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ABSTRACT Using observational data to determine the edges of the sources is an important task in the
interpretation of potential field data. Extracting the edges of deep and shallow bodies effectively is the key
to correctly understanding the underground structure. Based on the goodmulti-scale decomposition ability of
two-dimensional variational mode decomposition (2D-VMD) and the outstanding shape analysis capability
of mathematical morphology (MM), a new multi-scale edge detection method for potential field data is
proposed. We propose using the variance of this morphological filter as a basis for selecting the optimal
structural element (SE) scale. By establishing theoretical models and comparing the results of our method
with those of traditional edge detection methods, the proposed method is shown to be effective at detecting
edges within potential field data. Taking the Hanmiao area of Chifeng city, Inner Mongolia, China, as an
example, 1:50000 aeromagnetic data are processed and analysed by this method. The physical properties of
the rocks in the study area are also discussed. The results of theoretical calculations and real data processing
show that this method can accurately extract the edges of the sources at different scales. And the real data
processing results show that this method is suitable for the identification of structural faults.

INDEX TERMS Multi-scale edge detection, potential field data, two-dimensional variational mode decom-
position (2D-VMD), mathematical morphology (MM).

I. INTRODUCTION
The geological process is long and complex. Therefore,
potential field data are composed of superimposed sources
having different depths, shapes, sizes, densities, and mag-
netism. Shallow-source anomalies with small distribution
ranges are called residual anomalies. However, deep-source
anomalies with large distribution ranges are called regional
anomalies. Separating the potential field from these anoma-
lies and detecting the edges of different sources are important
tasks in geophysics.

For many years, scholars have developed a variety of
separation methods and edge detection methods for potential
field data. Separation methods include matched filtering [1],
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the minimum curvature technique [2], [3], analytical contin-
uation [4], and wavelet multi-scale decomposition [5]–[7].
Edge detection methods mainly fall into two categories:
mathematical statistics and derivative analysis. The math-
ematical statistics approaches include Euler deconvolution
[8], [9], small subdomain filtering [10], [11], and the
normalized standard deviation method (NSTD) [12].
Derivative analysis techniques include the vertical deriva-
tive (VDR) [13], tilt angle (Tilt) [14], total horizontal
derivative (THDR) [15], and Theta map [16], among others.
However, these methods do not completely solve the above-
mentioned problems, so many scholars have continued to
search for new separation and edge detection methods.

N.E. Huang et al. proposed empirical mode decompo-
sition (EMD) in 1998 [17], and Nunes et al. developed
bidimensional empirical mode decomposition (BEMD) on
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the basis of EMD [18]. These methods have been widely
used in nonlinear system analysis, earthquake engineer-
ing, non-destructive detection, meteorology, biomechanics
and many other fields [19], [20]. However, EMD lacks a
strict mathematical basis and is prone to problems such as
mode confusion, end effects and a low algorithmic effi-
ciency. Dragomiretskiy et al. proposed a new mode decom-
position method, variational mode decomposition (VMD),
in 2014 and developed 2D-VMD on this basis [21]–[23].
As a non-recursive and self-adaptive variational method, this
method is completely different from traditional EMD. VMD,
which is based on the Wiener filter and variation method, has
a strong mathematical basis and can quickly and efficiently
separate several intrinsic mode functions (IMFs) with differ-
ent frequencies at the same time.

MM is a mathematical tool for analysing image structures
and morphologies based on random set theory and integral
geometry theory. In 1964, the French scholars Matheron and
Serra developed MM. The publication of Image Analysis and
Mathematical Morphology in 1982 laid a mature theoretical
foundation for this method [24]. MM boasts a fast calculation
speed and plays crucial roles in pattern recognition, image
filtering, edge detection and signal processing. The applica-
tion of MM to the geosciences has also developed rapidly.
At present, MM is employed mainly in the following regards:
seismic signal de-noising [25], seismic crack detection [26],
and gravity and magnetic data processing [27].

The common feature of the edge extracting algorithms is
the highlighting of source edges by mathematical means.
With edge enhancement, source edges are easier to identify
than in the original potential field. If the edge can be located
automatically on the basis of the above, then the accuracy of
interpretation can be improved. For THDR, Theta map and
NSTD, the local maximum corresponds roughly to the edge
of the geological body, such that the boundary analysis tech-
nology proposed by Blakely and Simpson [28] can be used
to locate the edge. For cases in which the source edge is not
located at the abnormal maximum value, but at the abnormal
zero value point or amplitude inflection point (which is also
the location of the maximum gradient), such as VDR and
Tilt, the Canny operator [29] can be used for edge location.
For example, Tilt is enhanced by the vertical first derivative.
Although its edge position roughly corresponds to the zero
value, nonetheless its gradient is the local maximum, which
satisfies the requirement of the Canny operator for image
edge localization.

In this paper, 2D-VMD and MM are combined to solve
the problem that traditional methods are not effective at
extracting the edges of the sources from superimposed
field data. The multi-scale decomposition of potential field
data is carried out by 2D-VMD, and edge detection oper-
ators are constructed by MM to obtain the edges of the
sources at different scales. Next, we use the boundary anal-
ysis technique proposed by Blakely and Simpson to extract
the edge position of each scale. Several models verify the
accuracy and stability of this method in multi-scale edge

detection tasks. The proposed method is also applied to pro-
cess real data from the Hanmiao area of Chifeng city, Inner
Mongolia. The results show that this method can effectively
detect the edges of faults, intrusive rocks and volcanic basins
and can provide rich information for the division of geologi-
cal units and metallogenic prognosis.

II. PRINCIPLE OF THE METHOD
A. 2D-VMD ALGORITHM
The 2D-VMD algorithm assumes that each IMF has a dif-
ferent central frequency and limited bandwidth. By updating
the bandwidth of each mode, the sum of the estimated band-
widths of all IMFs is minimized, and the central frequency
of each mode is finally obtained. The 2D-VMD function is
defined as a two-dimensional analytical signal. The decom-
posed form of the two-dimensional signal f (x) is [21]:

min
uk ,ωk

{∑
k

∥∥∥∇ [uAS,k(x) · e−j〈ωk ,x〉]∥∥∥2
2

}
s.t.∀x :

∑
k

uk (x) = f (x)
(1)

where uAS,k (x) is the two-dimensional analytic signal of
{uk}, {uk} represents the k modes obtained by decomposition,
{uk} = {u1, u2, . . . , uk}, and {ωk} is the center frequency of
each modal component, {ωk} = {ω1,ω2, . . . ,ωk}.

To find the optimal solution of the above problem, the con-
strained variational problem is transformed into an uncon-
strained variational problem [30]. The penalty parameter αk
and the Lagrangian multiplier λ(x) are introduced, and the
augmented Lagrangian function is as follows:

L({uk} , {ωk} , λ)

=

∑
k

αk

∥∥∥∇ [uAS,k (x)e−j〈ωk ,x〉]∥∥∥2
2
+

∥∥∥∥∥f (x)−∑
k

uk (x)

∥∥∥∥∥
2

2

+

〈
λ(x), f (x)−

∑
k

uk (x)

〉
(2)

The alternate direction method of multipliers (ADMM)
is used to find the saddle point of the above equation, and
the optimal solution of the objective function is obtained by
updating un+1k , ωn+1

k , and λn+1k in an alternating fashion [31].
The expression of un+1k is:

un+1k = argmin
uk

αk ∥∥∥∇[uAS,k (x)e−j〈ωk ,x〉]∥∥∥22
+

∥∥∥∥∥f (x)−∑
i

ui (x)+
λ (x)
2

∥∥∥∥∥
2

2

 (3)

By using the Parseval/Plancherel Fourier equidistant trans-
formation, equation (3) is transformed to frequency domain,
and the solution of the quadratic optimization problem is
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obtained [32]:

ûn+1k (ω) =

f̂ (ω)−∑
i6=k

ûi(ω)+
λ̂(ω)
2


×

1

1+ 2α |ω − ωk |
2 (4)

ωn+1
k =

∫�k ω
∣∣ûk (ω)∣∣2 dω

∫�k

∣∣ûk (ω)∣∣2 dω
(5)

where ω ∈ �k , �k = {ω |ω · ωk ≥ 0 }, and ωn+1
k are the

centres of gravity of the power spectra of the different modes.
The specific process of 2D-VMD can be summarized as

follows [21]:
Step 1: Initialize {û1k }, {ω

0
k}, {λ̂

1
}, and n.

Step 2: Update ûk and ωk according to equations (4)
and (5).

Step 3: Update λ according to equation (6).

λ̂n+1(ω) = λ̂n(ω)+ τ

(
f̂ (ω)−

∑
k

ûn+1k (ω)

)
(6)

Step 4: Given the discriminant accuracy ε >0, stop iterat-

ing when
∑
k

∥∥∥ûn+1k − ûnk

∥∥∥2
2
/
∥∥ûnk∥∥22 < ε; otherwise, return to

step 2.
For the 2D-VMD algorithm, the number of IMFs needs to

be set in advance. For different numbers of IMFs, the decom-
position results will vary. For a potential field signal, the slope
of the radially averaged log power spectrum is inversely
proportional to the average buried depth of the source’s centre
of gravity. Therefore, the larger the slope of the fitting line,
the deeper the geological body is buried; the smaller the slope
of the fitting line, the shallower the geological body is buried.
According to the number of fitting lines with a discernible
slope, it is possible to determine how many different equiva-
lent source layers are present and then to obtain the number
of IMFs.

B. EDGE ENHANCEMENT ALGORITHM
1) BASIC OPERATION OF MM
The VDR approach has been shown to be an effective edge
recognition tool. However, the VDR increases not only the
abnormal amplitude but also the interference of noise, which
makes the output result unstable. In this paper, the VDR of
each IMF is calculated, and then the VDR is processed by
MM. The purpose of this is to remove noise and recognize the
edge of the field source. MM uses a SE with a certain shape
and size to detect the target signal. By continuously translat-
ing the SE and matching and modifying the target signal, the
desired results, that is, de-noising, image enhancement and
feature extraction, can be achieved. The basic operations of
MM include dilation, erosion, opening and closing [24].

Assuming that f (x, y) is the VDR of an IMF, g(i, j) is
the SE, x and y are the positions of the calculation points,
⊕ denotes dilation, and 2 denotes erosion, then the dilation

and erosion operations are defined as:

(f ⊕ g)(x, y) = max [f (x − i, y− j)+ g (i, j)] (7)

(f2g)(x, y) = min [f (x + i, y+ j)− g (i, j)] (8)

Opening and closing are combined operations compris-
ing both dilation and erosion, which can smooth the image
contours. Among them, the operation process of opening
is erosion first and then dilation to remove small amounts
of image noise, whereas the operation process of closing is
dilation first and then erosion to fill miniscule image holes.
The opening and closing operations are defined as follows:

(f ◦ g)(x, y) = [(f2g)⊕ g](x, y) (9)

(f · g)(x, y) = [(f ⊕ g)2g](x, y) (10)

2) MULTI-SCALE SE
The scale and shape of the SE have important influences
on the calculation results, similar to the filtering window in
digital signal processing. The scale of the SE is closely related
to the edgewidth. The de-noising ability of a small-scale SE is
weak, but the edge details can be detected. In contrast, large-
scale SEs have strong de-noising abilities, but the detected
edges are relatively rough.

Commonly used SEs are disks, squares, diamonds, lines,
etc. The specific shape of the SE is usually determined
according to the geometric properties of the target geological
feature. To ensure a good filtering effect, the SE should be
simplified as much as possible. Therefore, after conducting
repeated experiments, squares are selected in this study.

Because geological processes are complex, potential field
images contain characteristics on different scales. If the
image is processed by an SE with a single scale, the geolog-
ical details will be lost. Therefore, it is necessary to use SEs
of varying scale to process the potential field data and obtain
detailed information about geological features at different
scales. The multi-scale SE is defined as follows [33]:

ng = g⊕ g⊕ . . .⊕ g︸ ︷︷ ︸
n−1

(11)

where g denotes the SE, n is the scale parameter, and g dilates
itself n − 1 times to obtain ng. In essence, the multi-scale
mathematical morphology technique uses SEs to transform
an image into a series of filtered images. The shape of the SE
does not change, but the scale increases.

3) PROPOSED MORPHOLOGICAL FILTER
Upon improving the morphological operator, the opening and
closing operations are combined to achieve de-noising, while
dilation and erosion are used for edge detection. A combined
filter is constructed by combining the opening and closing
operations to eliminate the noise in potential field data that
does not match the scale, which constitutes the basis of the
edge detection operation [34]:

Moc [f (x, y)] = (f ◦ ng · ng) (x, y) (12)

Mco [f (x, y)] = (f · ng ◦ ng) (x, y) (13)
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To avoid statistical bias in the use of the opening-closing or
closing-opening morphological filters, the two are combined
and averaged [34]:

M [f (x, y)] =
1
2
{Moc [f (x, y)]+Mco [f (x, y)]} (14)

On this basis, the gradient operators E1(x, y) and E2(x, y) are
constructed as follows:

E1 (x, y) = {M [f (x, y)]⊕ ng} −M [f (x, y)] (15)

E2 (x, y) = M [f (x, y)]− {M [f (x, y)]2ng} (16)

The traditional MM edge detection operator can elimi-
nate confounding factors from potential field data. However,
the recognized edge of the source may deviate from the true
position. In this paper, we propose an edge detection method
based onMMby improving E1(x, y) and E2(x, y). We suggest
using a filter based on morphological edge enhancement
(MEE) to increase the accuracy of the edge detection results.

MEE =
E1 (x, y) · E2 (x, y)

E1 (x, y)+ E2 (x, y)+ Emax (x, y)− Emin (x, y)
(17)

where Emax(x, y) is the maximum value of E1(x, y) and
E2(x, y), Emin(x, y) is the minimum value of E1(x, y) and
E2(x, y). Emax(x, y) and Emin(x, y) can prevent a zero value
from being in the denominator. The edges of sources in
potential field data can be identified by the maximum value
produced by MEE.

4) OPTIMAL SE SCALE
We know that the edge detection results of the MEE filter
with different SE scales are inconsistent. Thus, themethod for
determining the most suitable SE scale is a key problem that
we address in this paper. A large number of experiments show
that each scale has an optimal SE scale. Variance is an effec-
tive tool for measuring the discreteness of data. High variance
means that the data are relatively discrete; low variancemeans
that the data are relatively centralized. There is an obvious
maximum along the relation curve between the SE scale
and the MEE variance (which will be explained later). Here,
the scale corresponding to the maximum variance, denoted
max (s2), is defined as the optimal scale, and the MEE value
corresponding to this scale is called the optimal MEE.

The VDR of an IMF is defined as V (x, y), and the SE ng
of scale n is selected to calculate theMEE(n)(x, y) of V (x, y).
The variance s2n of MEE(n)(x, y) is:

s2n =
1

M · N

M∑
x=1

N∑
y=1

[MEE(n)(x, y)

−MEE(n)(x, y)]2 (18)

MEE(n)(x, y) =
1

M · N

M∑
x=1

N∑
y=1

MEE(n)(x, y) (19)

whereMEE(n)(x, y) is the MEE value of scale n,MEE(n)(x, y)
is the sample mean of MEE(n)(x, y), and M and N are the

number of lines and the number of points, respectively,
on each line.

C. PROPOSED MULTI-SCALE EDGE DETECTION PROCESS
The 2D-VMD algorithm has good anti-noise performance,
but its ability to filter a pulse signal is not as good as MM.
According to IMFs with different scales, using the filtering
characteristics of the SE, an edge detection filter based on
2D-VMD and MM is established. The specific implementa-
tion process is as follows:

Step 1: The radially averaged log power spectrum of poten-
tial field data f (x, y) is obtained, and the number k of IMFs
is determined according to the number of fitting lines with
different slopes in the log power spectrum.

Step 2: To reduce the end effect, a cosine transform is
used to extend the boundary of the potential field, and then
2D-VMD is applied to decompose f (x, y) into k IMFs.

Step 3: The VDR of each IMF is calculated, and the SE
with the appropriate shape is selected. Then, the relation
curve between the SE scale ng and the MEE variance s2n is
drawn. The scale corresponding to themaximum point on this
curve is used as the optimal scale of the edge detection filter
for each IMF.

Step 4: MEE is employed for each IMF using the optimal
SE scale to obtain source edge information at different scales.

Step 5: Select the Blakely rule to locate the edge automat-
ically. The basic principle of this method is to compare the
points around each point of interest. If the point of interest
is larger than the surrounding points, then the point will be
retained. Each point will be detected in turn through the
sliding window and will be retained, or not, through the test
standard. If necessary, these points should be connected into
a line by using certain rules (the minimum distance between
adjacent points and the minimum number of points required).
After which point, the multi-scale edge detection of gravity
and magnetic data has been completed.

III. MODEL TESTS
A. THEORETICAL MODEL
In order to verify the effectiveness of the proposed edge detec-
tion method, a synthetic model of seven vertical cubes with
different depths, sizes and residual densities is established.
The starting point coordinate is 0.0 km, and the ending point
coordinate in both directions is 20.0 km. Fig.1 shows the
projected distributions of the cubes on a horizontal plan view
and a vertical profile. The geometric parameters, densities
and magnetism of the cubes are shown in Table 1. Cubes
A1 generate gravity anomaly GRegA, cubes B1 and B2 gener-
ate gravity anomaly GResB, cubes C1 and C2 generate grav-
ity anomaly GResC, and cubes D1 and D2 generate gravity
anomaly GResD.
The model tests are carried out with MATLAB R2016b.

The synthetic model is designed with three layers, there is
little difference in the buried depth between model C and
model D. Therefore, models C and D are regarded as a
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TABLE 1. Parameters table of cube field source.

FIGURE 1. Plan and profile location maps: model A includes A1, model B
includes B1 and B2, model C includes C1 and C2, and model D includes
D1 and D2.

single layer, in its separation from the potential field. The
theoretical gravity anomaly maps of the models are shown in
Figs. 2(a) - 2(c), respectively, and Fig. 2(d) shows the contour
map of Gaussian noise. Fig. 2(e) depicts the contour map of
model C and model D with Gaussian noise. Fig. 2(f) shows
the contour map of all models without noise. The purpose of
adding Gaussian noise to the gravity anomaly of the model is
to verify whether the proposed method has a good anti-noise
ability.

B. RESULTS OF 2D-VMD
From the spectrum analysis, the frequency components of
the regional field and residual field are different. As a result,
the radially averaged log power spectrum can be used to
estimate the depth of the source [35]. When the potential field
data are superposed by the sources of different frequencies,
a number of line segments with different slopes can be fitted
from the power spectrum curve. At present, there are many
kinds of line fitting methods, such as graphical method,
the least square method and so on. The graphic method is
relatively large in terms of human factors, and the positions
and number of line segments divided by different interpreters
will vary. Because the linear least square method is more
accurate and objective, we use it in this work. The fitting
process entails transforming the nonlinear relationship into
a linear relationship. If the line fitting is not accurate, then
the relative error will increase significantly. The standard
for optimal fitting can be determined as the minimum sum
of squared errors [36]. In practical application, where either

method is an estimation of the number and depth of the
sources, but the spectrum analysis still has a good reference
value.

The first synthetic model consists of model B, model C and
model D. Through the radially averaged log power spectrum
of the synthetic gravity anomaly shown in Fig. 3(a), two
frequency bands can be clearly seen, and thus, the number
of IMFs is determined to be two. The slopes of the two fitting
lines are k1= −5.97 and k2= −0.81, respectively, with a
difference of 7.4×. This result shows that there are obvious
frequency differences. Then, 2D-VMD is used to decompose
the potential field data into two layers, as shown in Fig. 4.

The second synthetic model consists of model B, model C
and model D with Gaussian noise and can be divided into
three equivalent layers, as shown in Fig. 3(b). The slopes of
the fitting lines are k1= −4.78, k2= −1.16 and k3= −0.12.
With the method proposed in this paper, IMF1, IMF2 and
IMF3 are obtained by 2D-VMD through spectral analysis,
as shown in Fig. 5. IMF1 is used to approximate the regional
anomaly, IMF2 is used to approximate the residual anomaly,
and IMF3 is used for noise removal.
The third synthetic model consists of model A, model B,

model C andmodel D and is established to test the multi-scale
edge detection capability of the proposed method. As shown
in Fig. 3(c), the radially averaged log power spectrum can be
divided into three equivalent layers. The slopes of the fitting
lines are k1= −12.73, k2= −2.19 and k3= −0.2, respec-
tively. 2D-VMD is used to decompose the potential field data
into three layers, as shown in Fig. 6. From these figures,
it can be seen that as the number of decomposition layers
increases, the frequency aliasing between IMFs will increase.
Therefore, we must use MEE or other edge enhancement
methods to suppress the noise and enhance the edges of IMFs.
This approach will allow us to reduce the frequency aliasing
by as much as possible and highlight the edges of sources at
different scales.

C. RATIONALITY ANALYSIS OF THE
STRUCTURAL ELEMENT
1) DETERMINATION THE MEE VARIANCE
The purpose of MEE is to detect the edges of the sources. The
MEE value fluctuates greatly near such edges. This method
considers the SE scale. If the scale is different, the MEE
value will be different, and thus, the MEE variance will be
significantly different. The more appropriate the scale is,
the more obvious the edge will be, which directly reflects
an increase in variance. Therefore, variance can effectively
distinguish the MEE calculation effect.

The proposed method is used to analyse IMF1 and IMF2
in Fig. 4. First, the MEE values of IMF1 and IMF2 corre-
sponding to different SE scales are obtained, and the vari-
ances of the different MEE values are calculated on this
basis. These parameters can be analysed according to the
relation curve between the SE scale and MEE variance.
As seen from Figs. 7(a) and 7(b), the variance increases at

161142 VOLUME 8, 2020



Y. Pei et al.: Multi-Scale Edge Detection Method for Potential Field Data Based on 2D-VMD and MM

FIGURE 2. Model positions and gravity anomaly contour map: (a) model A; (b) model B; (c) model C and model D; (d) Gaussian
noise; (e) model C and model D with Gaussian noise; (f) the synthetic model consists of model A, model B, model C and model D
(the black boxes are the locations of the models).

FIGURE 3. Radially averaged log power spectrum of the gravity anomaly: (a) the synthetic model consists of
model B, model C and model D; (b) the synthetic model consists of model B, model C and model D with
Gaussian noise; (c) the synthetic model consists of model A, model B, model C and model D.

FIGURE 4. Decomposition of the gravity anomaly of the first synthetic
model consisting of model B, model C and model D by 2D-VMD: (a) IMF1;
(b) IMF2 (the black boxes are the locations of the models).

first and then decreases with an increase in the SE scale; the
scales corresponding to the maximum values are 18 and 3.
Therefore, the optimal sizes of the SEs for IMF1 and IMF2
are 18 × 18 and 3 × 3, respectively. This is also equivalent
to their window sizes. The same method is used to analyse
IMF1 and IMF2 in Fig. 5. According to the relation curves
in Figs. 7(c) and 7(d), the optimal sizes of the SEs for IMF1

and IMF2 are determined to be 20 × 20 and 3 × 3, respec-
tively. Similarly, as shown in Figs. 7(e) to 7(g), the optimal
size of the SE for IMFs in Fig. 6 are 46 × 46, 14 × 14
and 3× 3.

2) SE SELECTION
To verify the influence of the SE scale on the MEE
value, the IMFs are analysed by using different SE scales.
Figs.8(a) - 8(h) show contour maps of the MEE results
obtained by analysing the IMFs in Fig. 4. Figs. 8(i) - 8(p)
show contour maps of the MEE results obtained by analysing
the IMFs in Figs. 5(a) and 5(b). Figs. 8(q) - 8(t) show
contour maps of the MEE results obtained by analysing
IMF1 in Fig. 6(a). Among them, Figs. 8(a) - 8(d) and
Figs. 8(i) - 8(l) show that for model B, regardless of whether
noise is present, when the SE scale gradually increases,
the highMEE values are more continuous. Hence, large-scale
SEs are more suitable than small-scale SEs for this kind of
deeply- buried models.

As shown in Figs. 8(e) - 8(h) and Figs. 8(m) - 8(p), model C
and model D are more affected by noise, and thus, the
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FIGURE 5. Decomposition of the gravity anomaly of the second synthetic model consisting of model B, model C and model D
with Gaussian noise by 2D-VMD: (a) IMF1; (b) IMF2; (c) IMF3 (the black boxes are the locations of the models).

FIGURE 6. Decomposition of the gravity anomaly of the third synthetic model consisting of model A, model B, model C and
model D by 2D-VMD: (a) IMF1; (b) IMF2; (c) IMF3 (the black boxes are the locations of the models).

FIGURE 7. Relation curve between the SE scale and MEE variance:
(a) and (b) IMF1 and IMF2 of the gravity anomaly in Figure 4; (c) and
(d) IMF1 and IMF2 of the gravity anomaly with Gaussian noise in Figure 5;
(e), (f) and (g) IMF2, IMF3 and IMF1 of the gravity anomaly
in Figure 6.

resolving power of small-scale SEs for such sources is
stronger than that of large-scale SEs. As the SE scale

increases, the edge recognition ability of MEE decreases
gradually. Therefore, small-scale SEs are more suitable for
this kind of shallow-buried models.

To further prove the influence of different SE scales
on the edge extraction results, the IMF1 in Fig. 6(a) is
taken as an example, and the SEs of different sizes are
used for edge enhancement. The comparison is shown
in Figs. 8(q) - 8(t). It can be seen that for a large-scale IMF,
as the SE scale is increased, the filtering effect of the SE scale
on small-scale geological bodies is continuously enhanced.
When the SE scale reaches the optimal SE scale in Fig. 7(e),
the edge increment effect is optimal.

On the basis of the above analysis, the profiles
in Figs.8(i) - 8(l), Figs. 8(m) - 8(p) and Figs. 8(q) - 8(t) are
extracted to further analyse the influence of the SE scale. The
plan positions of these profiles are shown in Fig. 2(a), and
the results are shown in Fig. 9. As seen from these figures,
when the SE scale is small, the width of the MEE high-value
area is narrow. There are also large amplitudes at the edge
of the shallow-buried model. As the size of the SE increases,
the MEE amplitudes at the edges of model B1 and model B2
with deeper burial depths are obviously large, as shown
in Fig. 9(d). In the same case, as shown in Fig.9(p), for
model A in Fig. 6, when the size of the SE increases to
46 × 46, the IMF can achieve the best edge enhancement
results. This shows that using optimal SE scales can enable
the edges of the sources with different depths and sizes
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FIGURE 8. MEE results for IMFs with different SE scales: (a)-(d) IMF1 of the gravity anomaly in Figure 4; (e)-(h) IMF2 of the gravity anomaly
in Figure 4; (i)-(l) IMF1 of the gravity anomaly with Gaussian noise in Figure 5; (m)-(p) IMF2 of the gravity anomaly with Gaussian noise
in Figure 5; (q)-(t) IMF1 of the gravity anomaly in Figure 6 (the black boxes are the locations of the models).

to be better recognized. Moreover, the detection of the
residual field is best suited to small-scale SEs, while the
detection of the regional field is best suited to large-scale
SEs. The above comparative analysis thoroughly confirms
that the edge detection method proposed in this paper not
only has high accuracy but also has a stable calculation
process.

D. EDGE DETECTION EFFECT OF DIFFERENT METHODS
In this section, to verify the effectiveness of the proposed
method, we compare the effect of different potential field
separation methods and different edge detection methods on
edge detection accuracy. Therefore, 2D-VMD, BEMD and
wavelet multi-scale decomposition are selected to separate
the gravity anomaly data of the synthetic models. The edge

VOLUME 8, 2020 161145



Y. Pei et al.: Multi-Scale Edge Detection Method for Potential Field Data Based on 2D-VMD and MM

FIGURE 9. Main profiles of the MEE results with different SE scales: (a) to (d) IMF1 for profile x=7.7 km in Figs. 8(i) – 8(l); (e) to (h) IMF2
for profile x=7.7 km in Figs. 8(m) – 8(p); (i) to (l) IMF2 for profile y=12.8 km in Figs. 8(m) – 8(p); (m) to (p) IMF1 for profile x=7.7 km in Figs.
8(q) – 8(t).

detection effect of the separation field is compared by using
MEE, Tilt and Theta map. For MEE and Theta map, we use
the Blakely rule to locate the edges, and then, we overlay
the results of significance level N=2 on the anomaly map
with blue lines. We also use the Canny operator to locate the
edges of Tilt. With this method, the edges are also overlaid
on the anomaly map with blue lines. Then, by comparing
the distance between each detected edge position and its
corresponding true edge position, the edge detection accuracy
of the different methods is verified.

1) MODEL ANALYSIS
We take the first synthetic model, which consists of model B,
model C and model D, as shown in Table 1, as an example to
compare the edge detection effect of the different methods.
First, 2D-VMD is used to separate the gravity anomaly data
of this synthetic model. As shown in Fig. 4, each IMF is more
or less mixed with information from other scale sources. The
regional field anomaly caused by model B is significantly

larger than the residual field anomaly caused by model C and
model D, so there is still a small amount of regional field
anomaly residue in small-scale IMF2.
Next, we compare the edge enhancement effects of MEE

and Tilt on the same IMFs. In Fig. 10(a), the MEE of IMF2
mainly enhances the edges of model C and model D, whereas
in Fig. 10(b), the MEE of IMF1 mainly enhances the edge
of model B. It can be seen from the above two figures that
the maximum value of MEE is consistent with the edges of
the sources. The edges of all the bodies in the models are
recognized by the boundary analysis technology proposed
by Blackly. Moreover, MEE can suppress frequency aliasing
by changing the SE scale. The extracted edges are clear and
continuous with little interference from false anomalies.

Tilt is used to enhance the edges of the same IMFs to
compare the edge detection effect of the proposed method
and the existing method. As shown in Figs. 10(c) and 10(d),
when there are positive and negative anomalies at the same
time, the Tilt can recognize all edges in the models. The edge
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FIGURE 10. Edge detection effects of different methods for gravity anomaly of the first synthetic model: IMF2 and IMF1
obtained by (a) and (b) 2D-VMD and MEE; IMF2 and IMF1 obtained by (c) and (d) 2D-VMD and Tilt; (e) and (f) small-scale and
large-scale components by the BEMD and Theta map methods (the black boxes are the locations of the models; The blue lines
indicate the detected edge positions).

located by using the Canny operator is more accurate than
that determined by the zero value. However, Tilt can amplify
frequency aliasing while highlighting weak anomalies.
Fig. 10(d) shows that while the Tilt method highlights the
edges of deep sources, it also identifies the edges of shallow
sources.

To compare the influence of different potential field sepa-
ration methods on the edge detection results, BEMD, which
also incorporates multi-scale decomposition, is introduced.
A total of two components, IMF1 and RES, are obtained by
BEMD. IMF1 is used to approximate the residual anomaly,
and RES is used to approximate the regional anomaly. The
edges of IMF1 and RES are detected by the Theta map
method. As shown in Figs. 10(e) and 10(f), the results
display obvious frequency aliasing, and there are false
edges.

Furthermore, the anti-noise effects of the different methods
are compared. Gaussian noise is added to the gravity anomaly
of the synthetic model, which consists of model B, model C
and model D, and the edge detection is carried out by each of
the above methods. The decomposition results of 2D-VMD
for the gravity anomaly of this synthetic model are shown
in Fig. 5. Figs. 11(a) and 11(b) show that the edges of IMF2
and IMF1 are detected byMEE, and the detection effect of the
proposedmethod is good. Figs. 11(c) and 11(d) show the edge
detection result obtained by the Tilt method. To eliminate
the influence of noise, the data should be filtered before
performing edge detection. In this paper, upward continuation
is used for filtering, and the upward continuation height is

determined to be 0.5 km through experiments. It can be seen
from these two figures that the Tilt method are still greatly
affected by noise after filtering. We use the Canny operator’s
non-maximum suppression ability and set the threshold to
0.6 in MATLAB to reduce the edge error. After setting the
threshold, the detected edge is more accurate. However, false
edges are still identified, which will significantly interfere
with the recognition of true edges.

Five IMFs and one residue (RES) are obtained by BEMD.
The highest-frequency signal, IMF1, is treated as noise, and
IMF2 is used to approximate residual anomaly GRes, while
the sum of IMF3, IMF4, IMF5 and RES is used to approxi-
mate regional anomaly GReg. The Theta map method is also
used to recognize the edges of GRes and GReg. As shown
in Figs. 11(e) and 11(f), BEMD also has a frequency aliasing
problem, and the Theta map edge detection algorithm is
sensitive to noise.

Through the analysis of the above two synthetic models,
we can see that the edge detection effect ofMEE is better than
that of Tilt for the same IMFs. In addition, the edge detection
effect based on 2D-VMD and MEE is better than that based
with BEMD and Theta map. In the above model tests, there
are only two layers. Therefore, we need to build a three-layer
model for testing to illustrate that the proposed method is a
multi-scale edge detection method.

The third synthetic model consists of model A, model B,
model C and model D. According to the power spectrum,
we divide the gravity anomaly of this model into three
layers, and then decompose the anomaly into three IMFs by
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FIGURE 11. Edge detection effects of different methods for gravity anomaly of the second synthetic model: IMF2 and IMF1
obtained by the (a) and (b) 2D-VMD and MEE; IMF2 and IMF1 obtained by (c) and (d) 2D-VMD and Tilt;(e) to (f) small-scale and
large-scale components obtained by the BEMD and Theta map methods (the black boxes are the locations of the models; The
blue lines indicate the detected edge positions).

FIGURE 12. Edge detection effects of different methods for gravity anomaly of the third synthetic model: IMF3, IMF2 and IMF1
obtained by the (a) to (c) 2D-VMD and MEE; shallow anomaly, deep anomaly and regional field anomaly obtained by the (d) to
(f) Wavelet Multi-Scale Decomposition and MEE (the black boxes are the locations of the models; The blue lines indicate the
detected edge positions).

2D-VMD. This process has been described in detail earlier,
and the results are shown in Fig. 6. Through MEE variance,
the optimal sizes of the SEs for IMF1, IMF2 and IMF3 are

46 × 46, 14 × 14 and 3 × 3, respectively. Using MEE
to detect the edge of IMFs has a good effect, as shown
in Figs. 12(a) - 12(c).
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FIGURE 13. Profiles from Figure 10: (a) profiles at x = 7.7 km (b) profiles at x = 7.7 km; (c) profiles at y=12.8 m (the profiles
in Figure 13a are from Figures 10b, 10d and 10f, and the profiles in Figures 13b and 13c are from Figures 10a, 10c and 10e; the black
dotted line is the boundary of the model).

For comparison, we use wavelet multi-scale decomposi-
tion to decompose the gravity anomaly of this model. After
repeated experiments, we take n = 4 to decompose the
gravity anomaly. The sum of the first-order and second-
order wavelet details is called the shallow anomaly. The
sum of the third-order and fourth-order wavelet details is
called the deep anomaly. The fourth-order wavelet approx-
imation is taken as the regional field anomaly. We still use
the same SE sizes as above, in addition to using MEE for
edge detection with the results of the wavelet multi-scale
decomposition. The results of the edge detection are shown
in Figs. 12(d) - 12(f). It can be seen that the methods for
potential field separation are different; that is, even if the
same edge detection method is used, the results are dif-
ferent. Compared with wavelet multi-scale decomposition,
2D-VMD is more suitable for multi-scale edge detection
with MEE.

To further compare the edge detection results, the main
profiles are extracted. The profile data are derived from
Fig.10 and Fig. 11, and the results are shown in Fig. 13 and
Fig. 14. Comparing the results shown in these figures, the
method proposed in this paper is less affected by noise and
can recognize the main edges of sources at multiple scales.
Moreover, the proposed method can detect the edges of a
model with different depths. When the potential field data
contain noise, there is no need for filtering before using
the approach presented herein. By contrast, it can be seen
that this method can more accurately recognize the true
edges of the source without increasing the errors at the
edges.

2) COMPARATIVE OF EDGE DETECTION ACCURACY
In the above experiments, the edge detection results of
the different methods are qualitatively compared. Next, we

perform a quantitative accuracy comparison of the edges
that have been detected by the different methods, as shown
in Figs. 10 - 12. We use the true position of each model in the
profiles as a reference. The plan positions of these profiles
are shown in Fig. 2. The location of data in

Table 2 is shown in Figs. 13 and 14. First, we calculate
the distance between the extracted edge position and the true
edge position. The edge detection accuracy of the different
methods is compared based on the distance between these
values. We take the edge detection results of model B2 in
the first synthetic model in Table 2 as an example. In the
profile x=7.7 km, the first true edge position ofmodel B2 is at
14 km. As shown in Fig. 10(b), the edge position detected by
2D-VMD andMEE is at 13.9 km. The distance between these
values is 0.1 km. As shown in Fig. 10(d), the edge position
detected by 2D-VMD and Tilt is at 13.7 km. Therefore, the
distance of this value from the true edge is 0.3 km. Moreover,
Tilt will produce false edges. It can also be seen from a
comparison of the other models in Table 2 that based on the
separation field of 2D-VMD, the edge detection accuracy of
MEE is better than that of Tilt.

As also shown in Table 2, the edge detection effect of the
proposed method is significantly better than that of BEMD
and Theta map in Fig. 10(e). For data with Gaussian noise,
MEE is used for the edge detection of model B1. The dis-
tance differences between the two detected edge positions
and the true edge positions are both 0.3 km, whereas those of
model B2 are 0.2 km and 0.3 km. This result shows that the
MEE method can still accurately estimate the edge position
of abnormal bodies after the addition of noise. Comparing the
edge detection results before and after the addition of Gaus-
sian noise, the difference between them is small. This shows
that the method of MEE based on SEs scale optimization to
improve the edge accuracy has a strong anti-noise ability.
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FIGURE 14. Profiles from Figure 11: (a) profiles at x = 7.7 km; (b) profiles at x = 7.7 km; (c) profiles at y=12.8 m (the profiles
in Figure 14a are from Figures 11b, 11d and 11f, and the profiles in Figures 14b and 14c are from Figures 11a, 11c and 11e; the black
dotted line is the boundary of the model).

TABLE 2. Comparison table of the edge accuracy of different methods for the first and second synthetic models.

TABLE 3. Comparison table of the edge accuracy of different methods for the third synthetic models.

From Table 3, it can also be seen that when the source
is three layers, for model A1, in the profile x=7.7 km, the
distance differences between the edge positions detected by
the proposed method and the true edge position are 0.3 km
and 0.3 km. The accuracy of edge detection is better than that
of wavelet multiscale decomposition and MEE.

Through the above comparison, we know that the edge
detection accuracy of the proposed method is not the high-
est in all positions. But on the whole, compared with other
methods, the proposed method has a higher edge detection
accuracy. Therefore, the proposed method can accurately
extract the edges of the sources at different scales.
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FIGURE 15. Magnetic anomalies and edge detection results by MEE:
(a) magnetic anomalies; (b) inclination of 30◦; (c) inclination of 45◦;
(d) inclination of 60◦; (e) inclination of 90◦; (f) geological model (profile
at x = 7.7 km; the black dotted line is the boundary of the model).

E. INFLUENCE OF THE MAGNETIZATION
DIRECTION ON MEE
To study the influence of magnetic inclination on the MEE
algorithm, model B in Table 1 is taken as an example to
apply MEE with an SE size of 19 × 19, and the profiles
with x=7.7 km are extracted, as shown in Fig. 15. Fig. 15(a)
shows the magnetic anomalies when the inclination is 30◦,
45◦, 60◦ and 90◦. Figs. 15(b) - 15(e) present the MEE results
for the magnetic anomalies at these inclinations. The black
dotted line in each figure is the boundary of the model. The
geological models are shown in Fig. 15(f).

As seen from these figures, MEE can effectively enhance
the edges of the source. However, in the case of magnetic
inclination, there is a deviation between the recognized edge
and the true edge. When the inclination is 90◦, the recognized
edge corresponds to the true edge. Therefore, the proposed
method can directly recognize the edges of gravity anomalies.
However, in the interpretation of the magnetic anomalies, due
to the influence of the magnetization direction, the magnetic
anomalies need to be reduced to the pole (RTP) first.

IV. AEROMAGNETIC EDGE DETECTION IN THE HANMIAO
AREA, INNER MONGOLIA, CHINA
A. GEOLOGICAL BACKGROUND
The Hanmiao area is located in the eastern segment of the
Central Asian Orogenic Belt, which is sandwiched between
the North China plate and Siberian plate [39], as shown
in Fig. 16. The west side of the area is a folded fault belt on
the eastern slope of the Da Hinggan Mountains, and the east
side of the area is the Songliao basin. The study area has a
two-layer structure composed of late Paleozoic basement and
Yanshanian caprock with developed Cenozoic, Mesozoic and
Paleozoic strata.

The intrusive rocks in the Hanmiao area are mainly
the products of Early Cretaceous magmatism. The diverse
lithological composition is related to the origin of metal

FIGURE 16. Regional geological map of the Hanmiao area (study area in
the inset map) [37], [38]: (a) geotectonic position of the study area;
(b) regional geological map.

mineralization and is closely related to Late Jurassic-Early
Cretaceous volcanic rocks in space. The outcropping rocks
in this area are mainly Early Cretaceous granodiorite and
adamellite with formation ages of 135.66±0.70 Ma and
134.99±0.59 Ma, respectively.

The tectonic traces in the study area originated in the
middle Permian. Since the Mesozoic, the regional tec-
tonic framework has undergone substantial changes due to
intense tectonic movements and extensive magmatism, and
a series of transtensional faults and graben-style basins have
formed.The overall structures in the area are distributed NE-
SW, and the Mesozoic volcanic rocks that outcrop in large
areas are controlled by NE-directed tectonism. The E-W
faults are basement faults. Due to several subsequent tectonic
events, surface tectonic traces are not evident.

B. AEROMAGNETIC DATA
Aeromagnetic data in the study area with a resolution of
1:50000 are selected as an example to verify the effective-
ness of the proposed method. The data area is bounded by
119◦45’00"E-120◦00’00"E, 44◦30’00"N-44◦40’ 00"N; the
magnetic inclination is 62.35◦, and the magnetic declination
is −8.75◦. The aeromagnetic data are RTP first and then
interpolated to a 100 m×100 m grid, as shown in Fig.17(a).

The NE-SW anomaly in the central part of the Hanmiao
area reflects the distribution of Mesozoic volcanic basins.
This anomaly is narrow in the NE and wide in the SW with
a length of 10 km. The main anomaly area is near the Wote
and Bayanchagan volcanic basins.

In the northwestern extent of the study area near Man-
hatu, there is an aeromagnetic anomaly belt distributed NNE-
SSW with an intensity of 250 nT. In the southern part of
the area near Baiyinhuo, the magnetic anomaly is between
100 and 300 nT with a maximum of 400 nT. The positive
magnetic anomaly in this area is large, and the amplitude of
the anomaly is obviously higher than that of the background
field. Through a field verification, it can be seen that the
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FIGURE 17. RTP aeromagnetic anomaly distribution and the 2D-VMD
result: (a) aeromagnetic anomaly; (b) IMF1; (c) IMF2; (d) IMF3.

lithology is mainly acidic volcanic rocks from the Jurassic
Manketou’ebo Formation.

C. 2D-VMD RESULT AND DEPTH ESTIMATION
First, the RTP aeromagnetic anomaly data f (x,y) are used to
calculate the radially averaged log power spectrum, as shown
in Fig. 18(a). According to the characteristics of this curve,
f (x,y) can be divided into three components. Therefore, we
use 2D-VMD to decompose f (x,y) into IMF1, IMF2 and
IMF3, as shown in Figs. 17(b) - 17(d). Then, the IMFs are
used to estimate the depths of the equivalent source layers,
as shown in Figs. 18(b) - 18(d).

From Fig. 17(b), we can see that IMF1 is a large-scale
component, reflecting the characteristics of the magnetic
anomaly; the depth of the equivalent source layer is 2920 m.
The anomaly area is large, and the variation in the anomaly is
relatively gentle, reflecting the characteristics of the regional
magnetic anomaly in the study area. We speculate that the
sources distributed NW-SE in the study area are the main
cause of the magnetic anomaly.

As shown in Figs. 17(c) and 17(d), IMF2 and IMF3 are
mainly sub-high-frequency and high-frequency residualmag-
netic anomalies, and the scale of IMF2 is smaller than that of
IMF1. The anomaly characteristics of IMF2 are as follows:
the gradient belts with NE and NW trends surround many
circular magnetic anomalies of different sizes. The positive
anomalies are distributed mainly in the NW and SE of the
study area, which is consistent with the large areas of igneous
rocks on the surface. The depth of the equivalent source layer
of IMF2 is approximately 830 m, and the local fractures
basically extend to this point. IMF3 is a small-scale compo-
nent, reflecting the anomaly characteristics of the magnetic
anomalies with an equivalent source layer depth of 710 m;
this anomaly is caused mainly by shallow geological bodies
and local fractures.

D. MULTI-SCALE EDGE DETECTION RESULTS
In this case, the SE shape is a square. As Fig. 19 shows,
through the relation curve between the SE scale and MEE
variance, the optimal SE sizes for IMF1, IMF2 and IMF3
are chosen as 15 × 15, 6 × 6 and 4 × 4, respectively. MEE
is used to enhance the edges of the IMFs, and then the
edge positions of the sources are extracted by the boundary
analysis technology proposed by Blackly. The multi-scale
edge detection results for the RTP aeromagnetic anomaly in
the Hanmiao area are shown in Figs. 20(a), 20(b), and 20(c).
The results show that the edge of the RTP aeromagnetic
anomaly is in good agreement with the boundary of the
measured geological body. In detail, this method is able to
recognize relatively complete edges, and the edges are rel-
atively convergent. In general, the edges of IMF1 basically
reflect the large-scale, deep-cutting and concealed geological
tectonic boundaries throughout the region. The edges of IMF2
and IMF3 reflect some shallow tectonic boundaries that are
small in scale and do not extend to great depth. These linear
traces reflect the trend of tectonic events and their changes at
different depths. The blocks delineated by these edges rep-
resent subsurface geological bodies with different physical
properties.

We use the Tilt method to detect the edges of the same
IMFs and then compare the results obtained with Tilt against
those of the proposed method. Here, the Canny operator
is used for edge location, the results of which are shown
in Figs. 20(d) - 20(f). Comparing the results of the two
methods, it can be seen that Tilt, as a balanced edge enhance-
ment algorithm, can enhance weak anomalies and high-
light deep and shallow sources. However, in this case, Tilt
is based on the separated field data, which is different
from the existing Tilt method, which is based on the orig-
inal noise data. Theoretical models have verified that each
IMF inevitably retains other scale information. Tilt is sen-
sitive to noise and can detect more edges than are actually
present.

The edge extracted by MEE is less than that of Tilt, which
raises the question as to why. After analysis, we find that
in the proposed method, whether the edge can be detected
depends on the SE size. If the IMF is a high-frequency
component, then a smaller SE scale is needed. The frequency
of the large, low and gentle anomaly is obviously different
from that of this IMF, so it is considered as confusion. As a
result, the small-scale SE usually cannot detect the edge of
low and gentle anomaly. Therefore, for a complete compar-
ison, it is also necessary to determine whether the proposed
method detect low and gentle anomalies or indistinct weak
anomalies. Previously, we have proved through themodel that
the proposed method uses 2D-VMD to separate the potential
field data and highlight weak anomalies of different scales in
this process. Therefore, low-frequency IMFs use large-scale
SEs to eliminate high-frequency interference and enhance
the edges of large-scale sources. In contrast, high-frequency
IMFs use small-scale SEs to enhance the edges of small-scale
sources.
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FIGURE 18. Radially averaged log power spectrum curve of the RTP aeromagnetic anomaly and IMFs: (a) RTP aeromagnetic anomaly; (b) IMF1;
(c) IMF2; (d) IMF3.

FIGURE 19. Relation between the SE scale and MEE variance in the Hanmiao area: (a) IMF1; (b) IMF2; (c) IMF3.

FIGURE 20. Edge detection results for the RTP aeromagnetic data in the Hanmiao area: IMF1, IMF2, IMF3 obtained by the (a) to
(c) 2D-VMD and MEE; IMF1, IMF2, IMF3 obtained by the (a) to (c) 2D-VMD and Tilt (The black lines indicate the detected edge
positions).

For example, the proposedmethod for IMF1 edge detection
shows that the NW trending fault in the central part of the
study area (numbered F5 in Fig. 22) is a linear fracture,
as shown in Fig. 20(a). However, a series of circles is present
in Fig. 20(d), which makes interpretation difficult. This fault
shows a low and gentle anomaly in IMF2. The SE size used
by this IMF is small, which can filter this anomaly. Therefore,
the fault cannot be detected in the edge of IMF2 extracted by
MEE, as shown in Fig. 20(b). Correspondingly, in Fig. 20(e),
the obvious NW trending fault can be seen after the edge
detection of IMF2 by Tilt. This fault is characterized by high
frequency in IMF3, so it can be detected by both MEE and
Tilt.

Therefore, MEE extracts the main edges of each scale
based on 2D-VMD, separates the edges of the different scales,

and weakens the frequency aliasing between IMFs by setting
different SE scales. Correspondingly, the advantage of the Tilt
method is that it can recognize the edge of a weak anomaly
better. In addition, MEE has a better edge recognition ability
for linear fracture, while Tilt has a stronger ability for the edge
recognition of geological bodies. Pilkington and Keating [40]
compared several edge detection algorithms and concluded
that no single edge detection method can extract all edge
features. Therefore, the coordinated use of multiple methods
can effectively improve the reliability of edge detection.

E. GEOLOGICAL INTERPRETATION
According to the analysis of the geophysical data from the
Hanmiao area, the magnetic bodies are mainly various kinds
of intermediate-felsic volcanic rocks and intrusive rocks.
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FIGURE 21. Aeromagnetic multi-scale edge detection from the Hanmiao
area overlain atop a geological map; the line colours (varying from blue
to pink) indicate that the scale of detection results increases from small
to large, respectively.

Shale, sandstone and other surrounding rocks are mostly
weakly magnetic or non-magnetic. Therefore, the multi-scale
edge detection results can be used to delineate the distribu-
tions of volcanic rocks and intrusive rocks. Each anomaly has
its own scale and characteristics that can be represented by
the multi-scale detection algorithm. The method proposed by
Blackly and Simpson is used to detect edge positions. The
local maximum points detected by each IMF are connected
into lines, and the lines with lengths of 2 km or greater are
retained, thereby completing the multi-scale edge detection
process for a set of magnetic data. In this study, the multi-
scale edge detection results are directly added to the geolog-
ical map in Fig. 21. Lines of different colours are used to
represent edges: pink, green and blue represent the edges of
IMF1, IMF2 and IMF3, respectively. By using the similarity
among the edges at different scales, we can obtain the pene-
tration depth and strike of the faults. The pink lines indicate
faults with a deep penetration depth, while the green and
blue lines indicate faults with relatively shallow penetration
depths. The closer together these lines are, the larger the
dip angles of the faults. Set of lines can reflect the fault
characteristics, such as the strike direction, dip direction and
cutting depth. Using the multi-scale edge detection results in
combination with remote sensing and field geological sur-
veys, a comprehensive geological interpretation of the study
area is shown in Fig. 22.

F5 is called the Oerge-Chaganhada fault, which is revealed
very clearly in the IMF1 and IMF2 edge detection results.
TheOerge-Chaganhada fault is a very important metallogenic
structure that is reflected in the edge detection results at dif-
ferent scales and may be a deep fault developed in this region.
In terms of physical properties, the Paleozoic belt of uplift in
the northwestern part of the study area is close to the volcanic
basin. Among the rocks in that area, the average magnetic
susceptibility of the intrusive granodiorite is 0.013 SI, while
that of the Permian Linxi Formation is 0.00015 SI. The
edge between the granodiorite and Linxi Formation is very
obvious in the edge recognition results from the aeromagnetic
data.

FIGURE 22. Interpretation of the multi-scale edge detection results in the
Hanmiao area.

The magnetic susceptibilities of the volcanic rocks
and intrusive rocks in the Wote-Bayanchagan basin are
approximately 0.006∼0.012 SI, while those of the Permian
sedimentary strata along the periphery of the basin are
approximately 0.00007∼0.00027 SI; these susceptibilities
differ on the order of 102. By comparing the geological
boundaries of the Wote-Bayanchagan basin with the recog-
nized magnetic edges, it can be seen that the ring-shaped
edges are the positions of volcanic rocks, which is consistent
with the field geological survey.

For the Abuga rock mass, the detected magnetic edges
are also in good agreement with the geological bound-
aries. The lithology of this rock mass is mainly adamel-
lite, the magnetic susceptibilities of which are approximately
0.00027∼0.00435 SI. The lithologies of the surrounding
rocks are mainly metamorphic sandstone and metamorphic
siltstone; the magnetic susceptibilities of these rocks are
approximately 0.00007∼0.00027 SI. The physical proper-
ties of these two masses are very different. The Aorege-
Gulbalkin basin is dominated by meso-basaltic volcanic
rocks, the magnetic susceptibilities of which range from
0.005 SI to 0.0248 SI with an average of 0.01244 SI. These
magnetic properties are caused mainly by andesite.

There are also some circular or elliptical edges along the
periphery of the Mesozoic volcanic basin in the Hanmiao
area. These edges may correspond to deep sources. For exam-
ple, the Baiyinhuo area has recognized edges covering a large
area, but only a small part of a tuff outcrop is exposed at
the surface. This indicates that the actual distribution range
of volcanic rocks in the Manketou’ebo Formation may be
quite large under the Quaternary sediments. We also employ
magnetic data to recognize the edges within the Manghatu
area, and the results similarly show that the granodiorite in
this area has obviously been limonitized, and there is hidden
magnetite at depth.

Interpreting the edges of small-scale IMFs is more difficult
than the edges of large-scale IMFs. However, through field
verification, the edges of large-scale IMFs are mainly related
to regional geological bodies and faults, while the edges
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of small-scale IMFs are mostly related to small geological
bodies and shallow linear fracture. The ring and radial faults
near the volcanic apparatus are also related to the edges of
the small-scale IMFs. Among them, the edge identified by
IMF2 is mainly a NE trending fault, which is most obvious in
the Wote area. Examples include the F7, fault verified in the
field, and the F6 fault, verified by remote sensing. In addi-
tion, the edges identified by IMF2 are mostly related to the
volcanic apparatus. In Gulbalkin and Baiyinhuo, the ring-
shaped area is the location of the volcanic apparatus. A series
of faults near Baiyinhuo, including the verified F15 fault, are
also obvious at this scale.

The edge identified by IMF3 is mainly a series of NW
trending faults with dense distribution and shallow depth. The
verified NW trending faults such as F1, F5 and F13 have been
well recognized at the edges of this scale. The F9 fault that has
been verified in the Abuga area is also well identified in this
scale edge. In particular, the Oerge-Chaganhada fault (F5) has
a high intensity and small range in IMF3. This feature is well
reflected after edge enhancement with an SE size of 4 × 4.
This IMF also identified ring edges in Gulbalkin, Bayancha-
gan, Baiyinhuo and other volcanic rock areas. A series of
radial fractures are distributed around the ring. Some areas
are confirmed to be volcanic apparatus after verification, and
other unverified areas with similar characteristics are also
presumed to be volcanic apparatus.

V. CONCLUSION
In this paper, 2D-VMD is applied to the multi-scale decom-
position of potential field data for the first time. This method
can effectively decompose potential field data into k IMFs.
On this basis, we propose an edge detection algorithm, MEE,
which is based on MM. MEE can effectively enhance the
edges of IMFs by setting different SE scales.

Using the MEE variance to quantitatively determine the
optimal SE scale is helpful to calculate the MEE values more
effectively. Through model tests, compared with other poten-
tial field separation methods and edge detection methods,
2D-VMD and MEE have superior applicability. When pos-
itive and negative abnormal bodies exist in the model at
the same time, the proposed method does not generate false
extra edges and has a stronger anti-noise capability. Hence,
the presented approach is suitable for both gravity and mag-
netic data. In this paper, the edge detection accuracy of sev-
eral different methods is compared. The experimental results
show that the proposed method can better solve the edge
detection problem, with improved accuracy and anti-noise
performance.

The proposed method is applied to the data processing and
interpretation of 1:50000 RTP aeromagnetic data from the
Hanmiao area of Chifeng city, Inner Mongolia, China. The
results show that the edges detected by utilizing aeromagnetic
data from the middle of the study area are consistent with
the geological boundaries of Mesozoic volcanic rocks. The
granodiorite in the northwestern part of the study area is
also clearly revealed in the edge detection results, and the

latest field geological survey shows concealed magnetite at
depth.

Both these theoretical model tests and this application
example show that the novel multi-scale edge detection
method based on 2D-VMD and MEE can effectively extract
edges from potential field data. MEE can suppress frequency
aliasing by changing the SE scale. This technique is a pow-
erful tool for identifying regional tectonics and delineating
concealed geological bodies. The proposed method has a
good reference value for enriching multi-scale edge detection
methods.
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