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ABSTRACT To achieve lower time consumption in pose estimation of an uncalibrated camera, a novel
and efficient method to the Perspective-n-Point problem (PnP) is proposed in this article. An uncalibrated
camera refers to a camera whose focal length, one of the key parameters of PnP, is unknown. Compared
to the traditional methods of PnP for uncalibrated cameras, the focal length is eliminated in our proposed
method by projecting the given three-dimensional points vertically onto the image plane. Then, a new plane
is determined by the projection points and the corresponding 3D points. Further, utilizing the orthogonal
characteristic between the normal vector of the plane and the in-plane vector, we construct the PnP problem
for an uncalibrated camera as a 20th-order polynomial system, which can easily be solved. As compared to
recent PnP methods for uncalibrated cameras, our method has comparable accuracy at a lower computation
cost when handling sets with between 8 and 40 points.

INDEX TERMS Perspective-n-point problem (PnP), pose estimation, uncalibrated camera.

I. INTRODUCTION
The Perspective-n-Point (PnP) problem is based on the
perspective geometry of the pinhole imaging model. As an
important part of computer vision, the PnP problem has
been widely assessed and used to estimate the orientation
and translation of the camera from n pairs of corresponding
points. Due to the above, the PnP problem has also been
defined as the ‘‘Location Determination Problem’’ (LDP) by
Martin et al. [1].
In the traditional PnP problem, the focal length which can

be obtained during camera calibration is usually used as a
known parameter. This type of PnP problem is generally
called the calibrated cases. Correspondingly, the PnP problem
for the cameras with unknown intrinsic parameters is called
the uncalibrated cases. In recent years, the PnP problem for
uncalibrated cameras has attracted widespread attention from
relevant researchers.

The PnP problem for calibrated cases has been extensively
researched in the literature. Gao et al. [2] gave a standard
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to classify the P3P problem and proposed a method, named
CASSC, with complete solution. Ke and Roumeliotis [3]
proposed an algebraic solution by decomposing the rotation
matrix into three directions and establishing a polynomial
containing only one unknown. Compared to the CASSC,
Ke’s method performed better in terms of accuracy, robust-
ness and running speed. Masselli and Zell [4] introduced an
intermediate co-ordinate system and presented an algebraic
solution which can be easily solved, thus obtaining a higher
running speed. For the generic cases, Lepetit et al. [5] pre-
sented an effective method marked as EPnP_GN (Efficient
Perspective-n-Point with Gaussian-Newton), whose time
complexity is O(n) and which performs well in terms of both
robustness and accuracy. However, all of these methods were
established on one precondition, a known focal length [1], [5]
or known directions from the three key points to the cam-
era [3], [4], which is actually another representation of the
focal length.

For the uncalibrated cases, Bujnak et al. [6] presented
an approach called P4P to the absolute pose problem
from four pairs of 2D-3D point correspondences and pro-
vided a polynomial system solution based on the Gröbner
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basis method. Wu [7] proposed a method named P3.5P. The
very name suggests that it requires three pairs of com-
plete points and either the x or y value of one pair of
point as the input information. Compared to P4P, P3.5P per-
formed better in terms of efficiency. Inspired by EPnP_GN,
Penate-Sanchez et al. [8] formulated the PnP problem as
an equation system, utilizing exhaustive linearization tech-
niques to solve the underdetermined equation, called UPnP
(Uncalibrated PnP). UPnP performed well in terms of
accuracy; however, the time cost of UPnP is high.

In order to meet the application requirement of lower time
cost, we present an efficient method in this article, which
can be utilized to locate an illegal flying UAV (Unmanned
Aerial Vehicle) by capturing the image signals from the UAV.
In our approach, we project the 3D points vertically onto the
image surface, which is perpendicular to the focal length f ,
thus eliminating the unknown variable f . Then, a relationship
between the projection points and the 2D points is found.
Using the properties of the normal vector, we establish a
polynomial system to solve the rotation matrix. On this basis,
the translation vector is further solved by using the distance
constraint.

To evaluate the performance of our method, several
experiments were conducted. For every case, we carried out
statistical characteristic analyses in 500 experimental data.
The results prove that our method achieves a comparable
accuracy and higher stability at a lower computational cost,
when the number of correspondences is between 8 and 40.
In particular, the correct prediction rate of the proposed
method can reach more than 95 percent for certain numbers
of correspondences while that of UPnP is stable at roughly
83 percent.

II. PROPOSED METHOD
A. PROBLEM DEFINITION
Given WP i = (Xi,Yi,Zi)T , (i = 1, 2, 3, 4, 5, 6) as
the positions in the world co-ordinate system of six
known key points and the correspondences CP i =

(xi, yi, f )T , (i = 1, 2, 3, 4, 5, 6) as the image positions in the
camera co-ordinate system, where the value of focal length
f is unknown. Defined the vector Cn as the normal vector
of the image surface, which is obviously denoted as Cn =
(0, 0, 1)T in the camera co-ordinate system. The image plane
is parallel to the plane cY cOcX . Our objective is to determine
the transformation matrix [R | t] with respect to the world co-
ordinate system. The rotation matrix can be parameterized as
follows:

R = Rot (X , α)Rot (Y , β)Rot (Z , θ) , (1)

whereRot (X , α),Rot (Y , β) andRot (Z , θ) indicate the rota-
tion matrices around the X − axis, Y − axis, and Z − axis
respectively.

From the geometry of the problem, as shown in Figure 1.(a),
the pointO, which refers to the image co-ordinate origin, and
CP i (i = 1, 2, 3, 4, 5, 6) all lie on the image surface which is
parallel to cY cOcX surface and spaced with an unknown focal
length f . The line OcO lies on the cZ -axis.

FIGURE 1. (a) The perspective geometry of the pinhole imaging model.{
W P

}
denotes the 3D points in the world co-ordinate system, and

{
CP
}

are the corresponding pixel points in the camera co-ordinate system.
(b) Projecting the points W Pi vertically onto the image plane, such that
we have the corresponding orthogonal projections C

W Pi and the plane
determined by the points W Pi ,

W Pj ,
C
W Pj , and C

W Pi ,
(
i 6= j

)
, denoted by

5i,j ,
(
i 6= j

)
.

As illustrated in Figure 1.(b), we select one point WP1
from WP i, (i = 1, 2, 3, 4, 5, 6) and then project the vectors
−−−−−→
WP1

WP i, (i = 2, 3, 4, 5, 6) vertically onto the image plane
to eliminate the unknown focal length, where the vectors
−−−−−→
C
WP1

C
WP i, (i = 2, 3, 4, 5, 6) are the corresponding orthog-

onal projections, denoted as CLi. Meanwhile, we define
a plane 51,i, (i = 2, 3, 4, 5, 6) determined by the points
WP1,

WP i, CWP i, and
C
WP1, such that we have the following:

CnTi ·
CLi = 0, (i = 2, 3, 4, 5, 6) , (2)

where Cni is a unit vector perpendicular to 51,i, which can
be written as follows:

Cni = Cn×

R ·
−−−−−→
WP1

WP i∥∥∥∥−−−−−→WP1
WP i

∥∥∥∥
 , (i = 2, 3, 4, 5, 6) . (3)

As depicted in Figure 2, the scalars λi, (i = 2, 3, 4, 5, 6)

stretch the vectors
−−−→
OCP i, (i = 2, 3, 4, 5, 6) to find vectors
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FIGURE 2. The relationships between 2D points
(
xi , yi

)T and the points{
C
W P

}
projected vertically by the corresponding 3D points

{
W P

}
.

which are in same directions as CLi, (i = 2, 3, 4, 5, 6),
respectively, such that the CLi can be described as:

CLi = −µCvi, (4)

where µ =

∥∥∥∥−−−→OCWP1

∥∥∥∥∥∥∥∥−−−→OCP1

/∥∥∥∥−−−→OCP1

∥∥∥∥∥∥∥∥ , and
Cvi =

−−−→
OCP1∥∥∥∥−−−→OCP1

∥∥∥∥ − λi
−−−→
OCPi∥∥∥∥−−−→OCPi

∥∥∥∥ .
Then, (2) can be transformed into

CnTi ·
Cvi = 0. (5)

Equation (5) is a system of five equations with eight
unknowns. In order to solve it, the associations between
λ2 and λi, (i = 3, 4, 5, 6) are introduced, as illustrated in
(6) – (9), as shown at the bottom of the page, to reduce the
numbers of unknowns.

According to the definition of CLi, they also can be
expressed as follows:

CLi = R ·
−−−−−→
WP1WPi − CnT · R ·

−−−−−→
WP1WPi · Cn. (6)

Such that a proportional constraint based on similar
triangles can be established, through (4) and (6):∥∥Cv2∥∥∥∥CL2∥∥ = µ =

∥∥Cvi∥∥∥∥CLi∥∥ . (7)

As the vectors Cvi and CLi point in the same directions,
respectively, the length relationship illustrated in (7) can be
converted into a vector relationship, as follows:

CvT2 ·
CLi = CvTi ·

CL2. (8)

Substituting Cvi =
−−−→
OCP1∥∥∥∥−−−→OCP1

∥∥∥∥ − λi
−−−→
OCPi∥∥∥∥−−−→OCPi

∥∥∥∥ into (8), λi can be

written as:
Furthermore, it is worth noting that the vectors

Cn×Cv2 and Cn2 are in the same direction, whichwas used to

eliminate λ2. Therefore, the scalar λ2 can be written as:

λ2 = (y1 · A2 − x1 · B2)
/
(y2 · A2 − x2 · B2), (10)

whereAiBi
0

 =
 1 0 0
0 1 0
0 0 0

 · R ·
X1 − XiY1 − Yi
Z1 − Zi

 = −−−−−→C
WP1

C
WP i,

for i = 2, 3, 4, 5, 6.
By substituting (9) and (10) into (5), we can obtain a system

of equations with only three unknown quantities:

A3 · B3 · [C2 · (x3 · B3−y3 · A3)−C3

·(x2 · B2−y2 · A2)] = 0
A4 · B4 · [C2 · (x4 · B4−y4 · A4)−C4

·(x2 · B2−y2 · A2)] = 0
A5 · B5 · [C2 · (x5 · B5−y5 · A5)−C5

·(x2 · B2−y2 · A2)] = 0
A6 · B6 · [C2 · (x6 · B6−y6 · A6)−C6

·(x2 · B2−y2 · A2)] = 0,

(11)

with 

x2 · B2 − y2 · A2 6= 0
x3 · B3 + y3 · A3 6= 0
x4 · B4 + y4 · A4 6= 0
x5 · B5 + y5 · A5 6= 0
x6 · B6 + y6 · A6 6= 0,

where Ci = y1 · xi − x1 · yi, (i = 2, 3, 4, 5, 6).
The formula Ai · Bi = 0, (i = 3, 4, 5, 6) can be found only

when
−−−−−→
C
WP1

C
WP i is parallel to an axis, such that (11) can be

written as follows:
σ1 cosα + ε1 sinα + τ1 = 0
σ2 cosα + ε2 sinα + τ2 = 0
σ3 cosα + ε3 sinα + τ3 = 0
σ4 cosα + ε4 sinα + τ4 = 0,

(12)

where
σi = ai sin θ + bi cos θ
εi = ai sinβ cos θ − bi sinβ sin θ − ci cosβ
τi = di cosβ cos θ − ei cosβ sin θ + fi sinβ,

(i = 1, 2, 3, 4) ,

λi =

[(
CL2 − CLi

)T
·
−−−→
OCP1

/∥∥∥∥−−−→OCP1

∥∥∥∥+ λ2CLTi · −−−→OCP2

/∥∥∥∥−−−→OCP2

∥∥∥∥]
CLT2 ·

−−→
OCPi

/∥∥∥∥−−→OCPi

∥∥∥∥ . (9)

162840 VOLUME 8, 2020



B. Zhou et al.: Efficient Solution to the PnP Problem for Camera With Unknown Focal Length

with

 ai−2bi−2
ci−2

 =
X2 − Xi X1 − X2 X1 − Xi
Y2 − Yi Y1 − Y2 Y1 − Yi
Z2 − Zi Z1 − Z2 Z1 − Zi

 ·
 y1x2xi

x1x2yi
−x1y2xi


 di−2ei−2
fi−2

 =
X2 − Xi X1 − X2 X1 − Xi
Y2 − Yi Y1 − Y2 Y1 − Yi
Z2 − Zi Z1 − Z2 Z1 − Zi

 ·
 x1y2yi

y1y2xi
−y1x2yi

,
for i = 3, 4, 5, 6. By solving (12), we can obtain the

following:
cosα =

ε1τ2−τ1ε2

σ1ε2−ε1σ2
=
ε1τ3−τ1ε3

σ1ε3−ε1σ3
=
ε1τ4−τ1ε4

σ1ε4−ε1σ4

sinα =
τ1σ2−σ1τ2

σ1ε2−ε1σ2
=
τ1σ3−σ1τ3

σ1ε3−ε1σ3
=
τ1σ4−σ1τ4

σ1ε4−ε1σ4
.
(13)

Rearranging (13), we get:
σ1 (τ2ε3−ε2τ3)−σ2 (τ1ε3−ε1τ3)−σ3 (τ2ε1−ε2τ1) = 0
σ1 (τ2ε4−ε2τ4)−σ2 (τ1ε4−ε1τ4)−σ4 (τ2ε1−ε2τ1) = 0

(ε1τ4−τ1ε4)
2
+ (τ1σ4−σ1τ4)

2
= (σ1ε4−ε1σ4)

2.

(14)

Substituting sinβ cosβ = sin 2β
/
2, sin2 β =

(1− cos 2β)
/
2, and cos2 β = (1+ cos 2β)

/
2 into the first

two equations of (14), we have the following:{
∂1 sin 2β + ∂2 cos 2β + ∂3 = 0
∂4 sin 2β + ∂5 cos 2β + ∂6 = 0

(15)

Equation (15) can be transformed into:
cos 2β =

∂3∂4 − ∂1∂6

∂1∂5 − ∂2∂4

sin 2β =
∂2∂6 − ∂3∂5

∂1∂5 − ∂2∂4
.

(16)

Substituting (16) into cos2 2β + sin2 2β = 1, we have the
following:
(∂3∂4 − ∂1∂6)

2
+ (∂2∂6 − ∂3∂5)

2
= (∂1∂5 − ∂2∂4)

2 (17)

By substituting sin2 θ + cos2 θ = 1 into (17), we can obtain
the following:

5∑
i=0

k2i cos2i θ = sin θ
5∑
i=1

l2i cos2i−1 θ. (18)

Squaring both sides of (18), then substituting
sin2 θ = 1 − cos2 θ and making x = cos θ , the model can
be expressed as a 20th-order polynomial:

f (x) =
10∑
i=0

δ2ix2i = 0. (19)

In this section, we first define a normal vector of a plane
determined by two 3D points and their perpendicular pro-
jection points. Then, the vector established by these two
projection points is represented by 2D points (xi, yi)T through
a proportional relationship. The PnP problem is transformed
into solving the polynomial (19) whose odd-numbered coef-
ficients are zero; that is, δi = 0, i = 1, 3, . . . , 19. For general
configurations, (5) can be transformed to (19) and the rotation
matrix can finally be determined.

FIGURE 3. Similar triangles in the projection model.

B. SOLVING THE TRANSLATION VECTOR
Solving the translation vector t = [tX , tY , tZ ]T and the focal
length f by using the similar triangles constraint illustrated
in Figure 3, which can be express as follows:

RWP i + t = si [xi, yi, f ]T , (20)

where si is the scaling of projection. Equation (20) is a system
of equations with four unknown quantities. In order to solve
it, we express W Pi as:[

WPT
i , 1

]
=

4∑
i=1

ϕi
WCT

i ,

where W C1 = [0,0,0,1]T, W C2 =[1,0,0,1]T., W C3
=[0,1,0,1]T, and W C4 = [0,0,1,1]T. Obviously, C Ci =
[R|t]W Ci, where C Ci indicate the corresponding estimates
in the camera co-ordinate system. According to the distance
constraint, we can obtain the following:∥∥∥CC i −

CC j

∥∥∥2 = ∥∥∥WC i −
WC j

∥∥∥2 , (i 6= j) . (21)

The translation vector and focal length can be solved by
using (20) and (21).

C. METHOD
A non-linear equation can be set up, according to (19), for
every six correspondences, which is written as:

f1 (x) =
10∑
i=0
δ2ix2i = 0

f2 (x) =
10∑
i=0
δ2ix2i = 0

...

fn−5 (x) =
10∑
i=0
δ2ix2i = 0.

(22)

To reduce the computational complexity of this non-linear
system, we use the least squares residual to find the local
minima of (22). We defined a cost function, J , as follows:

J =
∑n−5

i=1
f 2i (x). (23)
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TABLE 1. The steps of our proposed Method.

We obtain the minima of J by computing the roots
of J ′ = 0. Then, J ′ can be written as:

J ′ =
∑39

i=0
aix i = 0. (24)

We solve (24) by the eigenvalue method [10]. First, we
construct a matrix A with the coefficients of (24):

A =


−
a38
a39
−
a37
a39
· · · −

a1
a39
−
a0
a39

1 0 · · · 0 0
0 1 · · · 0 0

· · · · · ·
. . . · · · · · ·

0 0 · · · 1 0

 . (25)

According to the eigenvalue method, the roots of
|λI − A| = 0 are also the roots of (24), where λ are the
eigenvalues of A. It is well known that |λI − A| = 0 can be
easily solved by the matrix decomposition.

In this section, the PnP was further transformed into a
sparse matrix decomposition.

The proposed method is summarized in Table 1.

TABLE 2. Information about the datasets.

III. EXPERIMENTS RESULTS
A. DATASETS
To assess the properties of our method, several experiments
were carried out on six datasets. For each case with the same
parameters, 500 synthetic data were provided. The image size
of these data was 640 pixels ×480 pixels and the normalized
depth of the 3D points was randomly distributed in the range
[4,8]. The details of used datasets are show as follows:

1) Dataset A: The 3D points are randomly generated and
then projected with focal length of 1200 pixels. The
image noise level is σ = 5. The number of points
ranges from 6 to 40.

2) Dataset B: Varying image noise is considered in
the 20 points cases with fixed focal length of
f =1000 pixels. The noise level increases from 1 to 15.

3) Dataset C: The performances are compared in changing
focal length values from 600 to 2850. In addition,
the number of points is set to 24 points and the image
noise level is σ = 5.

The ground truth pose, corresponding to the estimates
R and t, are denoted as Rtrue and t true. As in [11]
and [16], we used the angular distance to measure
the rotation error, which can be expressed concisely as
ER = max

{
acos (Rtrue (:, i) ,R (:, i))× 180

/
π
}
(i = 1, 2, 3),

where acos (Rtrue (:, i) ,R (:, i)) refers to the angle between
the ith column of Rtrue and R. The translation error was
defined as Et = ‖t true − t‖

/
‖t true‖. A result was determined

to be true when ER < 5◦ and Et < 5% .

B. RESULTS AND PERFORMANCE EVALUATION
We assessed the performance of our proposed method and
compared it against Adrian’s method, UPnP_GN (UPnP with
Gaussian-Newton) [8], and DLT [24]. Our proposed method,
DLT and UPnP_GN were implemented in Matlab, although
the UPnP_GN method used compiled C functions. The code
for UPnP_GN was taken from Opencv3.4.1, which is avail-
able at https://github.com/opencv/opencv/ archive/3.4.1. zip.

1) ACCURACY
In this section, the results of EPnP[25] are included, which
were obtained under known focal length, as a reference base-
line. Obviously, EPnP performed better than the uncalibrated
methods.

The first column in Figure 4 shows the performance of our
method, compared to UPnP_GN, DLT and EPnP, with a fixed
focal length f = 1200 pixels. With increasing size of the
point corresponding set, both the median rotation error and
translation error of all methods showed a downward trend.
The accuracy of our proposed method became closer to that
of UPnP_GN as the number of points increased. For the cases

162842 VOLUME 8, 2020



B. Zhou et al.: Efficient Solution to the PnP Problem for Camera With Unknown Focal Length

FIGURE 4. Experiments results on three different datasets. First column: median rotation error and median translation error for increasing number
of 2D-3D correspondences. Second column: median rotation error and median translation error for increasing noise. Third column: median rotation
error and median translation error for changing focal length. Every tick in the drawing indicates the statistical results of 500 experiments.

where n > 8, the accuracy of our method was roughly the
same as that of UPnP_GN, while the accuracy of DLT was
always inferior to UPnP_GN and our proposed method.

The second column in Figure 4 shows the robustness of
three methods against noise at n = 20 and f = 1000. With
increasing noise, the median rotation error and translation
error gradually became larger. The accuracy of our pro-
posed method was almost consistent with that of UPnP_GN.
Affected by its linear characteristics, DLT performed weakly
against noise.

The third column in Figure 4 illustrates the performances
of the three approaches under changing focal length. Both the
median rotation and translation error of DLT became larger
and larger with increasing focal length. Our proposed method
performed well, as did UPnP_GN, in terms of accuracy when
the focal length was set between 600 to 2850.

Concisely, our proposed method was comparable to
UPnP_GN, in terms of numerical accuracy, and better than
DLT. This is because DLT defines the elements in the rotation
matrix as nine variables, ignoring the constraints between
variables. In contrast, our approach decomposes the rotation
matrix into three rotation angles around the co-ordinate axes,
as well as using the orthogonality of the rotation matrix to
constrain the results.

2) STABILITY
The median errors are not enough to fully demonstrate the
performances of these methods. Therefore, we further evalu-
ated the stability of these methods by using the correct rate.
The correct rate refers to the proportion of ER < 5◦ and
Et < 5% among 500 pose estimates.

Figures 5. (a), (b), and (c) show the stability of our
proposed approach under Datasets A, B, and C, respectively.
As shown in Figure 5. (a), the correct rates of all methods
became higher and higher with an increasing number of
points. UPnP_GN performed better than ours only when the
number of correspondences was set to 6. For the cases where
n > 12, the correct rate of our method and DLT gradu-
ally approached 100%, while the correct rate of UPnP_GN
remained stable at 80%. Figure 5. (b) illustrates that the
correct rates changed with growing noise. The correct rates
of our method and DLT were stable, at roughly 100 percent,
when σ < 6, where that of DLT was a little higher than
ours; although, as shown in Figure 4, our proposed approach
was more precise than DLT. When σ > 7, our proposed
method performed better than both DLT and UPnP_GN.
Figure 5. (c) displays the performances of three methods
under different focal lengths which ranged from 600 pixels
to 2850 pixels. In the tested focal length range, the correct
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FIGURE 5. (a), (b) and (c) depict the correct rate on datasets A, B and C respectively. Every tick in the drawing indicates the ratio of ER < 5◦ and Et < 5%
among 500 experiments.

rate of our proposed method was always above 90 percent,
better than that of UPnP_GN. For the cases with f > 1000,
the proposed method performed better than both DLT and
UPnP_GN.

Briefly, our proposed method is more stable than UPnP
when n ≥ 8. This is because our method formulated the
solution of rotation matrix into a polynomial system without
the unknown variable f by projecting the 3D points vertically
onto the imaging surface and estimating the rotation matrix
first. The strategy of first estimating the rotation matrix and
then estimating the focal length and translation vector reduces
the influence of unknown focal length on the estimation,
as well as obtaining a more stable performance, (as illus-
trated in Figure 5). Conversely, UPnP_GN puts all unknowns
together and establishes the same equation system as in EPnP,
but contains the unknown focal length, which can cause the
underdetermination of the equation system in some cases.

3) RUNNING SPEED
Figure 6 illustrates the running time of our method, DLT, and
UPnP_GN for an increasing number of point pairs. The noise
and focal length were set as σ = 5 and f = 800.
The DLT solver consumed less time than ours; however,

as illustrated in Figure (4), DLT performed poorly in terms of
accuracy.

As compared to UPnP_GN, our approach was faster when
the number of correspondences was less than roughly 90.
This is because our proposed method formulates the PnP
problem as a polynomial system, which can be easily solved
by decomposing a sparse matrix with 40 elements. This led
to an increase in computational efficiency, while UPnP_GN
uses exhaustive linearization techniques to solve the problem.

However, our proposedmethod happened to be slower with
a large number of input points. This phenomenon was caused
by increasing coefficient computation with the increase of
amount of input points, which means that our method is more
suitable when considering smaller point sets.

The above experiments and comparisons demonstrate
that our proposed method achieves comparable numerical

FIGURE 6. Running time with increasing number of points at fixed values
of σ = 5, f = 800.

accuracy and higher stability at a lower computational cost
when the number of correspondences located between 8 and
40. Particularly, the correct rate of our proposed method
can reach more than 95 percent, while the correct rate
of UPnP_GN finally increases to roughly 83 percent. In
addition, our proposed method is more accurate than DLT
while slower than it.

IV. REAL DATA
The proposed approach was evaluated on the image shown
in Figure 7. (a), which was taken with a FUJIFILM FinePix
HS35EXR digital camera. The ground truth position and
rotation matrix were provided by using EPnP_GN[5], and
twenty 2D–3D correspondences were manually selected.

We input twenty correspondences into our proposed
method, and DLT in order to obtain the estimations.
We projected 3D points onto the image plane using the
estimates, and the reprojections are shown in Figure 7. (b).
Finally, we computed the rotation errors and translation
errors, and the results are listed in Table 3. The results prove
the effectiveness of our method.
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FIGURE 7. (a) The real image. (b) the reprojection by estimated R and t
provided by our proposed method and DLT.

TABLE 3. Rotation error and translation error.

V. CONCLUSION
In comparison to previous studies, our proposed method
exhibits a principal advantage. We found that our method has
sufficient effectiveness to reliably provide pose estimations
for the uncalibrated cameras.

We improved the computation speed by formulating the
PnP problem into a polynomial system which could eas-
ily be solved. Our proposed method obtained more stable
estimation by vertically projecting the 3D points onto the
image surface, thus reducing the interference arising from the
unknown focal length. Further research on the relationship
between accuracy and computation speed is necessary for
the application of pose estimation methods for uncalibrated
cameras.
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