid carcinoma reached 88.8%.

According to the above information, the accuracy of using
convolutional neural networks to diagnose thyroid nodules is
higher than that of traditional artificial neural networks, but

there is still room for improvement in the accuracy of thyroid
nodule positioning or diagnosis accuracy [14]. There is a lack
of a deep learning network target detection model that can
locate and diagnose nodules at the same time. Therefore, this
research tries to build an excellent target detection model for
the diagnosis of thyroid benign and malignant nodules [15].
The constructed detection model is the same as the current
mainstream target detection model and the diagnostic value
of high-age ultrasound diagnosticians based on the thyroid
imaging data reporting system in the differentiation of benign
and malignant thyroid nodules.

II. DEEP LEARNING PROCESSING DESIGN FOR
ULTRASOUND IMAGES
A. IMPROVED CASCADEMASKR- CNN THYROID NODULE
DETECTION NETWORK
The detection model constructed in this experiment is
improved based on the advanced CascadeMaskR-CNN
model in the detection field. Unlike most detection models,
where the positioning and qualitative of the target detec-
tion object are in series, positioning, and qualitative of
CascadeMaskR-CNN is performed in parallel in parallel.
The detection quality of natural images and some specific
things are relatively high, but the characteristics of thyroid
nodules of different nature in ultrasound images are not clear,
so the model has low accuracy in positioning the position of
thyroid nodules [16]. The accuracy rate is low. Therefore, this
research is based on its improvement. CascadeMaskR-CNN
originally presented the features obtained after ROIAlign
processing the image to a detector composed of two fully con-
nected layers to complete the prediction and regression tasks.
This study replaced the two fully connected layers with five
convolutional layers and a fully connected layer, as shown
in Figure 1. The shallower convolutional layer can learn
local features in a small range [17]. The deeper convolutional
layer can learn more abstract features a large range, and the
multi-layer convolutional layer can improve the recognition
performance of the model. The features are obtained after the
previous step is first presented to the convolutional layer to
further explore the hidden features, and then presented to the
fully connected layer.

The formula is used to increase the gradient value of the
accurate sample. The parameter is used to ensure that under
the condition of Lb, the function in the two cases in the
following equation is continuous. This function solves the
problem of imbalance between the objective function predic-
tion task and the positioning task during the training process
and further improves the performance of the model.

Kb(x) =

{a
b
(b |x| = 1) ln (b |x| = 1)

γ |x| + C
(1)

γ = α ln(b+ 1) (2)

The basic unit multiplexing is a cyclic neural network.
A cyclic neural network composed of basic units. The weight
matrix calculated by each layer of the network will be input
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FIGURE 1. Two detector architecture.

to the lower network structure. The t represents time, x repre-
sents the input of the network, O represents the output of the
network, and S represents the weight matrix of the upper net-
work. Using the activation function, the cyclic neural network
can be defined as:

Dt = f (u∗x + w∗Dt−1) (3)

The basic unit is combined and refused to complete the
main work content of the cyclic neural network. The forget
gate decides to discard and retain the information. This layer
will output a value between 0 and 1 to the neuron to decide
whether to retain it.

Ft = f (u∗t x + w
∗Dt−1) (4)

The cyclic neural network is based on the LSTM network,
and its parameters are adjusted and optimized for the network
model of this paper. Among them, the forget gate reads the
output of the upper unit and the input of the current unit and
outputs a value between 0 and 1 to each neuron, and the neu-
ron decides the content of the choice. The activation function
is generated by an input gate to prepare for updating network
data. The output gate processes the output information of
the sigmoid layer through the activation function and outputs
the final information. The network as a three-time recurrent
neural network, connectedwith the statement commonly used
in the mining direction relationship between samples and the
like features to achieve a correlation between the sample with
the features of a thyroid ultrasound image in the present study,
followed by reduction of the clinical symptoms of the disease
relationship between [18].

Non-maximal suppression (NMS) is not inhibited the ele-
ment. Through this method, find the local maximum value
and suppress other values in the neighborhood. In target
detection, in order not to miss any detected targets, the model
often outputs frames far exceeding the actual number of
detected targets, and there will be a considerable number of
frames that are roughly the same, in a contained or crossed
the state to frame the same target. Each frame has a confi-
dence level, and the role of NMS is to select the best one
among the stacked frames [19]. The NMS can select the
frame with the highest confidence level, while suppressing
the low-confidence frame, and set the confidence level of
the low-confidence frame to 0 to remove it. This method can
reduce the workload of subsequent data processing. But when
there are multiple target detection objects in the same image,
this method will affect the detection. The score reset function
of NMS is as follows:

Ri =

{
Ri, iou(M , bi) < Nt
0, iou(M , bi) ≥ Nt

(5)

However, the soft-NMS algorithm sets an attenuation func-
tion for adjacent detection frames. When the confidence of
some detection frames is low, this method prevents the con-
fidence of the frame from becoming 0. When a real target
is within the preset overlap threshold, the situation that the
target may not be detected is avoided. The soft-NMS function
is as follows:

Ri = Sie−
iou(M ,bi)

2

σ , ∀bi /∈ D (6)
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In the training process of CNN, only a sufficiently large
data set can meet its training requirements. However, for
medical target detection models, it is usually difficult to
obtain such a large number of high-quality training samples
in a short period. Therefore, the progress of CNN has certain
limitations in medical imaging. The model in this experiment
uses ResNet-101 for image feature extraction, which itself
has a very good ability to recognize natural images, but its
performance in the recognition of ultrasound images of the
thyroid is not ideal, and this experiment can provide The
pictures are limited, which limits the training of the network.
Transfer learning can overcome this problem by applying
well-trained deep models to other image data sets for feature
extraction.

B. DATA SOURCE DESIGN FOR THYROID NODULES
Among them, local data containing negative thyroid ultra-
sound image 719 sheets, positive thyroid ultrasound image
367 sheets, a total of 1086 Zhang. In the thyroid ultra-
sound image database proposed by Romero, 357 pieces were
marked as positive data and 71 pieces were marked as neg-
ative data, a total of 428 pieces. The thyroid ultrasound
image classification used in the experiment was carried out
according to the doctor’s guidance and combined with the
TI-RADS evaluation standard [20]. This experiment is in
benign and malignant thyroid nodules forecast predicted
based on the malignant nodules do fine-grained forecast pre-
dicts that the patient can make more detailed. The prediction
of normal thyroid and thyroid with the nodular disease, on the
one hand, provides a reference for the fine-grained predic-
tion of thyroid benign and malignant and malignant. On the
other hand, it provides the basis for subsequent time-series
disease development predictions for patients. After the ultra-
sound image is processed according to the image processing
method, it is divided into three groups of data, as showed
in Table 1.

TABLE 1. Training data of thyroid prediction model.

We inquire about the basic medical history of patients who
found thyroid nodules during thyroid ultrasonography. If the

patient has no history of thyroid surgery or neck radiotherapy
or chemotherapy, gray-scale ultrasound images of the thyroid
nodules will be collected. During the acquisition process,
the patient lay down, with the head tilted back, and the neck
was fully exposed so that the thyroid nodules were displayed
clearly and completely in the ultrasound image, and normal
thyroid tissue could be seen around the nodules [21].Wemea-
sure the maximum diameter of the nodule in cm and record
it, and collect ultrasound images for each module according
to the actual situation. It records basic information about
the patient’s gender, age, and pathology follow-up, excluding
cross- border and no pathological tumor patients [22]. In the
end, 203 nodules from 177 patients were included in this
experiment.

They are the normal data group, benign nodules-malignant
nodules data group, nodule preliminary deterioration-nodule
height deterioration data group, these three sets of data are
used as three prediction experiments. Among them, local
and Romero are respectively the amount of data used in the
experiment after the processing of local data and images
published on the Internet by Romero and others, and the total
is the total amount of data in the data set, that is, the sum of
local data and RomeroE data [23]. Data grouping is based on
the combination of the guidance of the chief physician of the
partner hospital and the TI-RADS evaluation criteria. In the
TI-RADS evaluation standard, malignant nodules include
several TI-RADS grades, and the severity of malignancy is
divided into two categories, which is an indicator of fine-
grained malignant nodules, as shown in Figure 2.

FIGURE 2. Example of thyroid nodule data.

The picture can be cut to make full use of the image on the
premise that the thyroid nodule and its surrounding normal
tissue and structure can be fully displayed. Thyroid nodules
in all pictures aremarkedwith themodule position and benign
and malignant nodules [24]. This process is completed by
a stenographer with rich experience in diagnosing thyroid
nodules using the annotation software. The labeling process
uses the VIA tool to draw a polygonal box to surround the
thyroid nodule and generate a son format file for training
the model [25]. After the work is completed, another expe-
rienced stenographer will review one by one to ensure the
accuracy of the above work. Desensitizing the data plays a
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role in protecting sensitive patient information, so it is of great
significance in the prediction and prediction of thyroid ultra-
sound images. The text data obtained in this article contain
sensitive information such as the patient’s name, gender, and
date of birth [26]. The image data includes hospital infor-
mation, imaging equipment information, patient examination
information, and so on. On the one hand, removing these con-
tents reduces the interference to the experiment, on the other
hand, it can conceal sensitive patient information. Common
covert data have established internet desensitization, used in
this experiment was a simple manner, the encrypted sensi-
tive patient information table into the child table, sensitive
information thyroid ultrasound image using shielded manner.
The exclusion criteria were a history of thyroid surgery and
a history of radiotherapy and chemotherapy in the neck [27].
Thyroid nodules were too large to show normal thyroid tissue.
The pathology of the thyroid was a borderline tumor, and
thyroid nodules had no pathological results.

III. DESIGN OF PREDICTION METHOD FOR BENIGN AND
MALIGNANT THYROID NODULES
A. SYSTEM DESIGN AND IMPLEMENTATION
We analyze and design the thyroid nodule prediction system,
and make a detailed analysis in terms of feasibility to prove
the feasibility of the development of the thyroid nodule pre-
diction system, sort out user needs, and analyze and design
the overall architecture of the system according to the demand
analysis. Then the database data storage method and structure
are designed in detail. According to the design idea of this
thyroid nodule prediction system, the realization of system
function is explained. The homepage of the system introduces
the system, the function part of the acquisition, processing,
and prediction of thyroid ultrasound images [28]. To ensure
the correctness and completeness of system functions, soft-
ware testing methods are used to perform functional tests on
the system to pave the way for the system to go online.

In the process of information software system develop-
ment, the most important key to determining the success
or failure of an information system is system analysis [29].
The key to system analysis is to clarify the tasks of the
information system. The problems to be solved are mainly
for the main tasks of the information system. It realizes
the technical choice of the system. It determines the system
model, write the corresponding development files, construct
the system use case diagram, etc., and clarify the specific
implementation process of the system, and then formulate the
work breakdown structure, and make detailed plans for the
system implementation.

The focus of the software information system is to do a
detailed information system feasibility analysis [30]. The fea-
sibility analysis needs to start from different angles, mainly
considering technical feasibility analysis, operational feasi-
bility analysis, economic feasibility analysis, environmental
feasibility analysis, etc. The development of this project fol-
lows the development process of software engineering, and

comprehensive feasibility analysis of system development is
done. The thyroid nodule prediction system has low hardware
requirements for customers and developers [31]. Users only
need to have a network connection and any terminal device
that can use a browser, by operating the web page displayed to
the user. We can use system functions, developers need ordi-
nary PC machines will be able to complete the development
of this system. The development and testing of the thyroid
nodule prediction system all use normal browsers, and the
development and testing can be completed using Windows
or Linux systems. The system is easy to operate, simple,
and easy to learn, the system interface design is simple,
convenient, high interpersonal interaction, and there is no
theoretical requirement for the user’s computer level. The
development goal of the thyroid nodule prediction system
is clear, and the technical tools used are mature [32]. The
development of this system is feasible.

Because of the clinical diagnosis of thyroid nodules is
easily affected by doctors and other factors, diagnosis defects
are prone to appear in clinical diagnosis. The purpose of
the development of the thyroid nodule prediction system
is to improve the accuracy and efficiency of diagnosis and
prevent the influence of many unfavorable factors. At present,
the medical level development in the east and west is
extremely unbalanced, and the medical level in the central
and western regions is relatively backward. In the clinical
diagnosis of thyroid nodules, it is more susceptible to the
influence of many factors than in the eastern region, causing
diagnostic errors. The development of this system can not
only improve the prediction accuracy of thyroid nodules,
avoid the subjective wishes of doctors, improve diagnosis
efficiency, and reduce the rate of misdiagnosis, but also
improve the medical level of the central and western regions
and weaken the differences between the east and the west.
Thyroid nodules forecasting system has clear objectives, after
the technical feasibility, operational feasibility, economic via-
bility and environmental feasibility of doing a detailed anal-
ysis concluded [33], [34]. This system has high feasibility
of development, not only in actual use Improve the level of
medical care, and patients with thyroid disease are the main
beneficiaries. Therefore, it is generally feasible to develop a
thyroid nodule prediction system, as shown in Figure 3.

This thyroid nodule prediction system is mainly divided
into a browser part, a web server part, a business logic part,
and a database part. This system is constructed based on
the B/S structure of the webserver and the browser. The
system is divided into four layers, four layers include a model
layer, data access layer, business logic layer, view layer. The
development of the thyroid nodule prediction system follows
the standardized development requirements for data manipu-
lation and business logic implementation. The model layer is
mainly to encapsulate the tables in the database as objects so
that the processing results such as database data reading and
logical business are stored in the database. The data access
layer encapsulates operations such as adding, deleting, modi-
fying, and checking database data, and other modules call the
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FIGURE 3. Main function diagram of the thyroid prediction system.

interface provided by this module to implement operations
on database data. Maintaining system data access and object
persistence is the main task of the data access layer [35].
By encapsulating the database data operation method, not
only can the data be accessed and processed safely, but
also the efficiency of database access can be improved. The
business logic layer is to encapsulate the logic processing
process that realizes various functions and realize the inter-
action between the integrated view layer, the model layer,
and the data access layer. It is the core of the entire business
processing process and has the main position of multiplying
up and down. The view layer is the interface through which
the user uses the system through the intermediary, and is
an important component for the perfect interaction between
the user and the system. The main function of this layer is
displayed [36]. The layer is used to display all the functions of
the system, and the user needs through this layer. The business
is submitted to the webserver for the HTTP protocol, and the
business processing is realized.

B. EVALUATION OF INDEX DESIGN
In this study, the average accuracy was used to evaluate the
positioning performance of the model. Among the nodules
accurately located by the model, this study defines malignant
nodules as positive samples and benign nodules as nega-
tive samples. When the model judges a malignant nodule
as malignant, it is a true positive. When a benign nodule is
judged as negative, it is truly negative. When a malignant
nodule is judged to be benign, it is a false negative. When a
benign nodule is judged to be malignant, it is a false positive.
We compare the improved CascadeMaskR-CNN target detec-
tion model in this experiment with the initial CascadeMaskR-
CNN target detection model and the improved FasterR-CNN
target detection model mentioned in the introduction. We use

the remaining 281 thyroid ultrasound images as a test set
and import 3 models to detect whether the model’s ability to
locate and diagnose thyroid nodules in ultrasound images is
improved based on the original model, and how this model
compares with other models The performance difference is
shown in Figure 4.

Two senior doctors collaborated to review the above
203 nodules through the workstation without knowing the
pathological results, and compare with the pathological
results to calculate the best node value for the system to dis-
tinguish benign and malignant thyroid nodules. Two doctors
predict nodules independently of pathological results based
on the Kwak version of TI-RADS and based on the best
results obtained from the above-mentioned senior doctors and
pathological comparisons the node value classifies the nodule
as benign or malignant [37].

Choosing appropriate experimental evaluation indicators is
of great significance for testing the performance of the exper-
imental method. This paper uses accuracy and loss function
value as the experimental indicators for detecting malignant
nodules in thyroid ultrasound images. In the detection results,
the false detection as a preliminary deterioration image are
defined as true positive (TP) and false-negative (FN), true
negative (IN). False-positive (FP), the detection accuracy rate
is:

A =
1
n

n∑
i=1

TP+ TN
TP+ FN + TN + FP

× 100% (7)

Sensitivity is calculated as the share of true positives in
the sum of the number of true positives and false negatives.
Sensitivity refers to the proportion of thyroid nodule detection
experiments that correctly predict the image of malignant
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FIGURE 4. Evaluation steps.

nodules. The calculation formula is:

S =
TP

TP+ FN
(8)

The specificity calculation method is the occupancy rate of
true negatives in the sum of the number of true negatives and
false positives. Specificity refers to the proportion of thyroid
nodule detection experiments that correctly predict the image
of benign nodules. The calculation formula is:

Sp =
TN

TN + FP
(9)

Loss function values show convergence performance of the
network when the network Loss when the functional value of
the area is smaller than the numerical value representative of
a stable network.

Using SPSS22.0 statistical software for statistical analy-
sis to pathology results as the gold standard, using receiver
operating characteristic (ROC) curves obtained by TI-RADS
diagnosis of benign and malignant thyroid nodules optimal
diagnosis point. It used this value to calculate the results of
the diagnosis of benign and malignant thyroid nodules by
doctors with high and low experience. The X2 test compares
the sensitivity and specificity of the best node value between
high and low experience doctors in distinguishing benign and
malignant nodules. The difference is statistically significant.
It calculated the mAP of the three target models, the sen-
sitivity, specificity, positive predictive value, and negative

predictive value of the three target detection models, senior
and junior doctors to diagnose thyroid nodules. It drawed the
ROC curve of this target detection model and the comparison
ROC curve of the above-mentioned doctors.

IV. RESULTS AND ANALYSIS
A. ANALYSIS OF MODEL COMPARISON RESULTS
The mAP values of the three models are shown
in Figure 5. It can be seen that the improved CascadeMaskR-
CNN is better than the CascadeMaskR-CNN and the
improved FasterR-CNN in each mAP value. The sensitiv-
ity, specificity, positive predictive value, negative predictive
value, and accuracy of the threemodels for diagnosing benign
and malignant thyroid nodules can be seen in Figure 6. From
the comparison of the values based on the improved FasterR-
CNN and CascadeMaskR-CNN basic models, it can be seen
that it improved FasterR-CNN except the negative predictive
value is higher than the basic model of CascadeMaskR-CNN,
which are 0.914 and 0.901, and the other values are all lower
than the basic model of CascadeMaskR-CNN. The values of
the improved CascadeMaskR-CNN are higher than those of
the CascadeMaskR-CNN model.

According to the ROC curve drawn by senior doctors
to diagnose benign and malignant thyroid nodules, the best
node value for diagnosis is 3.5, which is between TI-RADS
4b and 4c. Its sensitivity is 0.889, specificity is 0.824, and
AUC is 0.894. To improve the specificity of diagnosis and
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FIGURE 5. Comparison of mapping values of the three models and
comparison of various values of the three models.

reduce the rate of misdiagnosis, this study defines the node
value as 4c, that is, in the subsequent evaluation of junior
doctors, the 2/3/4a/4b nodules are regarded as benign, and
4c/5 is considered that nodules are considered malignant. The
ROC curve chart compares the diagnosis results of senior and
lower senior doctors. The diagnostic efficiency based on the
improved CascadeMaskR-CNN model is shown in Figure 6.
The sensitivity, specificity, positive predictive value, nega-
tive predictive value, and accuracy rate of senior doctors for
nodule diagnosis are higher than those of younger doctors.
Among them, the difference in sensitivity between the two
was statistically significant, and the difference in specificity
between the two was not statistically significant. The accu-
racy of the improved CascadeMaskR-CNN model are higher
than those of senior doctors. The diagnostic efficiency of
senior doctors for benign and malignant thyroid nodules is
better than that of junior doctors. Diagnostic efficiency of
detecting benign and malignant thyroid nodules in the model
is better than that of senior doctors.

To evaluate whether a target detection model is excellent,
it mainly depends on two parts. One is the positioning ability
of the model, and the other is the qualitative ability under
the premise of accurate positioning. In this target detection,
the model correctly diagnoses benign and malignant thyroid
nodules.

The evaluation of the positioning capability of this model
is done through mAP. The so-called localization ability is the
ability of the target detection model to correctly find the posi-
tion of the nodule in the ultrasound image. Currently, mAP
is a measure of the performance of target detection models.
In this study, the mAP of the three experimental models was
all lower than 90%. Compared with their ability to diagnose
nodules, this result is slightly inferior. Therefore, the reasons
that affect mAP are worth exploring. Reviewing the exper-
imental results, several main reasons affect the model mAP
value. The model locates the module but the diagnosis is
wrong. The model locates non-nodular tissues as nodules.
The model did not locate any suspicious organization, that is,
no detection target was found. Since the three models used

FIGURE 6. Comparison of the diagnostic efficiency of the improved
CascadeMaskR- CNN model among senior and lower-skilled doctors.

for comparison in this experiment have a very high accuracy
in the diagnosis of benign and malignant thyroid nodules,
the mapped value can indirectly represent the ability of the
three models to locate modules. The higher the position-
ing ability, the higher the mAP higher. In this experiment,
based on the improved FasterR-CNN, the CascadeMaskR-
CNN of mAP values were 80.3%, 84.6%, 87.1%, from mAP
values can be learned, CascadeMaskR-CNN itself image
localization The ability is higher than that based on the
improved FasterR-CNN, which proves the superiority of the
selected detection model this time. Based on the improved
CascadeMaskR-CNN, the mapped value of CascadeMaskR-
CNN is increased by 2.5% based on CascadeMaskR-CNN,
indicating that this experiment has a positive effect on the
improvement of the model, and the model image position-
ing ability has been improved to a certain extent, as shown
in Figure 7.

FIGURE 7. Features of benign and malignant nodules with
contrast-enhanced ultrasound.

In terms of the diagnostic performance of the model,
the calculation of various values in this study is based on the
premise that the model is correctly positioned to the nodule,
so the incorrect positioning is discarded [38]. The obtained
results on this premise, the model’s diagnosis of benign
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and malignant thyroid nodules accuracy, based on improved
CascadeMaskR-CNN higher than the initial CascadeMaskR
-CNN than based on improved FasterR-CNN. Firstly, the
superiority of the selected model is proved. Regarding the
problem that the diagnostic accuracy rate of the improved
FasterR-CNN in this study is 92.8% and that of Coway’s
study is 88.8%, the difference may come from the training
set and test differences in the set and slight differences in
model construction. Based on the improved CascadeMaskR-
CNN, the various values of the thyroid nodules are signifi-
cantly improved compared to the CascadeMaskR-CNN, and
the diagnostic accuracy is increased by 3.2%, indicating that
the diagnostic performance of this model for thyroid nodules
is better than the original under the premise of correctly
positioning the nodules. The model has been fully improved,
as showing in Figure 8.

FIGURE 8. Differentiation of benign and malignant thyroid nodules.

Due to the clinical controversy regarding the best diagnos-
tic threshold of TI-RADS, in this study, two senior doctors
strictly followed TI-RADS to predict thyroid nodules and cal-
culated TI-RADS to diagnose benign and malignant thyroid
through ROC. The best diagnostic cut-off value for nodules is
to classify modules of type 2, 3, 4a, and 4b as a benign group,
and classify nodules 4c and 5 as a malignant group. It is used
to calculate the diagnostic efficiency of TI-RADS. According
to this study, the diagnostic efficiency of high and low-level
physicians is higher than 80%, indicating that TI-RADS has
high reference value for the diagnosis of thyroid nodules in
the clinical application process. However, senior doctors have
a larger AUC area in the diagnosis of benign and malignant
thyroid nodules, which is higher than that of inexperienced
doctors with less seniority, and the diagnostic efficiency is
better. It shows that in the actual application of TI-RADS,
there is a certain degree of subjectivity among diagnosticians,
and the diagnostic efficiency of doctors with lower seniority
is slightly worse, as shown in Figure 9.

The negative predictive value for the diagnosis of thy-
roid nodules by senior and lower-skilled doctors is lower
than the positive predictive value. The negative predictive

FIGURE 9. Comparison of prediction results of good and evil thyroid
nodules.

values of the two are 0.782 and 0.676 respectively, which
are the same as previous research results, indicating that
thyroid cancer exists in manual diagnosis Higher missed
diagnosis rate. Among them, 5 cases were combined with
Hashimoto’s background and were in the study with Li
Tingting the missed diagnosis of malignant thyroid nodules
by ultrasound diagnosticians is roughly consistent. Since
TI-RADS4b type thyroid nodules have a malignant proba-
bility of about 31%∼60%, it is a major difficulty in the dif-
ferentiation of benign and malignant thyroid nodules. When
nodules are encountered in the diagnosis work, they usu-
ally need to be combined contrast-enhanced ultrasound or
ultrasound electrograph and other tests are used to assist in
the diagnosis of such nodules. However, in the detection of
the target model, the negative predictive value was 0.968,
and only 4 cases of malignant nodules were missed, which
showed the superiority of the diagnostic efficiency of this
model [39].

The method proposed in this paper has higher sensitiv-
ity and specificity for prediction and prediction of thyroid
ultrasound images than other prediction methods, and it is
concluded that a greater proportion of nodules are detected
in the prediction and prediction of thyroid ultrasound images.
The prediction effect of the method in this paper is the best.
The reason is that the time series features are introduced. The
relationship between image features is established while the
image features are extracted, which restores the relationship
between the clinicopathological features of thyroid nodules
to a certain extent. The relationship between the features
is reproduced in the form of the association relationship
between the image features, and the differences and con-
nections between the image features are fully considered,
which improves the adaptability of the predictor, and thus the
prediction accuracy rate is higher.

B. INDEX EVALUATION RESULTS
Introducing a cyclic network model characteristics,
prediction predictive capacity significantly increased.
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The characteristic of traditional convolutional neural network
is to extract the image features of thyroid ultrasound images.
The method in this paper introduces time series on this basis,
so that the network has a certain memory function. After
the image features are extracted, the correlation between
image features is sorted out, and the thyroid gland is restored.
The relationship between clinicopathological characteris-
tics of nodules can achieve highly accurate prediction and
prediction.

In addition, in order to verify the fine-grained prediction
effect of the cyclic convolutional neural network model in
this paper on predicting the more difficult thyroid malignant
nodules, experiments were performed on the three data sets
produced in this paper. In this experiment, some network
parameters in the cyclic convolutional neural network are also
set as follows. We set the ReLus function as the activation
function, the weight attenuation is 0.0005, and the epoch
is 10. The given parameters are consistent with the experi-
mental environment, the prediction experiment is carried out.

As shown in Figure 10, the accuracy of prediction between
normal thyroid ultrasound images and nodular thyroid ultra-
sound images is as high as 99.70%. The accuracy rate of
prediction of good and bad thyroid nodules exceeded 90%
and reached 94.30%. The accuracy of fine-grained prediction
of malignant thyroid nodules is as high as 87.00%. The
experimental results show that the network prediction model
in this paper is superior in the fine-grained prediction of more
difficult malignant thyroid nodules. The construction and use
of the CNN-Fusion network enhance the network’s prediction
and prediction ability and network robustness. The network
combines thyroid ultrasound images information such as the
relationship between features and features is highly fused
so that the prediction and prediction network knows image
features and their relationships. Compared with the case of
only grasping image features and no relationship between
features, the relationship between clinical-pathological fea-
tures cannot be restored to the greatest extent, and then
CNN-Fusion constructed using enhanced prediction. Malig-
nant nodules grained prediction (classification) to 87.00%
further malignant nodules achieve high accuracy of the

FIGURE 10. Three-level prediction experiment results.

predicted prediction, the same test sensitivity, and speci-
ficity above 85%. Although classifications accuracy, sensitiv-
ity, and specificity than classification and classification low
value, for forecasting more difficult and malignant nodules
fine-grained prediction results can be achieved at present
effect, sufficient to show the circular convolution neural net-
work of networks to predict the effect has superiority. In the
experiment, for different predictions during the experiment,
the loss value changes were counted to verify that the network
has a better effect in this experiment.

As shown in Figure 11, the relationship between the change
curve of the accuracy of the three groups of experiments and
the number of iterations of the training neural network and
the relationship between the loss value curve and the number
of iterations of the training neural network are recorded.

FIGURE 11. Data diagrams of three-level prediction experiment.

As shown in Figure 11, the accuracy of the three experi-
ments curve, showed increases in the accuracy of the number
of iterations. By observing the change curve of the number
of iterations and loss value, it is concluded that the model
converges faster. After 500 iterations of training, the loss
value of all experiments is reduced to 0.3 to scare, the train-
ing continues, the loss value is maintained between 0.1-0.2,
the predictor has good adaptability, convergence speed, and
convergence ability. The network model adopts parameter
sharing and local perception to reduce network complexity.
The introduction of L2 regularization can effectively avoid
network training over-fitting, and the ability to extract fea-
tures is better.

To verify the optimization effect of the prediction model,
based on the introduction of L2 regularization, the ReLUs
activation function and the Sigmoid activation function were
compared under the same conditions. Different activation
functions were tested under the condition that the network
parameters are consistent with the experimental conditions.
The result is shown in Figure 12.

Since the number of training iterations is about 1000 times,
the loss curve tends to be flat, so the two activation functions
of 1000 iterations are mainly analyzed. Figure 12 is the
comparison result of the fine-grained prediction experiment
of malignant thyroid nodules. From this figure, the loss value
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FIGURE 12. The loss curve of the function ReLUs and Sigmoid.

FIGURE 13. Comparison of the accuracy of two diagnostic methods in
distinguishing benign and malignant thyroid nodules.

of the experiment using the ReLUs function as the nonlinear
activation function decreases faster, the The Sigmoid function
is used as the activation The loss value of the function drops to
0.3. Therefore, the ReLUs function as the activation function
has a better convergence effect. This function can appropri-
ately remove the secondary information of the ultrasound
image, reduce the amount of image feature acquisition in
the deep convolutional neural network, and then reduce the
network burden, increase the accuracy of network feature
prediction. In this paper, the network is optimized by intro-
ducing L2 regularization and selecting the ReLUs activation
function, so that the network model’s ability to extract image
features and the ability to organize the correlation between
image features are improved.

In the experimental operation, the features of the thy-
roid ultrasound image will be further extracted after each
convolution, and the low-level features will be obtained by
extracting the features of the thyroid ultrasound image in the
convolution network. This paper constructs and introduces
the CNN-Fusion network in the network model. The network
will first fuse the thyroid ultrasound image features and the
relationship matrix between the features, and then further
extract the weight matrix obtained after the fusion, through
the convolutional layer and the cooling layer. The operation to
achieve the acquisition from low-level features to high-level
features of thyroid ultrasound images, as shown in Figure 13.

In the experiment, L2 regularization is used, the appropri-
ate activation function and surtax are selected, the network
model is optimized, and the network performance is enhanced
so that it has obvious advantages in the prediction and predic-
tion of thyroid ultrasound images. The convolutional network
is used to extract the features of the thyroid ultrasound image,
and the image features that can be used to distinguish the
pathology of the patient are extracted. Using the characteris-
tics of the bidirectional propagation of the recurrent network,
the network can learn according to the weight matrix obtained
by the upper network processing and the input of the layer
during the learning process, and the correlation between the
image features in the thyroid ultrasound image is obtained
through layer processing. Thyroid ultrasound image predic-
tion process, not only uses the image feature judging category
prediction image but also uses the network learning process.
The relationship between the various pathological features
obtained in the database is further improved and assisted in
determining the category of the predicted image.

The feature fusion network CNN-Fusion is the key part
of the cyclic convolutional neural network in this article.
The input of the CNN-Fusion network is the feature matrix
extracted from the thyroid ultrasound image by the con-
volutional network and the recurrent network based on the
correlation relationship between the features obtained by the
thyroid ultrasound image. The feature matrix is the image
feature matrix and the thyroid nodules are reproduced to a
certain extent. The matrix of the relationship between clin-
icopathological features, the two matrices enter the Merger
layer andmerge into a single weight matrix, so that the weight
matrix contains image characteristics and their relationships,
which is more rigorous than using image features to predict
and predict thyroid ultrasound images. By the above experi-
mental analysis methods used in this paper convolution net-
work combined with the advantages of the cycling network
in accuracy, sensitivity, and specificity and other aspects of
the performance is better, - given the extent of reducing the
burden on the network, increase network Forecast accuracy.

V. CONCLUSION
In this paper, in the prediction of malignant thyroid nodules
in ultrasound images based on deep learning algorithms, the
CascadeMaskR-CNN detector is improved by effectively bal-
ancedL1loss loss function and soft-NMS method. Aiming at
the problem of insufficient experimental samples, pre-trained
ResNet is used to perform transfer learning. The diagnostic
efficiency of the target detection model in this experiment
for thyroid nodules is improved compared with the origi-
nal model and is better than the current mainstream model
in the field of target detection. It also has obvious advan-
tages in comparison with the diagnostic efficiency of senior
and lower-skilled physicians. The qualitative diagnosis of
TI-RADS4b nodules is currently a difficult point in the
TI-RADS graded diagnosis, and the complicated thyroid
background will also interfere with the diagnosis of thy-
roid nodules. This target detection model can play a certain
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auxiliary role in the ultrasound diagnosis of benign and
malignant thyroid nodules, but the model still has certain
positioning problems in real applications. In future research,
the sample size can be expanded, and it is hoped that the
positioning ability of the model will be further improved.
Artificial intelligence technology is growing day by day.
It is believed that with the joint efforts of many medical
and computer engineering researchers, artificial intelligence
technology can become a powerful assistant in the protection
of human health. This paper focuses on combining the advan-
tages of convolutional neural networks and recurrent neural
networks to build recurrent convolutional neural networks.
This research combines the image features extracted by
recurrent neural networks and convolutional neural networks
through the Merge algorithm and optimizes the prediction
model. It predicted by the roof tax predictor to obtain a higher
accuracy prediction result.
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