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ABSTRACT Surface inspection is a necessary process of fabric quality control. However, it remains
a challenging task owing to diverse types of defects, various patterns of fabric texture, and application
requirements for detection speed. In this article, a lightweight deep learning model is therefore proposed
to complete the segmentation of fabric defects. The input of the model is a fabric image, and the output is a
binary image. Generally known, a deep learning model usually needs much data to update the parameters.
Still, as an abnormal phenomenon, fabric defects are unpredictable, which makes it impossible to collect a
large number of data. Distinct from other models, the proposed method is a supervised network but does
not need manually labeled samples for training. A fake sample generator is designed to simulate the defect
image, which only needs the defect-free fabric image. The proposed model is trained with fake samples and
verified with real samples. The experimental results show that the model trained with false data is useful
and achieves high segmentation accuracy on real fabric samples. Besides, a loss function is proposed to deal
with the problem of imbalance between the number of background pixels and the number of defective pixels
in the fabric image. Comprehensive experiments were performed on representative fabric samples to verify
the segmentation accuracy and detection speed of this method.

INDEX TERMS Fabric defect, deep learning, image segmentation, defect detection, imbalanced dataset.

I. INTRODUCTION

Weaving clothes is a great leap in the history of human
evolution. The textile industry is as old as human civilization.
Fabric is closely related to human life. It is not only the
key material of clothing but also applied to many industrial
products [1]. Since the first industrial revolution, the weaving
of fabrics has mainly depended on machines. At present,
the process is an automated operation without any interven-
tion. However, due to the influence of fiber quality and other
factors, fabric defects are inevitable. Fabric defects reduce
the quality of products and affect the profits of enterprises.
So, the last step in weaving is the detection of fabric surface
defects. Unfortunately, the inspection process is still heavily
dependent on experienced workers. There are many draw-
backs in manual inspection methods, such as fatigue of the
human eye when working long hours, and increasing labor
costs year by year. In order to improve the effectiveness and
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efficiency of fabric inspection, it is necessary to realize the
automation of fabric inspection in order to save labor costs
and achieve higher accuracy and efficiency [2].

In recent years, the machine vision-based method has been
widely used in fabric defect detection. These methods are
mainly divided into two categories, traditional methods based
on image processing and learning methods based on con-
volutional neural networks [3]. Traditional methods usually
deal with a single image and use hand-designed features to
detect defects, such as filters, texture, and color features.
These methods often need to set different parameters for
different textures and defects [4]. With the abundance of
computing resources and the explosion of data, the meth-
ods based on deep learning are gradually applied to defect
detection. These methods use convolution to extract fea-
tures automatically through learning, which reduces the steps
of manual feature extraction, but this process needs much
data [5]. However, as an abnormal phenomenon, the occur-
rence of defects is unpredictable, and it is almost impossible
to collect a large number of samples. Besides, in practical
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FIGURE 1. A comparison of deep learning-based methods and machine
vision-based methods.

» B

application, the detection is online, which requires high real-
time performance, so it is necessary to improve the detection
speed of the deep learning model. A comparison between the
depth learning-based approach and the machine vision-based
approach is shown in Fig. 1. This article focuses on using deep
learning methods to address the detection of fabric surface
defects. The focus is to design an efficient and lightweight
convolutional neural network detection framework, but the
training process of the model does not need the manually
labeled samples.

The fabric has a repetitive texture, and the defect of the
fabric is the destruction of this regular texture. A defective
fabric image can be seen as a superposition of textures and
defects [6]. Inspired by this, we propose a formula to describe
the defect image, as shown in Fig. 2. In the figure, Mask
is the expected detect result and also the part that needs to
be manually labeled in deep learning. We found that both
Mask and Defect can be automatically generated by rules to
simulate real defect samples. This method only requires non-
defective samples, which is easy to obtain.

In recent years, many image segmentation network models
have been proposed, and these models have achieved amazing
results in general image segmentation [7]-[9]. However, these
models are not always applicable to the defect segmentation
task. For the defect segmentation task, there is no fixed
pattern of defects and fabric textures, and the efficiency
of the network must be considered. Therefore, we improve
the DeeplabV3+ model [10], learn from its advantages for
multi-scale target detection, and make the network lighter to
improve the detection speed.

In brief, our significant technical contributions are the
following:

(1) A defect detection framework based on deep learning
is constructed, which trains the model through false data sets
and does not need to label data sets.

(2) A loss function is proposed to solve the problem of
imbalance between the number of background pixels and the
number of defect pixels in the fabric image
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(3) Compared with existing methods, The proposed model
has fewer model parameters and can significantly shorten
detection time. It is also more suitable for online automated
detection.

In the following, we first review related work in Section II,
then overview the pipeline of our method in Section III.
Section IV reports and discusses our experimental results.
Finally, Section V provides a summary of this work and our
concluding remarks.

Il. RELATED WORK

The most common fabric defect detection methods based
on traditional image processing can be divided into four
categories: model-based method, frequency-domain method,
and statistical method. A novel automatic detection method is
presented based on frequency domain filtering and similarity
measurement, yet this model cannot be used to segment
defect at pixel level [11]. Li et al. [12] proposed a fabric defect
detection method based on saliency features, which achieve
the segmentation of fabric defects for a variety of textures, but
the average of a single image is 397 milliseconds, which is not
suitable for real-time applications. Zhang et al. [13] proposed
a defect segmentation method based on texture elimination
and image clustering, which has excellent results for plain,
twill, pattern, and other textured fabrics. However, many
parameters need to be set manually. Li e al. [14] presented
a yarn-dyed fabric detection method. In this method, only
one Gabor filter is applied, and its parameters are determined
automatically by using random drift particle swarm opti-
mization (RDPSO) algorithm. It can segment small texture
accurately, but it is challenging to apply to large texture fab-
ric. Besides, fabric defect detection methods using infrared
imaging have also been applied [15]. In summary, traditional
image processing methods usually rely on manual setting of
parameters, and it is challenging to meet the requirements of
real-time detection.

In recent years, with the improvement of computer perfor-
mance and information explosion, deep learning (DL)-based
method have become more and more popular in fabric defect
detection. The DL-based method does not need to extract
features manually; it automatically extracts and recognizes
features from images. This automatic process makes the
deep learning model have high accuracy for computer vision
applications such as defect detection. The application of deep
learning in fabric defect detection can be divided into three
categories [16]: defect classification, defect location, and
defect segmentation. Jing et al. [17] proposed an improved
method of fabric defect classification based on the AlexNet
network, which achieved the defect classification of yarn-
dyed fabric. A compact network is proposed for the defect
classification of knitted fabrics, which performs well in detec-
tion accuracy with a smaller model size [18]. A YOLO model-
based fabric defect location method is proposed to improve
the speed of defect detection. Ouyang et al. [19] proposed
a fabric defect segmentation method based on convolution
neural network embedded in an active layer. In order to detect
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FIGURE 2. A proposed fabric defect detection formula.

pattern fabric defects, a hybrid method of traditional image
processing and deep learning is proposed [20], which can
achieve accurate detection of common defects in yarn-dyed
fabric, such as holes, carrying, knots. Although the above
methods use deep learning to extract features and achieve
excellent detection performance automatically, they are all
supervised learning methods, which need to collect, clean,
and label training data sets.

Many unsupervised methods are also applied to defect
detection. Mei et al. proposed a multi-scale convolution
denoising network for fabric segmentation, but the perfor-
mance of complex texture fabric detection needs to be further
improved [16]. Li et al. proposed a method of pattern fabric
defect detection. Even if the negative sample is not enough,
it can obtain satisfactory detection accuracy [2]. However,
it is challenging to integrate this method into the automatic
defect detection system because it cannot be detected in real-
time. Besides, Table 1 shows the number of training set
images required by some unsupervised methods. Although
these methods do not require annotated data, they require
more than thousands of unlabeled data.

TABLE 1. The number of training set images required by some
unsupervised methods.

Year Methods Number of images in the

training set
2018 AffinityNet[23] 10,582
2018 Double-DIP[6] 200
2018 MSCDAE]J16] 2000

Unsupervised
2019 . 3500
segmentation and ELM[24]

2020 Multistage GAN[25] 12957

Large and well-annotated datasets, such as ImageNet,
COCO, and Pascal VOC, are considered to be the key to
promote computer vision research [21]. However, it is costly
to create such a dataset. Another option is to use simula-
tion data for model training. For example, in autopilot, the
image recognition model is trained using a simulation envi-
ronment [10]. For the deep reinforcement learning of robot
tasks, the model needs to be trained in the false synthesis
domain, because the training in the real environment may
be very expensive [22]. For defect detection tasks, many
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methods use GAN networks to generate false data to expand
the number of samples. However, these methods have two
disadvantages. One is that it is challenging to generate high-
resolution images. The other is that the generation process
still requires a small number of real defect images.

ill. METHODOLOGY

The flow of the method is shown in Fig. 3. First, we use the
generator of rule constraints to generate false data sets, and
then we build a lightweight model, which includes encoder
and decoder. In order to adapt to different sizes of fabric
defects, the encoder part includes a pyramid convolution
module. The input of the model is a gray image, and the
output is the defect segmentation result. In the training stage,
the false data set is used to train the model. The test stages
use real data sets for testing.

A. GENERATE FAKE DATA

Different weaving methods, yarn materials, and even weav-
ing machines cause various kinds of defects. So, there are
many standards about the types of fabric defects. However,
the shape of defects mainly includes two types, as shown
in Fig. 4, one is point defects such as Knots, Holes, and Oil
Spot, the other is strip defects caused by abnormal yarn, such
as Overshot, End Out and Jerk-in, etc. [26].

As shown in Fig. 5, the fabric defect image can be regarded
as the superposition of background texture and defect. Mask
represents defect segmentation image; texture represents a
defect-free image, Defect represents defect part texture.

We construct a fake data generator to construct the train-
ing set. Mask and Defect are generated according to rules.
According to the typical shapes of fabric defects, there are
two kinds of Mask: round and rectangle, and three kinds of
Defect: rotation, alteration, and shadow, as shown in Fig. 6.

B. MODEL ARCHITECTURE

Fabric defect segmentation can be regarded as a binary image
segmentation task, where “0” and “1” refer to ‘“‘defect-
free”” and “‘defect”, respectively. A deep learning-based fab-
ric defect segmentation model requires fusion of low-level
features and high-level features. Low-level features are minor
details of the image, like lines or dots. High-level features
are built on top of low-level features to detect more signif-
icant defects in the image. The proposed detection model is
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FIGURE 5. Fake data set generation formula.

alightweight network whose fusion of low-level features with
high-level features. It consists of three parts: 1) lightweight
low-level feature extraction module 2) pyramid pooling
module 3) decoder module for feature upsampling.

Inspired by [10], the lightweight feature extraction module
uses Depth-wise Convolution to reduce network parameters
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FIGURE 6. Fake fabric image samples with defects.

and increase network detection speed. Standard convolution
layer of a neural network involves input * output * width *
height parameters, where width and height are width and
height of filter. For an input channel of 30 and an output
of 30 with a 3*3 filter, this will have 8130 parameters.
Having so many parameters increases the chance of over-
fitting. However, the depth-wise convolution only contains
2730 weight parameters.

The texture size and defect size of the fabric are variable.
To solve the problem of different scales, a multi-scale module
is added to the encoder part. The pyramidal pooling module
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consists of a series of dilated convolution connected in par-
allel, combining local area context information with global
context information. Convolutional networks were originally
proposed for image classification when pooling and down-
sampling enhance translation invariance, but result in loss of
detail information, which can result in loss of detail in image
segmentation tasks [10]. For segmentation tasks that need
to be combined with image context information, the use of
dilated convolution can significantly increase the receptive
field and preserve the details. The dilated convolution is
shown in Fig. 7. When the convolution kernel size is 3 * 3,
the receptive field of the conventional convolution is 3, and
the receptive field of the dilated convolution is 5.

Output feature

Padding =3
Kernel =3
Stride =3

[ ] A A

L Receptive field =3

(a) Standard convolution

Output feature

Padding =3 ‘
Kernel =3
Stride =3
Rate = 2

b A A A A A AAAAA

‘ Receptive field = 5

(b) Dilated convolution

FIGURE 7. The comparison between dilated convolution and standard
convolution.

The encoder features are first bilinearly unsampled by a
factor of 4 and then concatenated with the corresponding
low-level features. Before concatenating, 1 * 1 convolutions
are applied on the low-level features to reduce the number
of channels. After concatenation, a few 3 * 3 convolutions
are applied, and the features are unsampled by a factor of 4.
This gives the input size of the network is the same as the
output size. The final layer is the sigmoid activation layer,
which normalizes the feature map to [0,1], representing the
probability of the defect.

C. LOSS FUNCTION

The loss function is to measure the distance between the
predicted label and the real label. For general image segmen-
tation tasks, the loss functions are MSE, BCE and so on [27].
These loss functions first calculate the loss of each pixel
separately and then sum as the final loss value. However,
in the task of defect segmentation, the proportion of defect
to the background is often unbalanced. As shown in Fig. §,
the loss of defect parts to the whole is relatively low. Using
loss functions such as BCE will cause slow network conver-
gence or even underfitting [28].

For defect segmentation tasks, the missed inspection rate
and the false inspection rate are often important indexes,
because for a sample with 5% defects, when all of them are
predicted to be defect-free, the accuracy of this model is still
95%, which cannot objectively reflect the performance of
the model. Therefore, we combine BCE loss and Dice loss
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and directly take the missed detection and false detection as

the optimization goal to improve the learning ability of the
model. The proposed Defect Loss can be defined as follows.

DefectLoss = Dic + CE (H

N
2 Z piti + S
Dic— =t 2)

N N
Spi+ Y ti+S
=1 i=1

CE

Ly
—= > B@ti—Inp)
N3
+A =LA -=t)In(1-p)]  3)

where i is the index of each pixel, N is the number of pixels
in a picture, p; is the probability of prediction into defects,
and ¢; is the label of pixel i. Also, add a smoothing term § to
prevent the denominator from being 0.

IV. EXPERIMENT AND DISCUSSION

This section describes a set of experiments to evaluate
the performance of the proposed method. The proposed
method is compared with two fabric defect detection meth-
ods, PTIP [20] and LGM-FC [13], in terms of detection speed
and accuracy. Accurately, to illustrate the detection speed of
the proposed model, a comparison was made with several
related methods in terms of detection time and the number of
model parameters. Second, the proposed Defect loss function
is compared to several commonly used loss functions to
demonstrate its performance in the case of data imbalance.
Third, the use of feature visualization demonstrates that fake
datasets can fit well with real datasets. Finally, the combined
detection performance of the proposed model with several
excellent conventional methods is compared in both qualita-
tive and quantitative terms.

A. EXPERIMENT PREPARATION

The proposed model is trained on a computer with two
Nvidia GTX 1080Ti GPUs, and all compared experiments
were conducted on the same computer, which was equipped
with 128GB of RAM, an Intel Core i7 processor, and an
Ubuntu 64-bit operating system. The proposed model was
trained three times in the same configuration, and the model
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was evaluated in the same configuration. The experimen-
tal results were obtained by calculating the mean of the
three results. The proposed method was implemented using
Pytorch. We used Adam optimizer to update the proposed
model and initialized the weight of each layer using a Gaus-
sian distribution with a zero mean and a standard deviation
of 0.001. The initial learning rate was set to 0.001. The
momentum was 0.9. The batch size is set to 2, with a total
of 1800 iterations.

B. DATA SET

In order to verify the performance of the proposed method,
two public datasets were utilized in this work: Fabric images
Database (FID) [29] provided by Hong Kong University and
Yarn-dyed Fabric Database (YFD) [30] which is collected
from Guangdong Esquel Textiles (Guangdong Sheng, China).
The images have a size of 256 x 256 pixels and contain
multiple styles of textures (including star-patterned fabric,
dot-patterned fabric, box-patterned fabric), some of which are
shown in Fig. 9. In this method, the defect-free image is used
to generate false data, and the defect image is used to evaluate
the performance of the model.

i [}
(b) Some typical fabric defect samples in YFD

FIGURE 9. Some typical fabric defect samples.

C. METRICS

There are many metrics used to evaluate the performance of
defect detection methods, the most commonly used one is
ACC [31]. However, sometimes it cannot accurately reflect
the segmentation performance (generally, the defect part of
the fabric can only account for 5% of the whole picture,
if a model predicts that the whole picture is defect-free, then
the ACC of this algorithm is 0.95). Therefore, to evaluate
the proposed model performance fairly and objectively. This
article adopted four evaluation metrics [32]: ACC, Precision,
Recall, and F-Measure, which are defined as below [33]:

TP + TN
ACC = 4
FN +TP+ FP+ TN
TP
Recall = ——— @)
FN + TP
. P
Precision = ——— (6)
FP+ TP
2 - Precision - Recall
F — Measure = @)

Precision + Recall
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where TP, TN, FP, and FN represent the true positive, true
negative, false positive, and false negative. F-Measure is a
comprehensive evaluator that utilizes both the Precision and
Recall indicators. As the general rule, a higher F'—measure
reflects a better detection performance.

D. EFFICIENCY EVALUATION

An online fabric defect detection system must be able to meet
the real-time requirements. In order to evaluate the running
speed of the model, the average detection time (ADT) for
different size input image model is analyzed. Fig. 10 shows
the curve of detection time with the size of the input image.
As the image resolution increases, the detection time is also
increased. Therefore, in order to balance the detection time
and accuracy, the input image size of the model is set to
256 x 256 pixels. It can be observed that when the image
size is 256 x 256 pixels, the ADT of the proposed model is
56 ms, which meets the real-time inspection requirement.

Average Detection time (ms)

104 _/.

T T T
128 256 512 1024

Image size (pixel)

FIGURE 10. Detection time of different size images.
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FIGURE 11. Detection time on different platforms.

As shown in Fig. 11, we also evaluated the detection time
of the model on different hardware platforms, including GPU
platform: GTX 1080Ti, GTX 1060Ti, CPU platform Intel
i7 and embedded platform Jatson TX2. It can be seen that
the proposed model has an excellent performance in detection
time on GPU, CPU, and even embedded ARM platform.
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FIGURE 12. Comparison of detection time of different methods.

The efficiency of the proposed method, PTIP, LGM-FC
method is tested on GPU and CPU platforms, respectively.
The comparison results are shown in Fig. 12. The LGM-FC
is a traditional machine vision-based method that first uses
LO Gradient Minimization to remove the fabric texture and
then uses the clustering method to segment the defects.
The detection time is long due to the iterative optimization
required for each detection. PTIP is a method based on convo-
lutional neural network, which first blocks the fabric accord-
ing to its texture and then classifies it using a convolutional
neural network. As the parameters of this method take longer
to detect than the proposed method.

This experiment shows that the proposed model is more
efficient than the existing methods. The proposed model not
only has fast detection speed on GPU but also can achieve
real-time detection effect on edge computing devices. This
proves that our method can meet the real-time and low-cost
requirements of industrial applications.

E. EFFECTIVENESS OF FAKE DATA

In order to verify the similarity between the fake data set and
the real data set, principal components analysis (PCA) is used
to reduce the dimension of the output of the encoder part of
the network. For the convenience of visualization, we reduce
the feature dimension to 2D, and the feature distribution of
real data and fake data is shown in Fig. 13. As Fig. 13 shows,
the feature distance between real data and false data is small,
which proves that the network trained with fake data can be
used to segment real defects.

F. INFLUENCE OF THE LOSS FUNCTION

As shown in Fig. 14, we have performed a qualitative compar-
ison of several loss functions [34] using the DIC coefficient.
It can be seen that the proposed loss function Defect loss
has not only the highest segmentation accuracy but also the
highest stability. The main advantage of Defect loss is to
balance the missing rate and the false detection rate so that
the model can quickly and stably converge when the number
of background pixels and the number of defective pixels is
unbalanced.
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FIGURE 15. Small sample learning performance.

G. SMALL SAMPLE LEARNING PERFORMANCE

In order to evaluate the learning performance of the proposed
model, we train and test the model respectively when the
number of training sets is setto 2, 3,4, 5, 50. The detect results
are shown in Fig. 15. In addition, the comparison between
the proposed method and the supervised method is shown
in Table 2. The two methods are set to the same network
structure, loss function and the number of iterations. It can
be seen that the detection accuracy will increase with the
increase of training samples. It is worth noting that even when
the training samples are less than 5, the defect segmentation
accuracy of the proposed model is significantly higher than
that of the supervised method. Although when the number
of training sets reaches 50, the accuracy of the supervised
method is still less than that of the proposed method. In sum-
mary, the proposed detection method which does not need
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TABLE 2. Small sample learning performance comparison.

Number. of training 2 3 4 5 50
set images

Ours 0.83 0.83 0.84 0.85 0.86

Supervised learning ~ 0.36 0.45 0.56 0.60 0.82

to label any data is significantly better than the supervised
method which needs to label data in few-shot learning.

H. PERFORMANCE COMPARISON

The proposed method was compared qualitatively with PTIP
and LGM-FC methods on the same data set. As an illus-
tration, five representative defect images and corresponding
detection results on the given dataset are shown in
Fig. 16 and Fig.17, respectively.
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FIGURE 16. Comparison of FID data set detection results. (a) FID data set.
(b) Results of LGM-FC. (c) Results of PTIP. (d)Results of ours.
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FIGURE 17. Comparison of YFD data set detection results. (a) FID data
set. (b) Results of LGM-FC. (c) Results of PTIP. (d)Results of ours.

— Failed to detect

Fig. 16 shows the results of the FID dataset, where the
fabric images all have a regular texture. It can be seen that the
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LGM-FC causes some defects to be misjudged as background
because the LGM-FC uses the LO gradient minimization
method to remove the fabric texture and in the process of
removing the texture, it also removes the detail at the edge
of the defective area. In addition, since PTIP first divides
the textured fabric into squares according to the period and
then uses convolutional neural network to judge the squares
as defects or backgrounds, the segmentation region is based
on the squares, which makes the background region easy
to judge as defects. The proposed approach is an end-to-
end segmentation model that incorporates multi-scale mod-
ules to improve segmentation accuracy for small defects.
Fig. 17 shows the results of the YFD dataset detection, where
the fabric images contain some irregular textures. Since both
the LGM-FC and PTIP methods are based on texture feature
detection, neither method can detect images of irregularly
textured fabrics. Moreover, the proposed method achieves
good detection results for both regular and irregular textures.

TABLE 3. Acg, recall, precision, and F- measure of the proposed method.

Dataset ~ Methods ACC Recall Precision ~ F-Measure
LGM-FC 0.96 0.77 0.79 0.78
FID PTIP 0.97 0.76 0.81 0.79
Our 0.98 0.85 0.86 0.86
LGM-FC - - - -
YED PTIP - - - -
Our 0.97 0.86 0.83 0.85
TABLE 4. Comparison of detection time (ms).
Methods LGM-FC  PTIP FDD ER Ours
GPU - 25.0 - - 8.5
CPU 3322 89.0 1040 1200 29.4

The statistical results of our detection model on the FID
and YFD are shown in Table 3. ACC of the proposed method
can reach 0.97, and it can be demonstrated from the Recall
and Precision that the proposed method achieves a balance
between the missed and false detection rates, and F-Measure
can reach 0.85 on both data sets. The detection time of the
proposed method, LGM-FC, PTIP, FDD [30], and ER [29]
on GPU and CPU platforms, is shown in Table 4. We can see
that our method is faster than the other four methods.

V. CONCLUSION

This article describes an unsupervised defect detection
method that is suitable for the detection of various textured
fabric defects and requires only a small number of defect-
free texture samples for training. In addition, the proposed
Defect loss improves the segmentation performance when the
defect is not balanced with the background number. A series
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of experimental results on a variety of textured fabric detec-
tion data sets show that this method can achieve the most
advanced detection accuracy and high detection efficiency.
Besides, the method can be run in real-time, even on low-cost
hardware.
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